Subcellular Effectors of Cocaine Cardiotoxicity: All Roads Lead to Mitochondria—A Systematic Review of the Literature
Abstract
:1. Introduction
2. Results
2.1. Literature Search Results
2.2. Characteristics of the Included Articles
3. Discussion
3.1. Morpho-Functional Parameters to Assess Cocaine Cardiotoxicity
3.2. Loss of Mitochondrial Homeostasis in Cocaine Cardiotoxicity
4. Materials and Methods
4.1. Search Strategy
4.2. Inclusion Criteria
4.3. Exclusion Criteria
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawi, A.M.; Ismail, R.; Ibrahim, F.; Hassan, M.R.; Manaf, M.R.A.; Amit, N.; Ibrahim, N.; Shafurdin, N.S. Risk and protective factors of drug abuse among adolescents: A systematic review. BMC Public Health 2021, 21, 2088. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report: Trends and Developments; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2022. [Google Scholar]
- Roque Bravo, R.; Faria, A.C.; Brito-da-Costa, A.M.; Carmo, H.; Mladěnka, P.; Dias Da Silva, D.; Remião, F.; on behalf of The OEMONOM Researchers. Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins 2022, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Kiyatkin, E.A. The Critical Role of Peripheral Targets in Triggering Rapid Neural Effects of Intravenous Cocaine. Neuroscience 2020, 451, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.S.; Kerrigan, S. (Eds.) Principles of Forensic Toxicology; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-42916-4. [Google Scholar]
- Platt, D.M.; Rowlett, J.K.; Spealman, R.D. Behavioral effects of cocaine and dopaminergic strategies for preclinical medication development. Psychopharmacology 2002, 163, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J.; Carvalho, F.; Duarte, J.A.; Proença, J.B.; Santos, A.; Magalhães, T. Clinical and Forensic Signs Related to Cocaine Abuse. Curr. Drug Abus. Rev. 2012, 5, 64–83. [Google Scholar]
- Spronk, D.B.; van Wel, J.H.P.; Ramaekers, J.G.; Verkes, R.J. Characterizing the cognitive effects of cocaine: A comprehensive review. Neurosci. Biobehav. Rev. 2013, 37, 1838–1859. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.L.; Grawe, J.J.; Winecoff, A.P.; Hariman, R.J. Cocaine-Related Sudden Cardiac Death: A Hypothesis Correlating Basic Science and Clinical Observations. J. Clin. Pharmacol. 1994, 34, 902–911. [Google Scholar] [CrossRef]
- Phillips, K.; Luk, A.; Soor, G.S.; Abraham, J.R.; Leong, S.; Butany, J. Cocaine Cardiotoxicity: A Review of the Pathophysiology, Pathology, and Treatment Options. Am. J. Cardiovasc. Drugs 2009, 9, 177–196. [Google Scholar] [CrossRef]
- Schindler, C.W.; Tella, S.R.; Erzouki, H.K.; Goldberg, S.R. Pharmacological mechanisms in cocaine’s cardiovascular effects. Drug Alcohol Depend. 1995, 37, 183–191. [Google Scholar] [CrossRef]
- Singh, S.; Trivedi, A.; Adhikari, T.; Molnar, J.; Arora, R.; Khosla, S. Cocaine-related acute aortic dissection: Patient demographics and clinical outcomes. Can. J. Cardiol. 2007, 23, 1131–1134. [Google Scholar] [CrossRef]
- Glauser, J.; Queen, J.R. An overview of non-cardiac cocaine toxicity. J. Emerg. Med. 2007, 32, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Zarazúa, O.; López-García, J.A.; Arce-Negrete, L.R.; Vélez-Ramírez, L.N.; Casimiro-Guzmán, L.; Mondragón, J.D. Alveolar hemorrhage associated with cocaine consumption. Heart Lung 2018, 47, 525–530. [Google Scholar] [CrossRef]
