Exploring the Potential of Proteome Analysis as a Promising Tool for Evaluation of Sudden Cardiac Death (SCD) in Forensic Settings: A Literature Review
Abstract
:1. Introduction
1.1. Epidemiology of Sudden Cardiac Deaths
1.2. The Role of Autopsy in the Diagnosis of SCD
1.3. Etiology of Sudden Cardiac Deaths
1.4. The Potential of the Proteome in Diagnosing Sudden Cardiac Deaths
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Hypertrophic Cardiomyopathy
3.2. Analysis of Mechanisms of Coronary Spasm
3.3. Analysis of Mechanisms of Atherosclerosis
3.4. Analysis of Mechanisms of Myocardial Ischemia
3.5. Analysis of Abnormalities of the Cardiac Electrical Conduction System
3.6. The Role of Exogenous Substance Analysis
3.7. Advantages in the Use of Proteome Analysis in the Post Mortem
3.8. Existing Limitations in Forensic Pathology
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martinez, K.A.; Bos, J.M.; Baggish, A.L.; Phelan, D.M.; Tobert, K.E.; Newman, D.B.; Scherer, E.; Petek, B.J.; Ackerman, M.J.; Martinez, M.W. Return-to-Play for Elite Athletes with Genetic Heart Diseases Predisposing to Sudden Cardiac Death. J. Am. Coll. Cardiol. 2023, 82, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Paratz, E.D.; van Heusden, A.; Zentner, D.; Morgan, N.; Smith, K.; Thompson, T.; James, P.; Connell, V.; Pflaumer, A.; Semsarian, C.; et al. Sudden Cardiac Death in People with Schizophrenia: Higher Risk, Poorer Resuscitation Profiles, and Differing Pathologies. JACC Clin. Electrophysiol. 2023, 9, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhao, C.; Chen, N.; Dong, Y.; Li, Z.; Bai, Y.; Wu, P.; Gao, C.; Guo, X. Characterization of global research trends and prospects on sudden coronary death: A literature visualization analysis. Heliyon 2023, 9, e18586. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.; Fall, T.; Delicano, R.; Wennberg, P.; Jansson, J.-H. GDF-15 is associated with sudden cardiac death due to incident myocardial infarction. Resuscitation 2020, 152, 165–169. [Google Scholar] [CrossRef]
- Nagata, M.; Ninomiya, T.; Doi, Y.; Hata, J.; Ikeda, F.; Mukai, N.; Tsuruya, K.; Oda, Y.; Kitazono, T.; Kiyohara, Y. Temporal trends in sudden unexpected death in a general population: The Hisayama Study. Am. Heart J. 2013, 165, 932–938.e1. [Google Scholar] [CrossRef]
- Lindholm, D.; James, S.K.; Gabrysch, K.; Storey, R.F.; Himmelmann, A.; Cannon, C.P.; Mahaffey, K.W.; Steg, P.G.; Held, C.; Siegbahn, A.; et al. Association of Multiple Biomarkers with Risk of All-Cause and Cause-Specific Mortality After Acute Coronary Syndromes: A Secondary Analysis of the PLATO Biomarker Study. JAMA Cardiol. 2018, 3, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.; Aguilera, B.; Banner, J.; Cohle, S.; d’Amati, G.; de Gouveia, R.H.; di Gioia, C.; Fabre, A.; Gallagher, P.J.; Leone, O.; et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017, 471, 691–705. [Google Scholar] [CrossRef]
- Kuwao, S.; Kameya, T.; Kasai, K.; Niitsuya, M.; Nishiyama, Y. Characterization of Transmural and Subendocardial Infarction by Typing and Grading of Ischemic Lesions in Autopsied Human Hearts. Acta Pathol. Jpn. 1992, 42, 476–482. [Google Scholar] [CrossRef]
- Ito, T.; Yamada, S.; Tamura, T.; Shiomi, M. Discrimination of Recent Ischemic Myocardial Changes in WHHLMI Rabbits from the Findings of Postmortem Degeneration. Exp. Anim. 2005, 54, 413–419. [Google Scholar] [CrossRef]
