Amine Functionalization Leads to Enhanced Performance for Nickel- and Cobalt-Ferrite-Supported Palladium Catalysts in Nitrobenzene Hydrogenation
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Amine-Functionalized and Non-Functionalized CoFe2O4 and NiFe2O4 Magnetic Catalyst Supports
2.2. Characterization of the Amine-Functionalized and Non-Functionalized Magnetic Pd/CoFe2O4 and Pd/NiFe2O4 Catalysts
2.3. Catalytic Performance of the Ferrite Supported Palladium Catalysts
3. Materials and Methods
3.1. Materials
3.2. Characterization Techniques
3.3. Synthesis of the Amine-Functionalized Cobalt Ferrite and Nickel Ferrite Magnetic Catalyst Supports
3.4. Synthesis of the Non-Functionalized Cobalt Ferrite and Nickel Ferrite Magnetic Catalyst Supports
3.5. Ultrasonication-Assisted Deposition of the Palladium Nanoparticles on Surface of the Cobalt and Nickel Ferrites
3.6. Catalytic Tests of the Cobalt Ferrite and Nickel Ferrite Magnetic Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heaney, F. The Nitro Group in Organic Synthesis. Synthesis 2004, 2001, 2528. [Google Scholar] [CrossRef]
- Huang, L.; Lv, Y.; Wu, S.; Liu, P.; Xiong, W.; Hao, F.; Luo, H. Activated Carbon Supported Bimetallic Catalysts with Combined Catalytic Effects for Aromatic Nitro Compounds Hydrogenation under Mild Conditions. Appl. Catal. A Gen. 2019, 577, 76–85. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Van Bekkum, H. Fine Chemicals through Heterogeneous Catalysis; Wiley-VCH: Weinheim, Germany, 2007; ISBN 9783527612963. [Google Scholar]
- Meng, X.; Cheng, H.; Akiyama, Y.; Hao, Y.; Qiao, W.; Yu, Y.; Zhao, F.; Fujita, S.-i.; Arai, M. Selective Hydrogenation of Nitrobenzene to Aniline in Dense Phase Carbon Dioxide over Ni/γ-Al2O3: Significance of Molecular Interactions. J. Catal. 2009, 264, 1–10. [Google Scholar] [CrossRef]
- Turáková, M.; Králik, M.; Lehocký, P.; Pikna, Ľ.; Smrčová, M.; Remeteiová, D.; Hudák, A. Influence of Preparation Method and Palladium Content on Pd/C Catalysts Activity in the Liquid Phase Hydrogenation of Nitrobenzene to Aniline. Appl. Catal. A Gen. 2014, 476, 103–112. [Google Scholar] [CrossRef]
- Vanyorek, L.; Prekob, Á.; Sikora, E.; Reizer, E.; Muránszky, G.; Kristály, F.; Viskolcz, B.; Fiser, B. Application of Carbon Nanotube Coated Aluminosilicate Beads as “Support on Support” Catalyst for Hydrogenation of Nitrobenzene. J. Ind. Eng. Chem. 2019, 79, 307–313. [Google Scholar] [CrossRef]
- Venkateshwarlu, V.; Mohan, V.; Rao, M.V.; Nagaiah, P.; Raju, B.D.; Rao, K.S.R. Advantage of Carbon Coverage over Al2O3 as Support for Ni/C-Al2O3 Catalyst in Vapour Phase Hydrogenation of Nitrobenzene to Aniline. Catal. Commun. 2016, 86, 1–4. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, L.; Zhang, T.; Fu, W.; Tang, T. Synthesis of Hollow-Sphere Carbon Templated from TS-1 Zeolite and Supported Pt Catalyst for Nitrobenzene Hydrogenation. Mater. Lett. 2022, 308, 131287. [Google Scholar] [CrossRef]
- Yu, X.; Wang, M.; Li, H. Study on the Nitrobenzene Hydrogenation over a Pd-B/SiO2 Amorphous Catalyst. Appl. Catal. A Gen. 2000, 202, 17–22. [Google Scholar] [CrossRef]
