Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs)
Abstract
:1. Introduction
2. Results
2.1. Characterization of WFOs Derived from Various Byproducts
2.2. Cupriavidus Necator B-10646 Growth and Polyhydroxyalkanoates Synthesis on Different WFOs
2.3. Chemical Composition and Properties of PHA Synthesized on Various Types of WFO
3. Materials and Methods
3.1. PHA Producer Strain and Cultivation Media
3.2. Obtaining and Characterizing Fat Waste from Fish Processing (WFO)
3.3. Bacteria-Cultivation Technique
3.4. Analysis of the Chemical Composition of Sprat Oil
3.5. PHA Analysis
3.6. PHA Properties
3.7. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T.M., Ed.; Academic Press: London, UK, 2020; pp. 13–32. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Lavers, J.L.; Bond, A.L. Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proc. Natl. Acad. Sci. USA 2017, 114, 6052–6055. [Google Scholar] [CrossRef]
- Tan, J.; Jia, S.; Ramakrishna, S. Accelerating Plastic Circularity: A Critical Assessment of the Pathways and Processes to Circular Plastics. Processes 2023, 11, 1457. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Plastics Science; UNEP/PP/INC.1/7; United Nations Environment Programme (UNEP): Punta del Este, Uruguay, 2022. [Google Scholar]
- Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. Environ. Pollut. 2022, 307, 119600. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q. Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In Plastics from Bacteria; Chen, G.Q., Ed.; Springer: Berlin, Germany, 2010; pp. 17–37. [Google Scholar]
- Sudesh, K. Practical Guide to Microbial Polyhydroxyalkanoates; Smitthes: London, UK, 2010. [Google Scholar]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Volova, T.G.; Shishatskaya, E.I.; Sinskey, A.J. Degradable Polymers: Production, Properties, Applications; Nova Science Pub Inc: New York, NY, USA, 2013. [Google Scholar]
- Chen, G.Q.; Chen, X.Y.; Wu, F.Q.; Chen, J.C. Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Adv. Ind. Eng. Polym. Res. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Mitra, R.; Xu, T.; Chen, G.Q.; Xiang, H.; Han, J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb. Biotechnol. 2022, 15, 1446–1470. [Google Scholar] [CrossRef]
- Tan, D.; Wang, Y.; Tong, Y.; Chen, G.Q. Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends Biotechnol. 2021, 39, 953–963. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. A new wave of industrialization of PHA biopolyesters. Bioengineering 2022, 9, 74. [Google Scholar] [CrossRef]
- Tarrahi, R.; Fathi, Z.; Seydibeyoğlu, M.Ö.; Doustkhah, E.; Khataee, A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int. J. Biol. Macromol. 2020, 146, 596–619. [Google Scholar] [CrossRef]
- Kalia, V.C.; Ray, S.; Patel, S.K.; Singh, M.; Singh, G.P. The Dawn of Novel Biotechnological Applications of Polyhydroxyalkanoates; Springer: Singapore, 2019; pp. 1–11. [Google Scholar]
- Popa, M.S.; Frone, A.N.; Panaitescu, D.M. Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int. J. Biol. Macromol. 2022, 207, 263–277. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. Polyhydroxyalkanoates–linking properties, applications, and end-of-life options. Chem. Biochem. Eng. Quart. 2020, 34, 115–129. [Google Scholar] [CrossRef]
- Dalton, B.; Bhagabati, P.; De Micco, J.; Padamati, R.B.; O’Connor, K. A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 2022, 12, 319. [Google Scholar] [CrossRef]
- Palmeiro-Sánchez, T.; O’Flaherty, V.; Lens, P.N. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J. Biotechnol. 2022, 348, 10–25. [Google Scholar] [CrossRef]
- Dietrich, K.; Dumont, M.J.; Del Rio, L.F.; Orsat, V. Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnol. 2019, 49, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gutschmann, B.; Huang, B.; Santolin, L.; Thiele, I.; Neubauer, P.; Riedel, S.L. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review. Microbiol. Res. 2022, 24, 127177. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Oh, M.K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Biores. Technol. 2022, 344, 126307. [Google Scholar] [CrossRef]
