Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Optimization of Technique
2.3. Assessment of Single Antibody Phenotypes in OLP
2.4. Assessment of T Cell Phenotypes in OLP
2.5. Assessment of MAIT Cell Phenotypes in OLP
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Tissue Samples
4.3. Multiplex Immunohistochemistry
4.4. Quantitative Analysis and Phenotyping
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Axell, T.; Rundquist, L. Oral lichen planus—A demographic study. Community Dent. Oral Epidemiol. 1987, 15, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Roopashree, M.R.; Gondhalekar, R.V.; Shashikanth, M.C.; George, J.; Thippeswamy, S.H.; Shukla, A. Pathogenesis of oral lichen planus—A review. J. Oral Pathol. Med. 2010, 39, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Sugerman, P.B.; Savage, N.W.; Walsh, L.J.; Zhao, Z.Z.; Zhou, X.J.; Khan, A.; Seymour, G.J.; Bigby, M. The pathogenesis of oral lichen planus. Crit. Rev. Oral Biol. Med. 2002, 13, 350–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Garcia, V.; Bascones-Martinez, A.; Garcia-Kass, A.I.; Martinelli-Klay, C.P.; Kuffer, R.; Alvarez-Fernandez, E.; Lombardi, T. Analysis of the expression of heat-shock protein 27 in patients with oral lichen planus. Oral Dis. 2013, 19, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Carrozzo, M. Oral diseases associated with hepatitis C virus infection. Part 2: Lichen planus and other diseases. Oral Dis. 2008, 14, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Carrozzo, M.; Gandolfo, S. Oral diseases possibly associated with hepatitis C virus. Crit. Rev. Oral Biol. Med. 2003, 14, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Syrjanen, S.; Lodi, G.; von Bultzingslowen, I.; Aliko, A.; Arduino, P.; Campisi, G.; Challacombe, S.; Ficarra, G.; Flaitz, C.; Zhou, H.M.; et al. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: A systematic review. Oral Dis. 2011, 17 (Suppl. 1), 58–72. [Google Scholar] [CrossRef] [Green Version]
- Ivanovski, K.; Nakova, M.; Warburton, G.; Pesevska, S.; Filipovska, A.; Nares, S.; Nunn, M.E.; Angelova, D.; Angelov, N. Psychological profile in oral lichen planus. J. Clin. Periodontol. 2005, 32, 1034–1040. [Google Scholar] [CrossRef]
- Chaudhary, S. Psychosocial stressors in oral lichen planus. Aust. Dent. J. 2004, 49, 192–195. [Google Scholar] [CrossRef]
- Gold, M.C.; Cerri, S.; Smyk-Pearson, S.; Cansler, M.E.; Vogt, T.M.; Delepine, J.; Winata, E.; Swarbrick, G.M.; Chua, W.-J.; Yu, Y.Y.L.; et al. Human Mucosal Associated Invariant T Cells Detect Bacterially Infected Cells. PLoS Biol. 2010, 8, e1000407. [Google Scholar] [CrossRef]
- Tilloy, F.; Treiner, E.; Park, S.-H.; Garcia, C.; Lemonnier, F.; de la Salle, H.; Bendelac, A.; Bonneville, M.; Lantz, O. An Invariant T Cell Receptor α Chain Defines a Novel TAP-independent Major Histocompatibility Complex Class Ib–restricted α/β T Cell Subpopulation in Mammals. J. Exp. Med. 1999, 189, 1907–1921. [Google Scholar] [CrossRef] [Green Version]
- Cowley, S.C. MAIT cells and pathogen defense. Cell. Mol. Life Sci. 2014, 71, 4831–4840. [Google Scholar] [CrossRef]
- Le Bourhis, L.; Dusseaux, M.; Bohineust, A.; Bessoles, S.; Martin, E.; Premel, V.; Core, M.; Sleurs, D.; Serriari, N.E.; Treiner, E.; et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013, 9, e1003681. [Google Scholar] [CrossRef] [Green Version]