- Kloss, M.W.; Rosen, G.M.; Rauckman, E.J. Cocaine-mediated hepatotoxicity a critical review. Biochem. Pharmacol. 1984, 33, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Pendergraft, W.F.; Herlitz, L.C.; Thornley-Brown, D.; Rosner, M.; Niles, J.L. Nephrotoxic Effects of Common and Emerging Drugs of Abuse. Clin. J. Am. Soc. Nephrol. 2014, 9, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Riezzo, I.; Fiore, C.; De Carlo, D.; Pascale, N.; Neri, M.; Turillazzi, E.; Fineschi, V. Side Effects of Cocaine Abuse: Multiorgan Toxicity and Pathological Consequences. Curr. Med. Chem. 2012, 19, 5624–5646. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.R. Maternal and Transplacental Effects of Cocaine. Ann. N. Y. Acad. Sci. 1998, 846, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pitts, D.K.; Marwah, J. Autonomic actions of cocaine. Can. J. Physiol. Pharmacol. 1989, 67, 1168–1176. [Google Scholar] [CrossRef]
- Bertol, E.; Trignano, C.; Di Milia, M.G.; Di Padua, M.; Mari, F. Cocaine-related deaths: An enigma still under investigation. Forensic Sci. Int. 2008, 176, 121–123. [Google Scholar] [CrossRef]
- Stephens, B.G.; Jentzen, J.M.; Karch, S.; Mash, D.C.; Wetli, C.V. Criteria for the Interpretation of Cocaine Levels in Human Biological Samples and Their Relation to the Cause of Death. Am. J. Forensic Med. Pathol. 2004, 25, 1–10. [Google Scholar] [CrossRef]
- Devi, B.G.; Chan, A.W.K. Impairment of mitochondrial respiration and electron transport chain enzymes during cocaine-induced hepatic injury. Life Sci. 1997, 60, 849–855. [Google Scholar] [CrossRef]
- Lamarche, F.; Cottet-Rousselle, C.; Barret, L.; Fontaine, E. Protection of PC12 cells from cocaine-induced cell death by inhibiting mitochondrial permeability transition. Neurochem. Int. 2017, 109, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, L.; Dunbar, J.C.; Dhabuwala, C.B. Role of mitochondrial cytochrome c in cocaine-induced apoptosis in rat testes. Urology 2003, 61, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.N.; Jung, T.W.; Kim, D.-J.; Sharma, G.; Sharma, N.; Shin, E.-J.; Jang, C.-G.; Nah, S.-Y.; Lee, S.H.; Chung, Y.H.; et al. Protective potential of glutathione peroxidase-1 gene against cocaine-induced acute hepatotoxic consequences in mice: Role of GPx-1 in cocaine-induced hepatotoxicity. J. Appl. Toxicol. 2018, 38, 1502–1520. [Google Scholar] [CrossRef] [PubMed]
- Masini, A. Membrane potential of hepatic mitochondria after acute cocaine administration in rats-The role of mitochondrial reduced glutathione. Hepatology 1997, 25, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Moy, L.Y.; Wang, S.-P.; Sonsalla, P.K. Mitochondrial Stress-Induced Dopamine Efflux and Neuronal Damage by Malonate Involves the Dopamine Transporter. J. Pharmacol. Exp. Ther. 2007, 320, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Repetto, G.; Del Peso, A.; Garfia, A.; Gonzalez-Muñoz, M.J.; Salguero, M.; Sanz, P.; Repetto, M. Morphological, biochemical and molecular effects of cocaine on mouse neuroblastoma cells culture in vitro. Toxicol. In Vitro 1997, 11, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Sha, D.; Wang, L.; Zhang, J.; Qian, L.; Li, Q.; Li, J.; Qian, J.; Gu, S.; Han, L.; Xu, P.; et al. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen–glucose deprivation in neurons. Brain Res. 2014, 1582, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, A.; Periyasamy, P.; Guo, M.-L.; Chivero, E.T.; Callen, S.; Buch, S. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy 2020, 16, 289–312. [Google Scholar] [CrossRef]