- Koller, M.; Obruča, S. Biotechnological production of polyhydroxyalkanoates from glycerol: A review. Biocatal. Agric. Biotechnol. 2022, 42, 102333. [Google Scholar] [CrossRef]
- Miyahara, Y.; Wang, C.T.; Ishii-Hyakutake, M.; Tsuge, T. Continuous Supply of Non-Combustible Gas Mixture for Safe Autotrophic Culture to Produce Polyhydroxyalkanoate by Hydrogen-Oxidizing Bacteria. Bioengineering 2022, 9, 586. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Z.; Xing, D.; Yang, Y.; Li, Z.; Sun, Z. Recent progress in nanocomposites of carbon dioxide fixation derived reproducible biomedical polymers. Front. Chem. 2022, 10, 1035825. [Google Scholar] [CrossRef]
- Mahato, R.P.; Kumar, S.; Singh, P. Production of polyhydroxyalkanoates from renewable resources: A review on prospects, challenges and applications. Arch. Microbiol. 2023, 205, 172. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, J.; Liang, X.; Wei, M.; Liang, F.; Feng, D.; Xu, C.; Xian, N.; Zou, H. Production and waste treatment of polyesters: Application of bioresources and biotechniques. Crit. Rev. Biotechnol. 2023, 43, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Naitam, M.G.; Tomar, G.S.; Kaushik, R.; Singh, S.; Nain, L. Agro-industrial waste as potential renewable feedstock for biopolymer poly-hydroxyalkanoates (PHA) production. Enzym. Eng. 2022, 11, 190–206. [Google Scholar]
- Kannah, R.Y.; Kumar, M.D.; Kavitha, S.; Banu, J.R.; Tyagi, V.K.; Rajaguru, P.; Kumar, G. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams-A review. Biores. Technol. 2022, 366, 128203. [Google Scholar] [CrossRef]
- Che, L.; Jin, W.; Zhou, X.; Han, W.; Chen, Y.; Chen, C.; Jiang, G. Current status and future perspectives on the biological production of polyhydroxyalkanoates. Asia-Pac. J. Chem. Eng. 2023, 18, e2899. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Odoh, C.K.; Enudi, O.C.; Banjoko, O.O.; Osiboye, O.O.; Odediran, E.T.; Louis, H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Proc. Biochem. 2020, 96, 174–193. [Google Scholar] [CrossRef]
- Parlato, M.C.; Valenti, F.; Porto, S.M. Covering plastic films in greenhouses system: A GIS-based model to improve post use suistainable management. J. Environ. Manag. 2020, 263, 110389. [Google Scholar] [CrossRef]
- Mukherjee, A.; Koller, M. Polyhydroxyalkanoate (PHA) bio-polyesters–circular materials for sustainable development and growth. Chem. Biochem. Eng. Quart. 2022, 36, 273–293. [Google Scholar] [CrossRef]
- Maddikeri, G.L.; Pandit, A.B.; Gogate, P.R. Adsorptive removal of saturated and unsaturated fatty acids using ion-exchange resins. Ind. Eng. Chem. Res. 2012, 51, 6869–6876. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Alam, M.N.H.Z.; Samsudin, S.A.; Jamaluddin, J.; Adrus, N.; Yusof, A.H.M.; Muis, Z.A.; Hashim, H.; Salleh, M.M.; Abdullah, A.R.; et al. A review on the potential of polyhydroxyalkanoates production from oil-based substrates. J. Environ. Manag. 2021, 298, 113461. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, F.; Muhamad, I.I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sustain. Energy Rev. 2017, 72, 95–104. [Google Scholar] [CrossRef]
- Riedel, S.L.; Jahns, S.; Koenig, S.; Bock, M.C.; Brigham, C.J.; Bader, J.; Stahl, U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 2015, 214, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Saad, V.; Gutschmann, B.; Grimm, T.; Widmer, T.; Neubauer, P.; Riedel, S.L. Low-quality animal by-product streams for the production of PHA-biopolymers: Fats, fat/protein-emulsions and materials with high ash content as low-cost feedstocks. Biotechnol. Lett. 2021, 43, 579–587. [Google Scholar] [CrossRef]