- Phan, N.T.S.; Jones, C.W. Highly Accessible Catalytic Sites on Recyclable Organosilane-Functionalized Magnetic Nanoparticles: An Alternative to Functionalized Porous Silica Catalysts. J. Mol. Catal. A Chem. 2006, 253, 123–131. [Google Scholar] [CrossRef]
- Akther Hossain, A.K.M.; Biswas, T.S.; Yanagida, T.; Tanaka, H.; Tabata, H.; Kawai, T. Investigation of Structural and Magnetic Properties of Polycrystalline Ni0.50Zn0.50−xMgxFe2O4 Spinel Ferrites. Mater. Chem. Phys. 2010, 120, 461–467. [Google Scholar] [CrossRef]
- Manuel, M.M.; Deyanira, A.B.; Virginia, C.M.; Jorge, A.G.M. Synthesis, Characterization and Photocatalytic Evaluation of Nanocrystalline Ferrites of Alkaline Earth Metals: MFe2O4 (M: Mg, Ca, Ba) Synthesized by the Malate-Nitrate Method. J. Photochem. Photobiol. 2022, 9, 100091. [Google Scholar] [CrossRef]
- Younes, A.; Kherrouba, N.; Bouamer, A. Magnetic, Optical, Structural and Thermal Properties of Copper Ferrite Nanostructured Synthesized by Mechanical Alloying. Micro Nano Lett. 2021, 16, 251–256. [Google Scholar] [CrossRef]
- Gong, L.; Chen, G.; Lv, J.; Lu, M.; Zhang, J.; Wu, X.; Wang, J. Phase Transition-Enabled MnFe2O4 Nanoparticles Modulated by High-Pressure with Enhanced Electrical Transport Properties. Appl. Surf. Sci. 2021, 565, 150532. [Google Scholar] [CrossRef]
- Matter, P.H.; Zhang, L.; Ozkan, U.S. The Role of Nanostructure in Nitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reaction. J. Catal. 2006, 239, 83–96. [Google Scholar] [CrossRef]
- Srinivasan, S.Y.; Paknikar, K.M.; Bodas, D.; Gajbhiye, V. Applications of Cobalt Ferrite Nanoparticles in Biomedical Nanotechnology. Nanomedicine 2018, 13, 1221–1238. [Google Scholar] [CrossRef] [PubMed]
- Samoila, P.; Cojocaru, C.; Cretescu, I.; Stan, C.D.; Nica, V.; Sacarescu, L.; Harabagiu, V. Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. J. Nanomater. 2015, 2015, 713802. [Google Scholar] [CrossRef]
- Dong, M.; Pan, Z.; Peng, Y.; Meng, X.; Mu, X.; Zong, B.; Zhang, J. Selective Acetylene Hydrogenation over Core–Shell Magnetic Pd-Supported Catalysts in a Magnetically Stabilized Bed. AIChE J. 2008, 54, 1358–1364. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Zhao, Y.; Bao, W. A Review of Amino-Functionalized Magnetic Nanoparticles for Water Treatment: Features and Prospects. J. Clean. Prod. 2021, 281, 124668. [Google Scholar] [CrossRef]
- Aoopngan, C.; Nonkumwong, J.; Phumying, S.; Promjantuek, W.; Maensiri, S.; Noisa, P.; Pinitsoontorn, S.; Ananta, S.; Srisombat, L. Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption. ACS Appl. Nano Mater. 2019, 2, 5329–5341. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Mamba, B.B.; Msagati, T.A.M. Application of Spinel Ferrite Nanoparticles in Water and Wastewater Treatment: A Review. Sep. Purif. Technol. 2017, 188, 399–422. [Google Scholar] [CrossRef]
- Laska, U.; Frost, C.G.; Price, G.J.; Plucinski, P.K. Easy-Separable Magnetic Nanoparticle-Supported Pd Catalysts: Kinetics, Stability and Catalyst Re-Use. J. Catal. 2009, 268, 318–328. [Google Scholar] [CrossRef]