- DeAngelis, L.M.; Cirillo, N.; McCullough, M.J. The immunopathogenesis of oral lichen planus-Is there a role for mucosal associated invariant T cells? J. Oral Pathol. Med. 2019, 48, 552–559. [Google Scholar] [CrossRef]
- Cho, Y.N.; Kee, S.J.; Kim, T.J.; Jin, H.M.; Kim, M.J.; Jung, H.J.; Park, K.J.; Lee, S.J.; Lee, S.S.; Kwon, Y.S.; et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 2014, 193, 3891–3901. [Google Scholar] [CrossRef] [Green Version]
- Chiba, A.; Tamura, N.; Yoshikiyo, K.; Murayama, G.; Kitagaichi, M.; Yamaji, K.; Takasaki, Y.; Miyake, S. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res. Ther. 2017, 19, 58. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Wang, F.; Zhou, G. Characterization and function of circulating mucosal-associated invariant T cells and γδT cells in oral lichen planus. J. Oral Pathol. Med. 2022, 51, 74–85. [Google Scholar] [CrossRef]
- Li, J.; Reantragoon, R.; Kostenko, L.; Corbett, A.J.; Varigos, G.; Carbone, F.R. The frequency of mucosal-associated invariant T cells is selectively increased in dermatitis herpetiformis. Australas. J. Dermatol. 2016, 58, 200–204. [Google Scholar] [CrossRef]
- Dusseaux, M.; Martin, E.; Serriari, N.; Peguillet, I.; Premel, V.; Louis, D.; Milder, M.; Le Bourhis, L.; Soudais, C.; Treiner, E.; et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011, 117, 1250–1259. [Google Scholar] [CrossRef]
- Gibbs, A.; Leeansyah, E.; Introini, A.; Paquin-Proulx, D.; Hasselrot, K.; Andersson, E.; Broliden, K.; Sandberg, J.K.; Tjernlund, A. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017, 10, 35–45. [Google Scholar] [CrossRef]
- Hiejima, E.; Kawai, T.; Nakase, H.; Tsuruyama, T.; Morimoto, T.; Yasumi, T.; Taga, T.; Kanegane, H.; Hori, M.; Ohmori, K.; et al. Reduced Numbers and Proapoptotic Features of Mucosal-associated Invariant T Cells as a Characteristic Finding in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 1529–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobkowiak, M.J.; Davanian, H.; Heymann, R.; Gibbs, A.; Emgård, J.; Dias, J.; Aleman, S.; Krüger-Weiner, C.; Moll, M.; Tjernlund, A.; et al. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur. J. Immunol. 2019, 49, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, A.; Celentano, A.; Cirillo, N.; Mignogna, M.D.; McCullough, M.; Porter, S. Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes. Eur. J. Oral Sci. 2016, 124, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, A.; Celentano, A.; Cirillo, N.; McCullough, M.; Porter, S. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease. PLoS ONE 2017, 12, e0172821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaki, M.; Sato, T.; Sugawara, Y.; Sasano, T.; Takahashi, N. Detection and identification of non-Candida albicans species in human oral lichen planus. Microbiol. Immunol. 2011, 55, 66–70. [Google Scholar] [CrossRef]
- Jainkittivong, A.; Kuvatanasuchati, J.; Pipattanagovit, P.; Sinheng, W. Candida in oral lichen planus patients undergoing topical steroid therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 61–66. [Google Scholar] [CrossRef]
- Le Bourhis, L.; Martin, E.; Peguillet, I.; Guihot, A.; Froux, N.; Core, M.; Levy, E.; Dusseaux, M.; Meyssonnier, V.; Premel, V.; et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 2010, 11, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Sugerman, P.B.; Satterwhite, K.; Bigby, M. Autocytotoxic T-cell clones in lichen planus. Br. J. Dermatol. 2000, 142, 449–456. [Google Scholar] [CrossRef]