- Gutschmann, B.; Maldonado Simões, M.; Schiewe, T.; Schröter, E.S.; Münzberg, M.; Neubauer, P.; Bockisch, A.; Riedel, S.L. Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory-and pilot-scale. Microb. Biotechnol. 2023, 16, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Tsuge, T.; Doi, Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 2003, 80, 183–194. [Google Scholar] [CrossRef]
- Volova, T.; Kiselev, E.; Zhila, N.; Shishatskaya, E. Synthesis of polyhydroxyalkanoates by hydrogen-oxidizing bacteria in a pilot production process. Biomacromolecules 2019, 20, 3261–3270. [Google Scholar] [CrossRef]
- Kim, B.S.; Lee, S.C.; Lee, S.Y.; Chang, H.N.; Chang, Y.K.; Woo, S.I. Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 1994, 43, 892–898. [Google Scholar] [CrossRef]
- Poomipuk, N.; Reungsang, A.; Plangklang, P. Poly-β-hydroxyalkanoates pro-duction from cassava starch hydrolysate by Cupriavidus sp. KKU38. Int. J. Biol. Macromol. 2014, 65, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Kim, B.S. Production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. New Biotechnol. 2011, 28, 719–724. [Google Scholar] [CrossRef]
- Jiang, G.; Hill, D.J.; Kowalczuk, M.; Johnston, B.; Adamus, G.; Irorere, V.; Radecka, I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 2016, 17, 1157. [Google Scholar] [CrossRef]
- Ben Rebah, F.; Miled, N. Fish processing wastes for microbial enzyme production: A review. 3 Biotech 2013, 3, 255–265. [Google Scholar] [CrossRef]
- Caruso, G. Fishery wastes and by-products: A resource to be valorised. J. Fish Sci. 2015, 9, 80–83. [Google Scholar]
- Ghaly, A.E.; Ramakrishnan, V.V.; Brooks, M.S.; Budge, S.M.; Dave, D. Fish processing wastes as a potential source of proteins. Amino acids and oils: A critical review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar] [CrossRef]
- AMEC. Management of Wastes from Atlantic Seafood Processing Operations; AMEC Earth and Environment Limited: Dartmouth, NS, USA, 2003. [Google Scholar]
- Thuoc, D.V.; My, D.N.; Loan, T.T.; Sudesh, K. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. Int. J. Biol. Macromol. 2019, 141, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Thuoc, D.V.; Anh, V.T. Bioconversion of Crude Fish Oil into Poly-3-hydroxybutyrate by Ralstonia sp. M91. Appl. Biochem. Microbiol. 2021, 57, 219–225. [Google Scholar] [CrossRef]
- Loan, T.T.; Trang, D.T.Q.; Huy, P.Q.; Ninh, P.X.; Van Thuoc, D. A fermentation process for the production of poly (3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol. Rep. 2022, 33, e00700. [Google Scholar] [CrossRef]
- Ashby, R.D.; Solaiman, D.K. Poly (hydroxyalkanoate) biosynthesis from crude Alaskan pollock (Theragra chalcogramma) oil. J. Polym. Environ. 2008, 16, 221–229. [Google Scholar] [CrossRef]
- Mohapatra, S.; Sarkar, B.; Samantaray, D.P.; Daware, A.; Maity, S.; Pattnaik, S.; Bhattacharjee, S. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ. Technol. 2017, 38, 3201–3208. [Google Scholar] [CrossRef]
- Sangkharak, K.; Paichid, N.; Yunu, T.; Klomklao, S.; Prasertsan, P. Utilisation of tuna condensate waste from the canning industry as a novel substrate for polyhydroxyalkanoate production. Biomass Convers. Biorefin. 2021, 11, 2053–2064. [Google Scholar] [CrossRef]
- Argiz, L.; Gonzalez-Cabaleiro, R.; Correa-Galeote, D.; del Rio, A.V.; Mosquera-Corral, A. Open-culture biotechnological process for triacylglycerides and polyhydroxyalkanoates recovery from industrial waste fish oil under saline conditions. Sep. Purif. Technol. 2021, 270, 118805. [Google Scholar] [CrossRef]
- Correa-Galeote, D.; Argiz, L.; Val del Rio, A.; Mosquera-Corral, A.; Juarez-Jimenez, B.; Gonzalez-Lopez, J.; Rodelas, B. Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries. Polymers 2022, 14, 1396. [Google Scholar] [CrossRef] [PubMed]
- European Market Observatory for Fisheries and Aquaculture Products. Canned Sprat in the EU; Publications Office of the European Union: Luxembourg, 2020. [CrossRef]
- RBC. Available online: https://www.rbc.ru/business/01/12/2020/5fc4ecea9a79471b9e84966f (accessed on 10 July 2023).