- Kovács, E.; Thurner, A.; Farkas, F.; Faigl, F.; Hegeds, L. Hydrogenolysis of N-Protected Aminooxetanes over Palladium: An Efficient Method for a One-Step Ring Opening and Debenzylation Reaction. J. Mol. Catal. A Chem. 2011, 339, 32–36. [Google Scholar] [CrossRef]
- Kovács, E.; Faigl, F.; Mucsi, Z.; Nyerges, M.; Hegedus, L. Hydrogenolysis of N- and O-Protected Hydroxyazetidines over Palladium: Efficient and Selective Methods for Ring Opening and Deprotecting Reactions. J. Mol. Catal. A Chem. 2014, 395, 217–224. [Google Scholar] [CrossRef]
- Mátravölgyi, B.; Kovács, E.; Hegedűs, L.; Jászay, Z.; Thurner, A.; Deák, S.; Erdélyi, Z.; Pham, T.S.; Gönczi, K.; Sólyom, S.; et al. Synthesis and Application of New, Optically Active Compounds as Catalysts and Ligands in Enantioselective Reactions. Period. Polytech. Chem. Eng. 2015, 59, 38–50. [Google Scholar] [CrossRef]
- Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872. [Google Scholar] [CrossRef] [PubMed]
- Polshettiwar, V.; Baruwati, B.; Varma, R.S. Nanoparticle -Supported and Magnetically Recoverable Nickel Catalyst: A Robust and Economic Hydrogenation and Transfer Hydrogenation Protocol. Green Chem. 2009, 11, 127–131. [Google Scholar] [CrossRef]
- Bahri-Laleh, N.; Sadjadi, S.; Poater, A. Pd Immobilized on Dendrimer Decorated Halloysite Clay: Computational and Experimental Study on the Effect of Dendrimer Generation, Pd Valance and Incorporation of Terminal Functionality on the Catalytic Activity. J. Colloid Interface Sci. 2018, 531, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Bruce, I.J.; Taylor, J.; Todd, M.; Davies, M.J.; Borioni, E.; Sangregorio, C.; Sen, T. Synthesis, Characterisation and Application of Silica-Magnetite Nanocomposites. J. Magn. Magn. Mater. 2004, 284, 145–160. [Google Scholar] [CrossRef]
- Wang, H.; Su, W.; Tan, M. Endogenous Fluorescence Carbon Dots Derived from Food Items. Innovation 2020, 1, 100009. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Y.W.; Liao, C.S.; Yan, C.H.; Chen, L.Y.; Wang, S.Y. Rare-Earth-Mediated Magnetism and Magneto-Optical Kerr Effects in Nanocrystalline CoFeMn0.9RE0.1O4 Thin Films. J. Magn. Magn. Mater. 2004, 280, 327–333. [Google Scholar] [CrossRef]
- Jacob, B.P.; Kumar, A.; Pant, R.P.; Singh, S.; Mohammed, E.M. Influence of Preparation Method on Structural and Magnetic Properties of Nickel Ferrite Nanoparticles. Bull. Mater. Sci. 2011, 34, 1345–1350. [Google Scholar] [CrossRef]
- Kurian, M.; Thankachan, S.; Nair, D.S.; Ek, A.; Babu, A.; Thomas, A.; Krishna, K.T.B. Structural, Magnetic, and Acidic Properties of Cobalt Ferrite Nanoparticles Synthesised by Wet Chemical Methods. J. Adv. Ceram. 2015, 4, 199–205. [Google Scholar] [CrossRef]
- Joshi, S.; Kumar, M.; Chhoker, S.; Srivastava, G.; Jewariya, M.; Singh, V.N. Structural, Magnetic, Dielectric and Optical Properties of Nickel Ferrite Nanoparticles Synthesized by Co-Precipitation Method. J. Mol. Struct. 2014, 1076, 55–62. [Google Scholar] [CrossRef]