- Engel, K.B.; Moore, H.M. Effects of preanalytical variables on the detection of proteins by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Arch. Pathol. Lab. Med. 2011, 135, 537–543. [Google Scholar] [CrossRef]
- Xie, R.; Chung, J.-Y.; Ylaya, K.; Williams, R.L.; Guerrero, N.; Nakatsuka, N.; Badie, C.; Hewitt, S.M. Factors influencing the degradation of archival formalin-fixed paraffin-embedded tissue sections. J. Histochem. Cytochem. 2011, 59, 356–365. [Google Scholar] [CrossRef]
- Pollard, K.; Lunny, D.; Holgate, C.S.; Jackson, P.; Bird, C.C. Fixation, processing, and immunochemical reagent effects on preservation of T-lymphocyte surface membrane antigens in paraffin-embedded tissue. J. Histochem. Cytochem. 1987, 35, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Stack, E.C.; Wang, C.; Roman, K.A.; Hoyt, C.C. Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 2014, 70, 46–58. [Google Scholar] [CrossRef]
HALO Variability (%) | inForm Variability (%) | Difference (%) | |
---|---|---|---|
“Tissue” | 33.8 | 23.5 | −10.3 |
“Not Tissue” | 52.0 | 55.2 | 3.2 |
“Tissue Folds” | 99.1 | 93.1 | −6.0 |
CD161 | 92.6 | 120.3 | 27.7 |
CD3 | 78.6 | 107.6 | 29.0 |
CD8 | 158.1 | 155.7 | −2.4 |
IL18R1 | 109.4 | 141.9 | 32.4 |
MR-1 | 40.7 | 127.8 | 87.1 |
TCRVα7.2 | 143.7 | 166.4 | 22.7 |
DAPI | 8.5 | 31.1 | 22.7 |
CD3+ CD8+ µ ± SD (%) | CD3+ CD161+ µ ± SD (%) | CD3+ IL18R1+ µ ± SD (%) | CD3+ CD161+ IL18R1+ µ ± SD (%) | |
---|---|---|---|---|
Control | 5.3 ± 5.3 | 17.1 ± 15.2 | 24.1 ± 19.0 | 13.2 ± 14.8 |
OLP Asymptomatic | 1.4 ± 3.5 | 14.3 ± 14.8 | 20.7 ± 19.1 | 9.5 ± 11.9 |
OLP Symptomatic | 1.1 ± 2.8 | 5.7 ± 11.9 | 17.1 ± 24.5 | 5.1 ± 10.6 |
OLP Candida Asymptomatic | 2.9 ± 6.6 | 10.3 ± 15.1 | 21.5 ± 25.9 | 8.3 ± 13.6 |
OLP Candida Symptomatic | 3.4 ± 5.9 | 7.7 ± 8.6 | 12.7 ± 28.4 | 1.5 ± 3.5 |
CD3+ TCRVα7.2+ µ ± SD (%) | CD3+ IL18R1+ TCRVα7.2+ µ ± SD (%) | CD3+ CD161+ TCRVα7.2+ µ ± SD (%) | CD3+ CD161+ IL18R1+ TCRVα7.2+ µ ± SD (%) | |
---|---|---|---|---|
Control | 8.2 ± 10.5 | 2.3 ± 4.2 | 2.3 ± 3.3 | 1.4 ± 2.4 |
OLP Asymptomatic | 17.6 ± 26.0 | 4.1 ± 7.4 | 2.7 ± 4.9 | 2.0 ± 4.4 |
OLP Symptomatic | 30.2 ± 33.6 | 7.0 ± 17.2 | 1.6 ± 3.6 | 1.5 ± 3.4 |
OLP Candida Asymptomatic | 0.3 ± 0.6 | 0.1 ± 0.3 | 0.2 ± 0.4 | 0.1 ± 0.2 |
OLP Candida Symptomatic | 13.9 ± 27.9 | 8.0 ± 23.9 | 3.4 ± 7.0 | 1.1 ± 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeAngelis, L.M.; Cirillo, N.; Perez-Gonzalez, A.; McCullough, M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int. J. Mol. Sci. 2023, 24, 1490. https://doi.org/10.3390/ijms24021490
DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. International Journal of Molecular Sciences. 2023; 24(2):1490. https://doi.org/10.3390/ijms24021490
Chicago/Turabian StyleDeAngelis, Lara Marie, Nicola Cirillo, Alexis Perez-Gonzalez, and Michael McCullough. 2023. "Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus" International Journal of Molecular Sciences 24, no. 2: 1490. https://doi.org/10.3390/ijms24021490
APA StyleDeAngelis, L. M., Cirillo, N., Perez-Gonzalez, A., & McCullough, M. (2023). Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. International Journal of Molecular Sciences, 24(2), 1490. https://doi.org/10.3390/ijms24021490