- Mezenova, O.Y.; Heling, A.; Mersel, J.T.; Volkov, V.V.; Mezenova, N.Y.; Agafonova, S.V.; Sauskan, V.I.; Altshul, B.A.; Rosenstein, M.M.; Andreev, M.P. Analysis of the state of the economy and prospects for the use of biotechnology in the fishing industry of the Kaliningrad region. Rybn. Chozyaistvo 2020, 5, 38–50. [Google Scholar] [CrossRef]
- Portnoy, A.I.; Portnaya, T.V. The effect of the mackerel catch season on the yield and quality of cold smoked products. Aktual. Probl. Intensivn. Razvit. Chozyaistva 2020, 23, 22–30. [Google Scholar]
- Srivastava, S.K.; Tripathi, A.D. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation. 3 Biotech 2013, 3, 389–397. [Google Scholar] [CrossRef]
- Kumar, A.; Gudiukaite, R.; Gricajeva, A.; Sadauskas, M.; Malunavicius, V.; Kamyab, H.; Sharma, S.; Sharma, T.; Pant, D. Microbial lipolytic enzymes–promising energy-efficient biocatalysts in bioremediation. Energy 2020, 192, 116674. [Google Scholar] [CrossRef]
- Fukui, T.; Doi, Y. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl. Microbiol. Biotechnol. 1998, 49, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Green, P.R.; Kemper, J.; Schechtman, L.; Guo, L.; Satkowski, M.; Fiedler, S.; Steinbüchel, A.; Rehm, B.H. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 2002, 3, 208–213. [Google Scholar] [CrossRef]
- Bhubalan, K.; Rathi, D.N.; Abe, H.; Iwata, T.; Sudesh, K. Improved synthesis of P (3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym. Degrad. Stab. 2010, 95, 1436–1442. [Google Scholar] [CrossRef]
- Riedel, S.L.; Bader, J.; Brigham, C.J.; Budde, C.F.; Yusof, Z.A.M.; Rha, C.; Sinskey, A.J. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 2012, 109, 74–83. [Google Scholar] [CrossRef]
- Volova, T.; Sapozhnikova, K.; Zhila, N. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int. J. Biol. Macromol. 2020, 164, 121–130. [Google Scholar] [CrossRef]
- Volova, T.; Demidenko, A.; Kiselev, E.; Baranovskiy, S.; Shishatskaya, E.; Zhila, N. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Appl. Microbial. Biotechnol. 2019, 103, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Zhila, N.; Kalacheva, G.; Volova, T. Fatty acid composition and polyhydroxyalkanoates production by Cupriavidus eutrophus B-10646 cells grown on different carbon sources. Process Biochem. 2015, 50, 69–78. [Google Scholar] [CrossRef]
- Volova, T.G.; Shishatskaya, E.I. Bacterial strain Cupriavidus eutrophus VKPM B-10646—Producer of polyhydroxyalkanoates and method for their production. RF Patent 2439143, 10 January 2012. (In Russian). [Google Scholar]