- Valente, M.J.; Carvalho, F.; Bastos, M.d.L.; De Pinho, P.G.; Carvalho, M. Contribution of Oxidative Metabolism to Cocaine-Induced Liver and Kidney Damage. Curr. Med. Chem. 2012, 19, 5601–5606. [Google Scholar] [CrossRef]
- Graziani, M.; Sarti, P.; Arese, M.; Magnifico, M.C.; Badiani, A.; Saso, L. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2017, 2017, 3034245. [Google Scholar] [CrossRef]
- Liesa, M.; Palacín, M.; Zorzano, A. Mitochondrial Dynamics in Mammalian Health and Disease. Physiol. Rev. 2009, 89, 799–845. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Acosta, D. Cocaine-induced mitochondrial dysfunction in primary cultures of rat cardiomyocytes. Toxicology 1996, 112, 1–10. [Google Scholar] [CrossRef]
- Yuan, C.; Acosta, D. Effect of cocaine on mitochondrial electron trasport chain evaluated in primary cultures of neonatal rat myocardial cells and in isolated mitochondrial preparations. Drug Chem. Toxicol. 2000, 23, 339–348. [Google Scholar] [CrossRef]
- Xiao, Y.; He, J.; Gilbert, R.D.; Zhang, L. Cocaine Induces Apoptosis in Fetal Myocardial Cells through a Mitochondria-Dependent Pathway. J. Pharmacol. Exp. Ther. 2000, 292, 8–14. [Google Scholar] [PubMed]
- Li, G.; Xiao, Y.; Zhang, L. Cocaine Induces Apoptosis in Fetal Rat Myocardial Cells through the p38 Mitogen-Activated Protein Kinase and Mitochondrial/Cytochrome c Pathways. J. Pharmacol. Exp. Ther. 2005, 312, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, F.A.; Tiangco, D.; Osgood, C.; Beebe, S.; Kerry, J.; Hargrave, B.Y. Cocaine Increases Intracellular Calcium and Reactive Oxygen Species, Depolarizes Mitochondria, and Activates Genes Associated with Heart Failure and Remodeling. Cardiovasc. Toxicol. 2005, 5, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Vergeade, A.; Mulder, P.; Vendeville-Dehaudt, C.; Estour, F.; Fortin, D.; Ventura-Clapier, R.; Thuillez, C.; Monteil, C. Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: Prevention by the targeted antioxidant MitoQ. Free Radic. Biol. Med. 2010, 49, 748–756. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Shen, R.; Nzenwa, I.; Gelfand, R.; Mahata, S.K.; Sinha-Hikim, A.P. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure. Apoptosis 2011, 16, 563–573. [Google Scholar] [CrossRef]
- Vergeade, A.; Mulder, P.; Vendeville, C.; Ventura-Clapier, R.; Thuillez, C.; Monteil, C. Xanthine Oxidase Contributes to Mitochondrial ROS Generation in an Experimental Model of Cocaine-Induced Diastolic Dysfunction: J. Cardiovasc. Pharmacol. 2012, 60, 538–543. [Google Scholar] [CrossRef]
- Liou, C.-M.; Tsai, S.-C.; Kuo, C.-H.; Ting, H.; Lee, S.-D. Cardiac Fas-Dependent and Mitochondria-Dependent Apoptosis after Chronic Cocaine Abuse. Int. J. Mol. Sci. 2014, 15, 5988–6001. [Google Scholar] [CrossRef]