- Sacco, M.A.; Abenavoli, L.; Cordasco, F.; Galassi, F.M.; Varotto, E.; Ricci, P.; Aquila, I. Sudden death due to fulminant lymphocytic myocarditis with atypical prodromal symptoms. Clin. Case Rep. 2022, 10, e5983. [Google Scholar] [CrossRef]
- Cecchetto, G.; Bajanowski, T.; Cecchi, R.; Favretto, D.; Grabherr, S.; Ishikawa, T.; Kondo, T.; Montisci, M.; Pfeiffer, H.; Bonati, M.R.; et al. Back to the Future—Part 1. The medico-legal autopsy from ancient civilization to the post-genomic era. Int. J. Leg. Med. 2017, 131, 1069–1083. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.-P.; Xue, J.-J.; Zhang, Y.; Tian, M.-H.; Xiao, Y.; Jia, Y.-Q.; Zhu, B.-L. Differential expression of B-type natriuretic peptide between left and right ventricles, with particular regard to sudden cardiac death. Mol. Med. Rep. 2017, 16, 4763–4769. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, G.; Xue, D.; Xi, M.; Qi, J.; Dong, H. Sudden cardiac death owing to arrhythmogenic right ventricular cardiomyopathy: Two case reports and systematic literature review. Medicine 2017, 96, e8808. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Liu, J.; Zhang, Q.; An, Y.; Xia, B.; Wan, C.; Zhang, Y.; Yu, Y.; Wang, J. Cathepsin C Is Involved in Macrophage M1 Polarization via p38/MAPK Pathway in Sudden Cardiac Death. Cardiovasc. Ther. 2021, 2021, 6139732. [Google Scholar] [CrossRef] [PubMed]
- Kotta, M.; Torchio, M.; Bayliss, P.; Cohen, M.C.; Quarrell, O.; Wheeldon, N.; Marton, T.; Gentilini, D.; Crotti, L.; Coombs, R.C.; et al. Cardiac Genetic Investigation of Sudden Infant and Early Childhood Death: A Study from Victims to Families. J. Am. Heart Assoc. 2023, 12, e029100. [Google Scholar] [CrossRef]
- Bhatia, R.T.; Finocchiaro, G.; Westaby, J.; Chatrath, N.; Behr, E.R.; Papadakis, M.; Sharma, S.; Sheppard, M.N. Myocarditis and Sudden Cardiac Death in the Community: Clinical and Pathological Insights from a National Registry in the United Kingdom. Circ. Arrhythmia Electrophysiol. 2023, 16, e012129. [Google Scholar] [CrossRef]
- Lo, A.K.C.; Mew, T.; Mew, C.; Guppy-Coles, K.; Dahiya, A.; Ng, A.; Prasad, S.; Atherton, J.J. Exaggerated Myocardial Torsion May Contribute to Dynamic Left Ventricular Outflow Tract Obstruction in Hypertrophic Cardiomyopathy. Eur. Heart J. Open 2023, 3, oead043. [Google Scholar] [CrossRef]
- Siontis, K.C.; Ommen, S.R.; Geske, J.B. Art and science of risk stratification of sudden cardiac death in hypertrophic cardiomyopathy: Current state, unknowns, and future directions. Prog. Cardiovasc. Dis. 2023, in press. [Google Scholar] [CrossRef]
- Montisci, M.; Thiene, G.; Ferrara, S.D.; Basso, C. Cannabis and cocaine: A lethal cocktail triggering coronary sudden death. Cardiovasc. Pathol. 2008, 17, 344–346. [Google Scholar] [CrossRef]
- Kakimoto, Y.; Ueda, A.; Ito, M.; Tanaka, M.; Kubota, T.; Isozaki, S.; Osawa, M. Proteomic profiling of sudden cardiac death with acquired cardiac hypertrophy. Int. J. Leg. Med. 2023, 137, 1453–1461. [Google Scholar] [CrossRef]
- Oliva, A.; Grassi, V.M.; Campuzano, O.; Brion, M.; Arena, V.; Partemi, S.; Coll, M.; Pascali, V.L.; Brugada, J.; Carracedo, A.; et al. Medico-legal perspectives on sudden cardiac death in young athletes. Int. J. Legal Med. 2017, 131, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Sacco, M.A.; Cordasco, F.; Scalise, C.; Ricci, P.; Aquila, I. Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death. Diagnostics 2022, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Yang, L.; Hu, G.; Li, L.; Wang, Y.; Tao, L. Application of omics techniques in forensic entomology research. Acta Trop. 2023, 246, 106985. [Google Scholar] [CrossRef]