- Schlegel, H.G.; Kaltwasser, H.; Gottschalk, G. A submersion method for culture of hydrogen-oxidizing bacteria: Growth physiological studies. Arch. Mikrobiol. 1961, 38, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Takaç, S.; Marul, B. Effects of lipidic carbon sources on the extracellular lipolytic activity of a newly isolated strain of Bacillus subtilis. Ind. Microbiol. Biotechnol. 2008, 35, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Metzger, P.; Largeau, C. Effects of hydrocarbon structure on fatty acid, fatty alcohol, and β-hydroxy acid composition in the hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus. Lipids 2004, 39, 491–505. [Google Scholar] [CrossRef]
- Braunegg, G.; Sonnleitner, B.Y.; Lafferty, R.M. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 1978, 6, 29–37. [Google Scholar] [CrossRef]
- Volova, T.; Kiselev, E.; Nemtsev, I.; Lukyanenko, A.; Sukovatyi, A.; Kuzmin, A.; Ryltseva, G.; Shishatskaya, E. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int. J. Biol. Macromol. 2021, 182, 98–114. [Google Scholar] [CrossRef]
Source of WFO | Total Lipids | Carbohydrates | Total Nitrogen | “Raw” Protein |
---|---|---|---|---|
Smoked-sprat heads | 99.3 | 0.026 | 0.284 | 1.78 |
Raw sprats | 86.2 | 0.024 | 0.309 | 1.93 |
Heads and backbones of fresh mackerel | 89.6 | 0.025 | 0.503 | 3.14 |
Fatty Acids (FAs) | Content of Fatty Acids (% of Total Fatty Acids) | ||
---|---|---|---|
Fresh-Sprat Fat | Fat from Smoked-Sprat Heads | Fat from Heads and Backbones of Fresh Mackerel | |
14:0 | 3.41 | 3.51 | 2.82 |
i-14:0 | 0.08 | 0.13 | 0.25 |
ai-14:0 | 0.17 | 0.05 | 0.12 |
15:0 | 0.52 | 0.50 | 0.57 |
i-15:0 | 0.12 | – | 0.13 |
16:1ɷ7 | 2.32 | 0.32 | 2.74 |
16:0 | 18.80 | 28.04 | 26.21 |
16:1 | 0.20 | – | 0.08 |
i-16:0 | – | 0.27 | 0.32 |
ai-16:0 | 0.28 | 0.25 | – |
16:0-7-CH3 | 0.61 | – | 0.60 |
17:0 | 0.56 | – | 0.74 |
17:1 | 0.33 | 0.36 | 0.37 |
16:0-3,7,11,15-CH3 | 0.45 | – | 0.07 |
i-17:0 | 0.24 | – | 0.12 |
18:0 | 7.69 | 4.53 | 6.40 |
18:1ɷ9 | 17.74 | 25.33 | 32.70 |
18:2ɷ6 | 0.75 | 2.54 | 0.42 |
18:1 | 0.31 | – | 0.06 |
18:3ɷ3 | 2.48 | 4.34 | 0.77 |
19:0 | – | – | 0.14 |
i-18:0 | 0.12 | – | – |
20:0 | 0.46 | 0.33 | 0.32 |
20:1ɷ9 | 4.92 | 1.12 | – |
20:2 | 0.18 | 0.43 | 0.15 |
20:5ɷ3 | 9.98 | 8.74 | 4.28 |
20:4 | 0.45 | – | 0.86 |
20:3 | 0.08 | – | – |
20:6 | 0.33 | – | – |
22:0 | 0.18 | 0.54 | 0.38 |
ai-22:0 | – | – | 0.13 |
22:1 | 2.61 | – | – |
22:0-11-CH3 | 0.51 | – | – |
22:5 | – | – | 0.62 |
22:6ɷ3 | 22.28 | 16.73 | 16.94 |
24:1ɷ9 | 0.76 | 1.54 | 0.71 |
24:4 | 0.12 | – | – |
∑saturated FAs | 34.20 | 38.15 | 39.32 |
∑unsaturated FAs | 65.80 | 61.85 | 60.68 |
∑saturated FAs/ ∑unsaturated FAs | 0.52 | 0.62 | 0.65 |
∑monounsaturated FAs | 29.19 | 28.67 | 36.66 |
∑polyunsaturated FAs | 36.65 | 32.78 | 24.04 |
∑long-chain FAs | 42.86 | 29.43 | 24.39 |