- Fettiplace, M.R.; Pichurko, A.; Ripper, R.; Lin, B.; Kowal, K.; Lis, K.; Schwartz, D.; Feinstein, D.L.; Rubinstein, I.; Weinberg, G. Cardiac Depression Induced by Cocaine or Cocaethylene Is Alleviated by Lipid Emulsion More Effectively Than by Sulfobutylether-β-cyclodextrin. Acad. Emerg. Med. 2015, 22, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Turillazzi, E.; Cerretani, D.; Cantatore, S.; Fiaschi, A.I.; Frati, P.; Micheli, L.; Neri, M.; Cipolloni, L.; Di Paolo, M.; Pinchi, E.; et al. Myocardial oxidative damage is induced by cardiac Fas-dependent and mitochondria-dependent apoptotic pathways in human cocaine-related overdose. Sci. Rep. 2017, 7, 44262. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.J.; Roque Bravo, R.; Enea, M.; Carmo, H.; Carvalho, F.; Bastos, M.D.L.; Dinis-Oliveira, R.J.; Dias Da Silva, D. Ethanol addictively enhances the in vitro cardiotoxicity of cocaine through oxidative damage, energetic deregulation, and apoptosis. Arch. Toxicol. 2018, 92, 2311–2325. [Google Scholar] [CrossRef]
- Wen, S.; Unuma, K.; Funakoshi, T.; Aki, T.; Uemura, K. Altered cardiac mitochondrial dynamics and biogenesis in rat after short-term cocaine administration. Sci. Rep. 2021, 11, 24129. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Unuma, K.; Funakoshi, T.; Aki, T.; Uemura, K. Contraction Band Necrosis with Dephosphorylated Connexin 43 in Rat Myocardium after Daily Cocaine Administration. Int. J. Mol. Sci. 2022, 23, 11978. [Google Scholar] [CrossRef] [PubMed]
- Giannessi, D.; Maltinti, M.; Del Ry, S. Adiponectin circulating levels: A new emerging biomarker of cardiovascular risk. Pharmacol. Res. 2007, 56, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Laufer, E.M.; Reutelingsperger, C.P.M.; Narula, J.; Hofstra, L. Annexin A5: An imaging biomarker of cardiovascular risk. Basic Res. Cardiol. 2008, 103, 95–104. [Google Scholar] [CrossRef]
- MacDonald, R.P. Serum lactic dehydrogenase—A diagnostic aid in myocardial infarction. J. Am. Med. Assoc. 1957, 165, 35. [Google Scholar] [CrossRef]
- Boengler, K.; Schulz, R. Connexin 43 and Mitochondria in Cardiovascular Health and Disease. In Mitochondrial Dynamics in Cardiovascular Medicine; Advances in Experimental Medicine and Biology; Santulli, G., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 982, pp. 227–246. ISBN 978-3-319-55329-0. [Google Scholar]
- Zhang, J.; Riquelme, M.A.; Hua, R.; Acosta, F.M.; Gu, S.; Jiang, J.X. Connexin 43 hemichannels regulate mitochondrial ATP generation, mobilization, and mitochondrial homeostasis against oxidative stress. eLife 2022, 11, e82206. [Google Scholar] [CrossRef]
- Eisner, V.; Picard, M.; Hajnóczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 2018, 20, 755–765. [Google Scholar] [CrossRef]
- Forte, M.; Schirone, L.; Ameri, P.; Basso, C.; Catalucci, D.; Modica, J.; Chimenti, C.; Crotti, L.; Frati, G.; Rubattu, S.; et al. The role of mitochondrial dynamics in cardiovascular diseases. Br. J. Pharmacol. 2021, 178, 2060–2076. [Google Scholar] [CrossRef] [PubMed]
- Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 2018, 62, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Graziani, M.; Antonilli, L.; Togna, A.R.; Grassi, M.C.; Badiani, A.; Saso, L. Cardiovascular and Hepatic Toxicity of Cocaine: Potential Beneficial Effects of Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2016, 8408479. [Google Scholar] [CrossRef] [PubMed]
- Stankowski, R.V.; Kloner, R.A.; Rezkalla, S.H. Cardiovascular consequences of cocaine use. Trends Cardiovasc. Med. 2015, 25, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol.-Heart Circ. Physiol. 2015, 309, H1453–H1467. [Google Scholar] [CrossRef] [PubMed]