- Adav, S.S.; Leung, C.Y.; Ng, K.W. Profiling of hair proteome revealed individual demographics. Forensic Sci. Int. Genet. 2023, 66, 102914. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Z.; Ma, L.; Yin, M.; Zhou, Y. Potential biomarkers in hypoglycemic brain injury. Forensic Sci. Med. Pathol. 2023, in press. [Google Scholar] [CrossRef]
- Deveci, C.; Demircin, S. A retrospective analysis of cardiovascular deaths: A 5-year autopsy study of 1045 cases in Antalya, Turkey. J. Forensic Sci. 2023, in press. [Google Scholar] [CrossRef]
- Garland, J.; Thompson, M.; Ondruschka, B.; da Broi, U.; Thompson, I.; Olumbe, A.; Tse, R. Gross Heart Dimensions from Postmortem Computed Tomography and Postmortem Examination Measurements: Heart Weight and Cardiac Hypertrophy. Am. J. Forensic Med. Pathol. 2023, 44, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Backhouse, B.; Scully, T.; Rajakariar, K.; Jin, D.; Chandrasekhar, J.; Freeman, M. Coronary Artery Vasospasm in Patients with Eosinophilia. JACC Case Rep. 2023, 19, 101932. [Google Scholar] [CrossRef]
- Prinzmetal, M.; Kennamer, R.; Massumi, R.A. High anterior myocardial infarction. XX. Studies on the mechanism of ventricular activity. Circulation 1957, 15, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.P.; Sales, F.; Teixeira, F.; Seabra, D.; Cunha, M. Anesthetic Management of a Patient with Prinzmetal Angina. Cureus 2023, 15, e41857. [Google Scholar] [CrossRef]
- Rehan, R.; Beltrame, J.; Yong, A. Insights into the invasive diagnostic challenges of coronary artery vasospasm—A systematic review. J. Cardiol. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Boerhout, C.K.; Beijk, M.A.; Damman, P.; Piek, J.J.; van de Hoef, T.P. Practical Approach for Angina and Non-Obstructive Coronary Arteries: A State-of-the-Art Review. Korean Circ. J. 2023, 53, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lin, Z.; Zhao, X.; Liu, Z.; Xu, C.; Yu, B.; Gao, P.; Wang, Z.; Ge, J.; Shen, Y.; et al. Serum SELENBP1 and VCL Are Effective Biomarkers for Clinical and Forensic Diagnosis of Coronary Artery Spasm. Int. J. Mol. Sci. 2022, 23, 13266. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.C.; Whelton, S.P.; Blumenthal, R.S.; Sperling, L.S.; Blaha, M.J.; Dzaye, O. Coronary artery calcium and sudden cardiac death: Current evidence and future directions. Curr. Opin. Cardiol. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Kidder, E.; Pea, M.; Cheng, S.; Koppada, S.-P.; Visvanathan, S.; Henderson, Q.; Thuzar, M.; Yu, X.; Alfaidi, M. The interleukin-1 receptor type-1 in disturbed flow-induced endothelial mesenchymal activation. Front. Cardiovasc. Med. 2023, 10, 1190460. [Google Scholar] [CrossRef]
- Hogea, T.; Suciu, B.A.; Ivănescu, A.D.; Carașca, C.; Chinezu, L.; Arbănași, E.M.; Russu, E.; Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; et al. Increased Epicardial Adipose Tissue (EAT), Left Coronary Artery Plaque Morphology, and Valvular Atherosclerosis as Risks Factors for Sudden Cardiac Death from a Forensic Perspective. Diagnostics 2023, 13, 142. [Google Scholar] [CrossRef]