Source of WFO | Specific Growth Rate, h−1 | PHA-Specific -Synthesis Rate, h−1 | Biomass Productivity, g/L·h | PHA Productivity, g/L·h |
---|---|---|---|---|
Fresh sprat heads | 0.10 | 0.15 | 0.03 | 0.02 |
Fresh mackerel heads and backbones | 0.13 | 0.17 | 0.06 | 0.04 |
Smoked-sprat heads | 0.14 | 0.19 | 0.06 | 0.05 |
Bacterial strain | Substrate | Conditions | X, g/L | PHA, % | PHA, g/L | Reference |
---|---|---|---|---|---|---|
Cupriavidus necator B-10646 | Fresh sprat heads | 0.5-liter flasks, 72 h | 2.2 | 67 | 1.47 | This study |
Fresh mackerel heads and backbones | 4.1 | 69 | 2.83 | |||
Smoked-sprat heads | 4.6 | 72 | 3.31 | |||
Pseudomonas oleovorans strains | Hydrolyzed crude -ollock oil | 0.5-liter flasks, 72 h | 1.7–4.7 | 6–53 | 0.1–2.5 | [54] |
Bacillus subtilis KP17254 | Solid fish-waste extract | 1.0-liter flasks, 72 h | 2.3 | 70 | 1.62 | [55] |
C. necator TISTR 1095 | Tuna-condensate waste | 0.5-liter flasks, 96 h | 1.2–7.5 | 8.3–50.6 | 0.1–3.8 | [56] |
Salinivibrio sp. M318 | Waste fish oil from basa fish | 0.25-liter flasks, 48 h | 10.0 | 51.7 | 5.2 | [51] |
Waste fish oil from basa fish + glycerol | 10-litr bioreactor | 69.1 | 51.5 | 35.6 | ||
Ralstonia sp. isolates | Crude fish oil | Flasks, 48 h | 0.59–1.61 | 7.4–50.1 | 0.05–0.72 | [52] |
Ralstonia sp. M19 | Flasks | 3.93 | 61.95 | 2.43 | ||
10-liter bioreactor | 5.32 | 51.23 | 2.73 | |||
C. necator H16 | WFO from basa fish | 3-liter bioreactor, 48 h | 114.8 | 72.5 | 83.2 | [53] |
Source of WFO | Composition of PHA, mol.% | Mn, kDa | Mw, kDa | Đ | Cx, % | Tmelt, °C | Tdegr, °C | ||
---|---|---|---|---|---|---|---|---|---|
3HB | 3HV | 3HHx | |||||||
Fresh-sprat fat | 100 | – | – | 209 | 711 | 3.4 | 78 | 168 | 278 |
Fat from heads and backbones of fresh mackerel | 100 | – | – | 175 | 650 | 3.7 | 74 | 158 | 261 |
Fat from smoked sprat heads | 97.1 | 1.6 | 0.3 | 134 | 752 | 5.6 | 71 | 160 168 | 284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhila, N.O.; Kiselev, E.G.; Volkov, V.V.; Mezenova, O.Y.; Sapozhnikova, K.Y.; Shishatskaya, E.I.; Volova, T.G. Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs). Int. J. Mol. Sci. 2023, 24, 14919. https://doi.org/10.3390/ijms241914919
Zhila NO, Kiselev EG, Volkov VV, Mezenova OY, Sapozhnikova KY, Shishatskaya EI, Volova TG. Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs). International Journal of Molecular Sciences. 2023; 24(19):14919. https://doi.org/10.3390/ijms241914919
Chicago/Turabian StyleZhila, Natalia O., Evgeniy G. Kiselev, Vladimir V. Volkov, Olga Ya. Mezenova, Kristina Yu. Sapozhnikova, Ekaterina I. Shishatskaya, and Tatiana G. Volova. 2023. "Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs)" International Journal of Molecular Sciences 24, no. 19: 14919. https://doi.org/10.3390/ijms241914919