Uremic Toxins Induce THP-1 Monocyte Endothelial Adhesion and Migration through Specific miRNA Expression
Abstract
:1. Introduction
2. Results
2.1. IS and PC Induce Cell Migration to the Endothelium
2.2. Effect of IS and PC on the Adhesion of THP-1 to Endothelium
2.3. The Expression of BMP-2 mRNA, miRNA-126-3p, miRNA-146b-5p, and miRNA-223-3p Are Increased in THP-1 Exposed to IS and PC
2.4. IS and PC Regulate p65-NF-ĸB and IĸB Protein Expression in THP-1
3. Discussion
4. Materials and Methods
4.1. Preparation of Uremic Toxins
4.2. Cell Culture and Reagents
4.3. THP-1 Adhesion Assay
4.4. THP1 Migration Assay
4.5. BMP-2, miRNA 126-3p, miRNA 146-5p, miRNA 191-5, and miRNA 223-3p Expression in THP-1
4.6. Protein Extraction and Western Blot Analysis
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanholder, R.; Glorieux, G.; De Smet, R.; Lameire, N.; European Uremic Toxin Work Group. New Insights in Uremic Toxins. Kidney Int. Suppl. 2003, 63, S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on Uremic Toxins: Classification, Concentration, and Interindividual Variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef] [PubMed]
- Cunha, R.S.d.; Santos, A.F.; Barreto, F.C.; Stinghen, A.E.M. How Do Uremic Toxins Affect the Endothelium? Toxins 2020, 12, 412. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Carmona, A.; Guerrero, F.; Jimenez, M.J.; Ariza, F.; Agüera, M.L.; Obrero, T.; Noci, V.; Muñoz-Castañeda, J.R.; Rodríguez, M.; Soriano, S.; et al. Inflammation, Senescence and MicroRNAs in Chronic Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 739. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-Y.; Hsu, H.-H.; Wu, M.-S. P-Cresol Sulfate and Indoxyl Sulfate Induce Similar Cellular Inflammatory Gene Expressions in Cultured Proximal Renal Tubular Cells. Nephrol. Dial. Transplant. 2013, 28, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Woollard, K.J.; Geissmann, F. Monocytes in Atherosclerosis: Subsets and Functions. Nat. Rev. Cardiol. 2010, 7, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Lüscher, T.F. Predicting the Development of Atherosclerosis. Circulation 2009, 119, 919–921. [Google Scholar] [CrossRef]
- Hilgendorf, I.; Swirski, F.K.; Robbins, C.S. Monocyte Fate in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 272–279. [Google Scholar] [CrossRef]
- Merino, A.; Buendia, P.; Martin-Malo, A.; Aljama, P.; Ramirez, R.; Carracedo, J. Senescent CD14+CD16+ Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity. J. Immunol. 2011, 186, 1809–1815. [Google Scholar] [CrossRef]
- Ramírez, R.; Carracedo, J.; Merino, A.; Soriano, S.; Ojeda, R.; Alvarez-Lara, M.A.; Martín-Malo, A.; Aljama, P. CD14+CD16+ Monocytes from Chronic Kidney Disease Patients Exhibit Increased Adhesion Ability to Endothelial Cells. Contrib. Nephrol. 2011, 171, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Metzinger-Le Meuth, V.; Fourdinier, O.; Charnaux, N.; Massy, Z.A.; Metzinger, L. The Expanding Roles of MicroRNAs in Kidney Pathophysiology. Nephrol. Dial. Transplant. 2019, 34, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzózka, A.; Olszewski, R.; Parolczyk, M.; Rysz-Górzyńska, M.; Rysz, J. MiRNA Biomarkers in Renal Disease. Int. Urol. Nephrol. 2022, 54, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ma, S.-X.; Shang, Y.-Q.; Zhang, H.-Q.; Su, W. MicroRNAs in Chronic Kidney Disease. Clin. Chim. Acta 2019, 491, 59–65. [Google Scholar] [CrossRef]