- Hantson, P. Mechanisms of toxic cardiomyopathy. Clin. Toxicol. 2019, 57, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, E.; Karamalakova, Y.; Miteva, R.; Abrashev, H.; Nikolova, G. Oxidative Stress and Cocaine Intoxication as Start Points in the Pathology of Cocaine-Induced Cardiotoxicity. Toxics 2021, 9, 317. [Google Scholar] [CrossRef]
- Liaudet, L.; Calderari, B.; Pacher, P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail. Rev. 2014, 19, 815–824. [Google Scholar] [CrossRef]
- Cerretani, D.; Fineschi, V.; Bello, S.; Riezzo, I.; Turillazzi, E.; Neri, M. Role of Oxidative Stress in Cocaine-Induced Cardiotoxicity and Cocaine-Related Death. Curr. Med. Chem. 2012, 19, 5619–5623. [Google Scholar] [CrossRef]
- Tonazzi, A.; Giangregorio, N.; Console, L.; Palmieri, F.; Indiveri, C. The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs. Biomolecules 2021, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014, 5, 196. [Google Scholar] [CrossRef] [PubMed]
- Winkler, B.S.; Orselli, S.M.; Rex, T.S. The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free Radic. Biol. Med. 1994, 17, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, S.; Drozda, M.; Zhang, W.; Stavrovskaya, I.G.; Cattaneo, E.; Ferrante, R.J.; Kristal, B.S.; Friedlander, R.M. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 10483–10487. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.L.; Pasieczny, R.; Lariosa-Willingham, K.; Turner, M.S.; Jiang, A.; Trauger, J.W. Antioxidant properties of minocycline: Neuroprotection in an oxidative stress assay and direct radical-scavenging activity: Antioxidant properties of minocycline. J. Neurochem. 2005, 94, 819–827. [Google Scholar] [CrossRef]
- Kasai, H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res. Mutat. Res. 1997, 387, 147–163. [Google Scholar] [CrossRef]
- Crow, M.T.; Mani, K.; Nam, Y.-J.; Kitsis, R.N. The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis. Circ. Res. 2004, 95, 957–970. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Gustafsson, Å.B.; Gottlieb, R.A. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol.-Cell Physiol. 2007, 292, C45–C51. [Google Scholar] [CrossRef]
- Adrain, C. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J. 2001, 20, 6627–6636. [Google Scholar] [CrossRef]
- Shao, C.-S.; Zhou, X.-H.; Miao, Y.-H.; Wang, P.; Zhang, Q.-Q.; Huang, Q. In situ observation of mitochondrial biogenesis as the early event of apoptosis. iScience 2021, 24, 103038. [Google Scholar] [CrossRef]
- Haudek, S.B.; Taffet, G.E.; Schneider, M.D.; Mann, D.L. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J. Clin. Investig. 2007, 117, 2692–2701. [Google Scholar] [CrossRef]
Articles | Experimental Model | Cocaine Treatment | Main Findings | Affected Cellular Functions |
---|---|---|---|---|
Yuan et al., 1996 [34] | Primary rat myocardial cells | 3 to 48 h, 10−5 to 10−3 M | ΔΨ dissipation Complex I inhibition Altered NADH-linked pathway | Respiration |
Repeated exposure: 24, 48, 72 h, 10−6 to 10−3 M | ||||
Yuan et al., 2000 [35] | Primary neonatal rat myocardial cells | 6, 12, 24 h, 10−5 to 10−3 M | Complex I inhibition Altered NADH-linked pathway | Respiration |
Xiao et al., 2000 [36] | Primary fetal rat myocardial cells | 24 h, 100 µM | Cytochrome c release Caspase 3 and 9 activation | Apoptosis |
Li et al., 2005 [37] | Primary fetal rat myocardial cells | 3 to 48 h, 100 µM | p38α-MAPK activation Caspase 3 and 9 activation | Apoptosis |