- Chauhan, L.; Shukla, A.K.; Sreenivas, K. Dielectric and Magnetic Properties of Nickel Ferrite Ceramics Using Crystalline Powders Derived from DL Alanine Fuel in Sol–Gel Auto-Combustion. Ceram. Int. 2015, 7, 8341–8351. [Google Scholar] [CrossRef]
- Nogueira, N.A.S.; Utuni, V.H.S.; Silva, Y.C.; Kiyohara, P.K.; Vasconcelos, I.F.; Miranda, M.A.R.; Sasaki, J.M. X-Ray Diffraction and Mossbauer Studies on Superparamagnetic Nickel Ferrite (NiFe2O4) Obtained by the Proteic Sol–Gel Method. Mater. Chem. Phys. 2015, 163, 402–406. [Google Scholar] [CrossRef]
- Karcıoğlu Karakaş, Z.; Boncukcuoğlu, R.; Karakaş, I.H.; Ertuğrul, M. The Effects of Heat Treatment on the Synthesis of Nickel Ferrite (NiFe2O4) Nanoparticles Using the Microwave Assisted Combustion Method. J. Magn. Magn. Mater. 2015, 374, 298–306. [Google Scholar] [CrossRef]
- Mandal, S.; Selvakannan, P.R.; Roy, D.; Chaudhari, R.V.; Sastry, M. A new method for the synthesis of hydrophobized, catalytically active Pt nanoparticles. Chem. Commun. 2002, 24, 3002–3003. [Google Scholar] [CrossRef]
- Crooks, R.M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L.K. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res. 2000, 34, 181–190. [Google Scholar] [CrossRef]
Mean | SD | Min. | Max. | P90 | P95 | |
---|---|---|---|---|---|---|
Sample | Size (nm) | |||||
CoFe2O4-NH2 | 50.9 | 8.2 | 28.8 | 66.0 | 61.2 | 62.6 |
CoFe2O4 | 12.9 | 4.8 | 3.6 | 26.9 | 18.5 | 22.4 |
NiFe2O4-NH2 | 41.5 | 12.9 | 20.5 | 71.2 | 61.6 | 66.4 |
NiFe2O4 | 11.2 | 4.0 | 4.4 | 23.2 | 17.2 | 18.4 |
(wt%) | Before Use | After Four Uses |
---|---|---|
Pd/CoFe2O4-NH2 | 4.85 | 4.47 |
Pd/CoFe2O4 | 3.47 | 2.30 |
Pd/NiFe2O4-NH2 | 3.98 | 3.79 |
Pd/NiFe2O4 | 4.15 | 2.69 |
Fe(NO3)3·9H2O | Ni(NO3)2·6H2O | Co(NO3)2·6H2O | CH3COONa | |
NiFe2O4-NH2 | 20 mmol | 10 mmol | - | 150 mmol |
CoFe2O4-NH2 | - | 10 mmol |
Fe(NO3)3·9 H2O | Ni(NO3)2·6 H2O | Co(NO3)2·6 H2O | |
NiFe2O4 | 14 mmol | 7 mmol | - |
CoFe2O4 | - | 7 mmol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajdu, V.; Prekob, Á.; Muránszky, G.; Kristály, F.; Daróczi, L.; Harasztosi, L.; Kaleta, Z.; Viskolcz, B.; Nagy, M.; Vanyorek, L. Amine Functionalization Leads to Enhanced Performance for Nickel- and Cobalt-Ferrite-Supported Palladium Catalysts in Nitrobenzene Hydrogenation. Int. J. Mol. Sci. 2023, 24, 13347. https://doi.org/10.3390/ijms241713347
Hajdu V, Prekob Á, Muránszky G, Kristály F, Daróczi L, Harasztosi L, Kaleta Z, Viskolcz B, Nagy M, Vanyorek L. Amine Functionalization Leads to Enhanced Performance for Nickel- and Cobalt-Ferrite-Supported Palladium Catalysts in Nitrobenzene Hydrogenation. International Journal of Molecular Sciences. 2023; 24(17):13347. https://doi.org/10.3390/ijms241713347
Chicago/Turabian StyleHajdu, Viktória, Ádám Prekob, Gábor Muránszky, Ferenc Kristály, Lajos Daróczi, Lajos Harasztosi, Zoltán Kaleta, Béla Viskolcz, Miklós Nagy, and László Vanyorek. 2023. "Amine Functionalization Leads to Enhanced Performance for Nickel- and Cobalt-Ferrite-Supported Palladium Catalysts in Nitrobenzene Hydrogenation" International Journal of Molecular Sciences 24, no. 17: 13347. https://doi.org/10.3390/ijms241713347