- Churov, A.; Summerhill, V.; Grechko, A.; Orekhova, V.; Orekhov, A. MicroRNAs as Potential Biomarkers in Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 5547. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.-J.; Ninichuk, V.; Schlöndorff, D. Progression of Kidney Disease: Blocking Leukocyte Recruitment with Chemokine Receptor CCR1 Antagonists. Kidney Int. 2006, 69, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Campillo, S.; Bohorquez, L.; Gutiérrez-Calabrés, E.; García-Ayuso, D.; Miguel, V.; Griera, M.; Calle, Y.; de Frutos, S.; Rodríguez-Puyol, M.; Rodríguez-Puyol, D.; et al. Indoxyl Sulfate- and P-Cresol-Induced Monocyte Adhesion and Migration Is Mediated by Integrin-Linked Kinase-Dependent Podosome Formation. Exp. Mol. Med. 2022, 54, 226–238. [Google Scholar] [CrossRef]
- Lim, C.C.; Teo, B.W.; Ong, P.G.; Cheung, C.Y.; Lim, S.C.; Chow, K.Y.; Meng, C.C.; Lee, J.; Tai, E.S.; Wong, T.Y.; et al. Chronic Kidney Disease, Cardiovascular Disease and Mortality: A Prospective Cohort Study in a Multi-Ethnic Asian Population. Eur. J. Prev. Cardiol. 2015, 22, 1018–1026. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Clinical Epidemiology of Cardiovascular Disease in Chronic Renal Disease. Am. J. Kidney Dis. 1998, 32, S112–S119. [Google Scholar] [CrossRef]
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef]
- Fularski, P.; Krzemińska, J.; Lewandowska, N.; Młynarska, E.; Saar, M.; Wronka, M.; Rysz, J.; Franczyk, B. Statins in Chronic Kidney Disease-Effects on Atherosclerosis and Cellular Senescence. Cells 2023, 12, 1679. [Google Scholar] [CrossRef]
- Ravid, J.D.; Chitalia, V.C. Molecular Mechanisms Underlying the Cardiovascular Toxicity of Specific Uremic Solutes. Cells 2020, 9, 2024. [Google Scholar] [CrossRef]
- Vanholder, R.; Glorieux, G. The Intestine and the Kidneys: A Bad Marriage Can Be Hazardous. Clin. Kidney J. 2015, 8, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, L.; Tang, M.-Y.; Liu, Y.-F.; Liu, L.; Liu, X.-Y.; Zhang, C.; Huang, L. Indoxyl Sulfate in Atherosclerosis. Toxicol. Lett. 2023, 383, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.J.; Ni, J.W.; Ding, F.H.; Fang, Y.H.; Wang, X.Q.; Wang, H.B.; Chen, X.N.; Chen, N.; Zhan, W.W.; Lu, L.; et al. P-Cresyl Sulfate Is Associated with Carotid Arteriosclerosis in Hemodialysis Patients and Promotes Atherogenesis in ApoE−/− Mice. Kidney Int. 2016, 89, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Navab, M.; Hama, S.Y.; Nguyen, T.B.; Fogelman, A.M. Monocyte Adhesion and Transmigration in Atherosclerosis. Coron. Artery Dis. 1994, 5, 198–204. [Google Scholar] [CrossRef]
- Chang, M.-C.; Chang, H.-H.; Chan, C.-P.; Yeung, S.-Y.; Hsien, H.-C.; Lin, B.-R.; Yeh, C.-Y.; Tseng, W.-Y.; Tseng, S.-K.; Jeng, J.-H. P-Cresol Affects Reactive Oxygen Species Generation, Cell Cycle Arrest, Cytotoxicity and Inflammation/Atherosclerosis-Related Modulators Production in Endothelial Cells and Mononuclear Cells. PLoS ONE 2014, 9, e114446. [Google Scholar] [CrossRef]
- Ito, S.; Higuchi, Y.; Yagi, Y.; Nishijima, F.; Yamato, H.; Ishii, H.; Osaka, M.; Yoshida, M. Reduction of Indoxyl Sulfate by AST-120 Attenuates Monocyte Inflammation Related to Chronic Kidney Disease. J. Leukoc. Biol. 2013, 93, 837–845. [Google Scholar] [CrossRef]
- Matsuo, K.; Yamamoto, S.; Wakamatsu, T.; Takahashi, Y.; Kawamura, K.; Kaneko, Y.; Goto, S.; Kazama, J.J.; Narita, I. Increased Proinflammatory Cytokine Production and Decreased Cholesterol Efflux Due to Downregulation of ABCG1 in Macrophages Exposed to Indoxyl Sulfate. Toxins 2015, 7, 3155–3166. [Google Scholar] [CrossRef]
- Schepers, E.; Meert, N.; Glorieux, G.; Goeman, J.; Van der Eycken, J.; Vanholder, R. P-Cresylsulphate, the Main in Vivo Metabolite of p-Cresol, Activates Leucocyte Free Radical Production. Nephrol. Dial. Transplant. 2007, 22, 592–596. [Google Scholar] [CrossRef]