Lattanzio et al., 2005 [38] | New Zealand White female rabbits, in vivo and ex vivo hearts | Single dose, intravenous injection, 2 mg/kg | Increased free radicals Altered intracellular calcium Apoptotic genes activation | Oxidative stress Apoptosis |
H9c2 rat cardiac cells | 2 to 5 min, 10−5 to 10−2 M | |||
Vergeade et al., 2010 [39] | Wistar male rats, in vivo and ex vivo hearts | 2 to 7 days, intraperitoneal injection, 2 × 7.5 mg/kg/day | Increased mitochondrial ROS Complex I and III alteration | Oxidative stress Respiration |
Sinha-Hikim et al., 2011 [40] | Ex vivo newborn hearts from Sprague Dawley pregnant rats | E15 to E21 intraperitoneal injection to pregnant rats, 2 × 15 mg/kg/day | p38α-MAPK activation JNK activation Altered GSH/GSSG ratio Cytochrome c release Caspase 3 and 9 activation | Oxidative stress Apoptosis |
Vergeade et al., 2012 [41] | Wistar male rats, in vivo and ex vivo hearts | 7 days, intraperitoneal injection, 2 × 7.5 mg/kg/day | Xanthine oxidase-dependent mitochondrial ROS production | Oxidative stress Respiration |
Liou et al., 2014 [42] | Wistar male rats, ex vivo hearts | 3 months, subcutaneous injection, 10 mg/kg/day | Altered Bax/Bcl2 ratio Cytochrome c release | Apoptosis |
Fettiplace et al., 2015 [43] | Sprague Dawley rats, in vivo and ex vivo hearts | Continuous infusion, 10 mg/kg/min | Altered CACT-dependent respiration | Respiration |
Turillazzi et al., 2017 [44] | Heart specimens from human cocaine-related overdoses | Cocaine overdoses | Increased i-NOS Altered GSH/GSSG ratio Increased SMAC-Diablo pathway | Oxidative stress Apoptosis |
Martins et al., 2018 [45] | H9c2 rat cardiac cells | 24 h, 104 µM to 6.5 mM | ΔΨ alteration Increased free radicals Altered GSH/GSSG ratio Alteration of Caspase 8, 9 and 3 | Oxidative stress Apoptosis Respiration |
Wen et al., 2021 [46] | Sprague Dawley male rats, ex vivo hearts | 7 days, intravenous injections, 5 mg/kg/day–20 mg/kg/day | Alteration of Fis1, Mfn2, Opa1 and PPARα Complex I inhibition UPRmt activation | Mitochondrial dynamics Respiration |
Wen et al., 2022 [47] | Sprague Dawley male rat, ex vivo hearts | 14 days, intravenous injection, 20 mg/kg/day | Activation of Akt and Bax/Bcl2 Complex I alteration Altered Caspase 3 Increase in 4-HNE and 8-OHdG conjugates | Oxidative stress Apoptosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peruch, M.; Giacomello, E.; Radaelli, D.; Concato, M.; Addobbati, R.; Fluca, A.L.; Aleksova, A.; D’Errico, S. Subcellular Effectors of Cocaine Cardiotoxicity: All Roads Lead to Mitochondria—A Systematic Review of the Literature. Int. J. Mol. Sci. 2023, 24, 14517. https://doi.org/10.3390/ijms241914517
Peruch M, Giacomello E, Radaelli D, Concato M, Addobbati R, Fluca AL, Aleksova A, D’Errico S. Subcellular Effectors of Cocaine Cardiotoxicity: All Roads Lead to Mitochondria—A Systematic Review of the Literature. International Journal of Molecular Sciences. 2023; 24(19):14517. https://doi.org/10.3390/ijms241914517
Chicago/Turabian StylePeruch, Michela, Emiliana Giacomello, Davide Radaelli, Monica Concato, Riccardo Addobbati, Alessandra Lucia Fluca, Aneta Aleksova, and Stefano D’Errico. 2023. "Subcellular Effectors of Cocaine Cardiotoxicity: All Roads Lead to Mitochondria—A Systematic Review of the Literature" International Journal of Molecular Sciences 24, no. 19: 14517. https://doi.org/10.3390/ijms241914517