- Huang, Y.; Dai, H. ATF3 affects myocardial fibrosis remodeling after myocardial infarction by regulating autophagy and its mechanism of action. Gene 2023, 885, 147705. [Google Scholar] [CrossRef]
- Peng, J.; Le, C.Y.; Xia, B.; Wang, J.W.; Liu, J.J.; Li, Z.; Zhang, Q.J.; Wan, C.W. Research on the correlation between activating transcription factor 3 expression in the human coronary artery and atherosclerotic plaque stability. BMC Cardiovasc. Disord. 2021, 21, 356. [Google Scholar] [CrossRef]
- Beska, B.; Ratcovich, H.; Bagnall, A.; Burrell, A.; Edwards, R.; Egred, M.; Jordan, R.; Khan, A.; Mills, G.B.; Morrison, E.; et al. Angiographic and Procedural Characteristics in Frail Older Patients with Non-ST Elevation Acute Coronary Syndrome. Interv. Cardiol. 2023, 18, e04. [Google Scholar] [CrossRef]
- Tojo, M.; Shintani-Ishida, K.; Tsuboi, H.; Nakamura, M.; Idota, N.; Ikegaya, H. Postmortem plasma pentraxin 3 is a useful marker of fatal acute coronary syndrome. Sci. Rep. 2019, 9, 8090. [Google Scholar] [CrossRef]
- Madonna, R.; van Laake, L.W.; Davidson, S.M.; Engel, F.B.; Hausenloy, D.J.; Lecour, S.; Leor, J.; Perrino, C.; Schulz, R.; Ytrehus, K.; et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: Cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 2016, 37, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Adams, J., 3rd. Impact of troponins on the evaluation and treatment of patients with acute coronary syndromes. Curr. Opin. Cardiol. 1999, 14, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, E.; Çil, N.; Avci, E.; Bir, F.; Kiliç, İ.D.; Dereli, A.K.; Acar, K. Significance of postmortem biomarkers and multimarker strategy in sudden cardiac death. Leg. Med. 2023, 61, 102212. [Google Scholar] [CrossRef] [PubMed]
- Zribi, M.; Ennouri, H.; Turki, M.; Ben Amar, W.; Grati, M.; Hammami, Z.; Ayadi, F.; Maatoug, S. Diagnostic value of high-sensitivity troponin T in postmortem diagnosis of sudden cardiac death. J. Forensic Leg. Med. 2021, 78, 102127. [Google Scholar] [CrossRef]
- Omalu, B.M.; Diu, S.B.; Paudel, N.C.; Parson, S.J.; Hammers, J.L.D. Autopsy Cardiac Troponin I Plasma Levels Can Be Elevated in Myocardial Infarction Type 3: A Proposal to Modify the Definition of Myocardial Infarction Type 3. Am. J. Forensic Med. Pathol. 2021, 42, 225–229. [Google Scholar] [CrossRef]
- Beausire, T.; Faouzi, M.; Palmiere, C.; Fracasso, T.; Michaud, K. High-sensitive cardiac troponin hs-TnT levels in sudden deaths related to atherosclerotic coronary artery disease. Forensic Sci. Int. 2018, 289, 238–243. [Google Scholar] [CrossRef]
- Martini, N.; de Lazzari, M.; Migliore, F. Complete atrioventricular block with prolonged asystolic pause at loop recorder monitoring in a young patient with brugada syndrome and conduction abnormalities: Cause of syncope or incidental finding? Eur. Heart J. Case Rep. 2023, 7, ytad367. [Google Scholar] [CrossRef]
- Xie, D.; Wu, J.; Wu, Q.; Zhang, X.; Zhou, D.; Dai, W.; Zhu, M.; Wang, D. Integrating proteomic, lipidomic and metabolomic data to construct a global metabolic network of lethal ventricular tachyarrhythmias (LVTA) induced by aconitine. J. Proteom. 2021, 232, 104043. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Wu, Q.; Xie, D.; Dai, W.; Zhang, X.; Yang, Z.; Wang, D. Integrative analyses of myocardial lipidome and proteome implicate mitochondrial dysfunction in lethal ventricular tachyarrhythmia (LVTA) induced by acute myocardial ischemia (AMI). J. Proteom. 2019, 197, 14–22. [Google Scholar] [CrossRef]