- Wakamatsu, T.; Yamamoto, S.; Ito, T.; Sato, Y.; Matsuo, K.; Takahashi, Y.; Kaneko, Y.; Goto, S.; Kazama, J.J.; Gejyo, F.; et al. Indoxyl Sulfate Promotes Macrophage IL-1β Production by Activating Aryl Hydrocarbon Receptor/NF-κ/MAPK Cascades, but the NLRP3 Inflammasome Was Not Activated. Toxins 2018, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, B.; Ulrich, C.; Seibert, E.; Fiedler, R.; Girndt, M. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism. PLoS ONE 2014, 9, e102137. [Google Scholar] [CrossRef]
- Hartmann, P.; Schober, A.; Weber, C. Chemokines and MicroRNAs in Atherosclerosis. Cell Mol. Life Sci. 2015, 72, 3253–3266. [Google Scholar] [CrossRef]
- Shaikhnia, F.; Ghasempour, G.; Mohammadi, A.; Shabani, M.; Najafi, M. MiR-27a Inhibits Molecular Adhesion between Monocytes and Human Umbilical Vein Endothelial Cells; Systemic Approach. BMC Res. Notes 2022, 15, 31. [Google Scholar] [CrossRef]
- Toriuchi, K.; Kihara, T.; Aoki, H.; Kakita, H.; Takeshita, S.; Ueda, H.; Inoue, Y.; Hayashi, H.; Shimono, Y.; Yamada, Y.; et al. Monocyte-Derived MiRNA-1914-5p Attenuates IL-1β-Induced Monocyte Adhesion and Transmigration. Int. J. Mol. Sci. 2023, 24, 2829. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bai, X.; Song, Q.; Fan, F.; Hu, Z.; Cheng, G.; Zhang, Y. MiR-223 Inhibits Lipid Deposition and Inflammation by Suppressing Toll-Like Receptor 4 Signaling in Macrophages. Int. J. Mol. Sci. 2015, 16, 24965–24982. [Google Scholar] [CrossRef]
- Hromadka, M.; Motovska, Z.; Hlinomaz, O.; Kala, P.; Tousek, F.; Jarkovsky, J.; Beranova, M.; Jansky, P.; Svoboda, M.; Krepelkova, I.; et al. MiR-126-3p and MiR-223-3p as Biomarkers for Prediction of Thrombotic Risk in Patients with Acute Myocardial Infarction and Primary Angioplasty. J. Pers. Med. 2021, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Fogel, O.; Bugge Tinggaard, A.; Fagny, M.; Sigrist, N.; Roche, E.; Leclere, L.; Deleuze, J.-F.; Batteux, F.; Dougados, M.; Miceli-Richard, C.; et al. Deregulation of MicroRNA Expression in Monocytes and CD4+ T Lymphocytes from Patients with Axial Spondyloarthritis. Arthritis Res. Ther. 2019, 21, 51. [Google Scholar] [CrossRef]
- Sánchez-Ceinos, J.; Rangel-Zuñiga, O.A.; Clemente-Postigo, M.; Podadera-Herreros, A.; Camargo, A.; Alcalá-Diaz, J.F.; Guzmán-Ruiz, R.; López-Miranda, J.; Malagón, M.M. MiR-223-3p as a Potential Biomarker and Player for Adipose Tissue Dysfunction Preceding Type 2 Diabetes Onset. Mol. Ther. Nucleic Acids 2021, 23, 1035–1052. [Google Scholar] [CrossRef]
- Das, K.; Rao, L.V.M. The Role of MicroRNAs in Inflammation. Int. J. Mol. Sci. 2022, 23, 15479. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Ye, S.; Guan, J.; Tan, W.; Cheng, S.; Wei, G.; Wu, W.; Wu, F.; Zhou, Y. Up-Regulation of MicroRNA-126 May Contribute to Pathogenesis of Ulcerative Colitis via Regulating NF-KappaB Inhibitor IκBα. PLoS ONE 2012, 7, e52782. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, Q.; Wang, Z.; Che, Y.; Zheng, S.; Chen, Y.; Zhong, X.; Shi, F. MiR-223: An Immune Regulator in Infectious Disorders. Front. Immunol. 2021, 12, 781815. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Verma, S.K.; Foster, D.M.; Golden, H.B.; Reneau, J.C.; Watson, L.E.; Singh, H.; Dostal, D.E. Integrins and Proximal Signaling Mechanisms in Cardiovascular Disease. Front. Biosci. (Landmark Ed.) 2009, 14, 2307–2334. [Google Scholar] [CrossRef]