- Carvajal-Zarrabal, O.; Hayward-Jones, P.M.; Nolasco-Hipolito, C.; Barradas-Dermitz, D.M.; Calderón-Garcidueñas, A.L.; López-Amador, N. Use of Cardiac Injury Markers in the Postmortem Diagnosis of Sudden Cardiac Death. J. Forensic Sci. 2017, 62, 1332–1335. [Google Scholar] [CrossRef]
- Tomásková, E.; Vorel, F. Some possibilities in the diagnosis of early acute ischaemic changes in the heart muscle in sudden death. Soud Lek. 2010, 55, 32–35. [Google Scholar] [PubMed]
- González-Herrera, L.; Valenzuela, A.; Ramos, V.; Blázquez, A.; Villanueva, E. Cardiac troponin T determination by a highly sensitive assay in postmortem serum and pericardial fluid. Forensic Sci. Med. Pathol. 2016, 12, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.S.; Nur Shafina, M.; Mohd Hilmi, S.; Nur Shazuwani, R.; Normaizuwana, M.M.; Kunasilan, S. Correlation of Troponin T Levels in the Cardiac Sudden Death Cases at Hospital Kuala Lumpur. Int. J. Forensic. Sci. Pathol. 2017, 5, 376–383. [Google Scholar]
- Rahimi, R.; Dahili, N.D.; Anuar Zainun, K.; Mohd Kasim, N.A.; Md Noor, S. Post mortem troponin T analysis in sudden death: Is it useful? Malays J. Pathol. 2018, 40, 143–148. [Google Scholar]
- Ferrara, S.D.; Cecchetto, G.; Cecchi, R.; Favretto, D.; Grabherr, S.; Ishikawa, T.; Kondo, T.; Montisci, M.; Pfeiffer, H.; Bonati, M.R.; et al. Back to the Future—Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences. Int. J. Leg. Med. 2017, 131, 1085–1101. [Google Scholar] [CrossRef]
- Cina, S.J.; Li, D.J.; Chan, D.W.; Boitnott, J.K.; Hruban, R.H.; Smialek, J.E. Serum concentrations of cardiac troponin I in sudden death: A pilot study. Am. J. Forensic Med. Pathol. 1998, 19, 324–328. [Google Scholar] [CrossRef]
- Ellingsen, C.L.; Hetland, Ø. Serum Concentrations of Cardiac Troponin T in Sudden Death. Am. J. Forensic Med. Pathol. 2004, 25, 213–215. [Google Scholar] [CrossRef]
- Aquila, I.; Sacco, M.A.; Ricci, C.; Gratteri, S.; Ricci, P. Quarantine of the Covid-19 pandemic in suicide: A psychological autopsy. Med. Leg. J. 2020, 88, 182–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco, M.A.; Gualtieri, S.; Calanna, L.; Ricci, P.; Aquila, I. Exploring the Potential of Proteome Analysis as a Promising Tool for Evaluation of Sudden Cardiac Death (SCD) in Forensic Settings: A Literature Review. Int. J. Mol. Sci. 2023, 24, 14351. https://doi.org/10.3390/ijms241814351
Sacco MA, Gualtieri S, Calanna L, Ricci P, Aquila I. Exploring the Potential of Proteome Analysis as a Promising Tool for Evaluation of Sudden Cardiac Death (SCD) in Forensic Settings: A Literature Review. International Journal of Molecular Sciences. 2023; 24(18):14351. https://doi.org/10.3390/ijms241814351
Chicago/Turabian StyleSacco, Matteo Antonio, Saverio Gualtieri, Luca Calanna, Pietrantonio Ricci, and Isabella Aquila. 2023. "Exploring the Potential of Proteome Analysis as a Promising Tool for Evaluation of Sudden Cardiac Death (SCD) in Forensic Settings: A Literature Review" International Journal of Molecular Sciences 24, no. 18: 14351. https://doi.org/10.3390/ijms241814351
APA StyleSacco, M. A., Gualtieri, S., Calanna, L., Ricci, P., & Aquila, I. (2023). Exploring the Potential of Proteome Analysis as a Promising Tool for Evaluation of Sudden Cardiac Death (SCD) in Forensic Settings: A Literature Review. International Journal of Molecular Sciences, 24(18), 14351. https://doi.org/10.3390/ijms241814351