- Álvarez, K.; Villar-Vesga, J.; Ortiz-Reyes, B.; Vanegas-García, A.; Castaño, D.; Rojas, M.; Vásquez, G. Induction of NF-ΚB Inflammatory Pathway in Monocytes by Microparticles from Patients with Systemic Lupus Erythematosus. Heliyon 2020, 6, e05815. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.Q.; Xing, L.; Zhang, J.-H.; Zhao, M.; Horn, D.; Chan, J.; Boyce, B.F.; Harris, S.E.; Mundy, G.R.; Chen, D. NF-KappaB Specifically Activates BMP-2 Gene Expression in Growth Plate Chondrocytes in Vivo and in a Chondrocyte Cell Line in Vitro. J. Biol. Chem. 2003, 278, 29130–29135. [Google Scholar] [CrossRef]
- Csiszar, A.; Ahmad, M.; Smith, K.E.; Labinskyy, N.; Gao, Q.; Kaley, G.; Edwards, J.G.; Wolin, M.S.; Ungvari, Z. Bone Morphogenetic Protein-2 Induces Proinflammatory Endothelial Phenotype. Am. J. Pathol. 2006, 168, 629–638. [Google Scholar] [CrossRef]
- Pardali, E.; Makowski, L.-M.; Leffers, M.; Borgscheiper, A.; Waltenberger, J. BMP-2 Induces Human Mononuclear Cell Chemotaxis and Adhesion and Modulates Monocyte-to-Macrophage Differentiation. J. Cell Mol. Med. 2018, 22, 5429–5438. [Google Scholar] [CrossRef] [PubMed]
- Alwani, A.; Andreasik, A.; Szatanek, R.; Siedlar, M.; Baj-Krzyworzeka, M. The Role of MiRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022, 12, 100. [Google Scholar] [CrossRef]
- Taganov, K.D.; Boldin, M.P.; Chang, K.-J.; Baltimore, D. NF-KappaB-Dependent Induction of MicroRNA MiR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef]
- Lima, C.R.; Geraldo, M.V.; Fuziwara, C.S.; Kimura, E.T.; Santos, M.F. MiRNA-146b-5p Upregulates Migration and Invasion of Different Papillary Thyroid Carcinoma Cells. BMC Cancer 2016, 16, 108. [Google Scholar] [CrossRef]
- Guerrero, F.; Carmona, A.; Obrero, T.; Jiménez, M.J.; Soriano, S.; Moreno, J.A.; Martín-Malo, A.; Aljama, P. Role of Endothelial Microvesicles Released by P-Cresol on Endothelial Dysfunction. Sci. Rep. 2020, 10, 10657. [Google Scholar] [CrossRef]
- Yanaka, M.; Honma, T.; Sato, K.; Shinohara, N.; Ito, J.; Tanaka, Y.; Tsuduki, T.; Ikeda, I. Increased Monocytic Adhesion by Senescence in Human Umbilical Vein Endothelial Cells. Biosci. Biotechnol. Biochem. 2011, 75, 1098–1103. [Google Scholar] [CrossRef]
- Guerrero, F.; Carmona, A.; Jimenez, M.J.; Obrero, T.; Pulido, V.; Moreno, J.A.; Soriano, S.; Martín-Malo, A.; Aljama, P. Passage Number-Induced Replicative Senescence Modulates the Endothelial Cell Response to Protein-Bound Uremic Toxins. Toxins 2021, 13, 738. [Google Scholar] [CrossRef]
- Andrews, N.C.; Faller, D.V. A Rapid Micropreparation Technique for Extraction of DNA-Binding Proteins from Limiting Numbers of Mammalian Cells. Nucleic Acids Res. 1991, 19, 2499. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, A.; Guerrero, F.; Muñoz-Castañeda, J.R.; Jimenez, M.J.; Rodriguez, M.; Soriano, S.; Martin-Malo, A. Uremic Toxins Induce THP-1 Monocyte Endothelial Adhesion and Migration through Specific miRNA Expression. Int. J. Mol. Sci. 2023, 24, 12938. https://doi.org/10.3390/ijms241612938
Carmona A, Guerrero F, Muñoz-Castañeda JR, Jimenez MJ, Rodriguez M, Soriano S, Martin-Malo A. Uremic Toxins Induce THP-1 Monocyte Endothelial Adhesion and Migration through Specific miRNA Expression. International Journal of Molecular Sciences. 2023; 24(16):12938. https://doi.org/10.3390/ijms241612938
Chicago/Turabian StyleCarmona, Andres, Fatima Guerrero, Juan R. Muñoz-Castañeda, Maria Jose Jimenez, Mariano Rodriguez, Sagrario Soriano, and Alejandro Martin-Malo. 2023. "Uremic Toxins Induce THP-1 Monocyte Endothelial Adhesion and Migration through Specific miRNA Expression" International Journal of Molecular Sciences 24, no. 16: 12938. https://doi.org/10.3390/ijms241612938