The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering
Abstract
1. Introduction
2. Experimental Determination of Water Structure
3. Calculation of Water Structure
4. Water in the Structure-Based Calculation of Binding Thermodynamics
5. Water in Target-Ligand Docking
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chumlea, W.C.; Guo, S.S.; Zeller, C.M.; Reo, N.V.; Siervogel, R.M. Total Body Water Data for White Adults 18 to 64 Years of Age: The Fels Longitudinal Study. Kidney Int. 1999, 56, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Elsässer, S.J.; Huang, H.; Lewis, P.W.; Chin, J.W.; Allis, C.D.; Patel, D.J. DAXX Envelops a Histone H3.3–H4 Dimer for H3.3-Specific Recognition. Nature 2012, 491, 560–565. [Google Scholar] [CrossRef]
- Manolaridis, I.; Kulkarni, K.; Dodd, R.B.; Ogasawara, S.; Zhang, Z.; Bineva, G.; O’Reilly, N.; Hanrahan, S.J.; Thompson, A.J.; Cronin, N.; et al. Mechanism of Farnesylated CAAX Protein Processing by the Intramembrane Protease Rce1. Nature 2013, 504, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Musset, B.; Smith, S.M.E.; Rajan, S.; Morgan, D.; Cherny, V.V.; DeCoursey, T.E. Aspartate 112 Is the Selectivity Filter of the Human Voltage-Gated Proton Channel. Nature 2011, 480, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ostmeyer, J.; Chakrapani, S.; Pan, A.C.; Perozo, E.; Roux, B. Recovery from Slow Inactivation in K+ Channels Is Controlled by Water Molecules. Nature 2013, 501, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Ball, P. Water as an Active Constituent in Cell Biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef]
- Ball, P. Water Is an Activematrix of Life for Cell and Molecular Biology. Proc. Natl. Acad. Sci. USA 2017, 114, 13327–13335. [Google Scholar] [CrossRef]
- Bellissent-Funel, M.C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A.E. Water Determines the Structure and Dynamics of Proteins. Chem. Rev. 2016, 116, 7673–7697. [Google Scholar] [CrossRef]
- Zsidó, B.Z.; Hetényi, C. The Role of Water in Ligand Binding. Curr. Opin. Struct. Biol. 2021, 67, 1–8. [Google Scholar] [CrossRef]
- Bodnarchuk, M.S. Water, Water, Everywhere... It’s Time to Stop and Think. Drug Discov. Today 2016, 21, 1139–1146. [Google Scholar] [CrossRef]
- de Simone, A.; Dodson, G.G.; Verma, C.S.; Zagari, A.; Fraternali, F. Prion and Water: Tight and Dynamical Hydration Sites Have a Key Role in Structural Stability. Proc. Natl. Acad. Sci. USA 2005, 102, 7535–7540. [Google Scholar] [CrossRef]
- Miyano, M.; Ago, H.; Saino, H.; Hori, T.; Ida, K. Internally Bridging Water Molecule in Transmembrane α-Helical Kink. Curr. Opin. Struct. Biol. 2010, 20, 456–463. [Google Scholar] [CrossRef]
- Jeszenői, N.; Bálint, M.; Horváth, I.; Van Der Spoel, D.; Hetényi, C. Exploration of Interfacial Hydration Networks of Target-Ligand Complexes. J. Chem. Inf. Model. 2016, 56, 148–158. [Google Scholar] [CrossRef]
- Pradhan, M.R.; Nguyen, M.N.; Kannan, S.; Fox, S.J.; Kwoh, C.K.; Lane, D.P.; Verma, C.S. Characterization of Hydration Properties in Structural Ensembles of Biomolecules. J. Chem. Inf. Model. 2019, 59, 3316–3329. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Gu, W.; Geyer, T.; Helms, V. Adhesive Water Networks Facilitate Binding of Protein Interfaces. Nat. Commun. 2011, 2, 261. [Google Scholar] [CrossRef]
- Laage, D.; Elsaesser, T.; Hynes, J.T. Water Dynamics in the Hydration Shells of Biomolecules. Chem. Rev. 2017, 117, 10694–10725. [Google Scholar] [CrossRef] [PubMed]
- Bruce Macdonald, H.E.; Cave-Ayland, C.; Ross, G.A.; Essex, J.W. Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations. J. Chem. Theory Comput. 2018, 14, 6586–6597. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, Z.; Wang, X.; Liu, H.; Li, D.; Liu, H.; Yao, X.; Hou, T. Importance of a Crystalline Water Network in Docking-Based Virtual Screening: A Case Study of BRD4. Phys. Chem. Chem. Phys. 2019, 21, 25276–25289. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, A.J.; Ma, A.K.; Fonseca, R.; Latorraca, N.R.; Kelly, B.; Betz, R.M.; Asawa, C.; Kobilka, B.K.; Dror, R.O. Diverse GPCRs Exhibit Conserved Water Networks for Stabilization and Activation. Proc. Natl. Acad. Sci. USA 2019, 116, 3288–3293. [Google Scholar] [CrossRef]
- Breiten, B.; Lockett, M.R.; Sherman, W.; Fujita, S.; Al-Sayah, M.; Lange, H.; Bowers, C.M.; Heroux, A.; Krilov, G.; Whitesides, G.M. Water Networks Contribute to Enthalpy/Entropy Compensation in Protein-Ligand Binding. J. Am. Chem. Soc. 2013, 135, 15579–15584. [Google Scholar] [CrossRef]
- Brysbaert, G.; Blossey, R.; Lensink, M.F. The Inclusion of Water Molecules in Residue Interaction Networks Identifies Additional Central Residues. Front. Mol. Biosci. 2018, 5, 88. [Google Scholar] [CrossRef]
- Jeszenői, N.; Schilli, G.; Bálint, M.; Horváth, I.; Hetényi, C. Analysis of the Influence of Simulation Parameters on Biomolecule-Linked Water Networks. J. Mol. Graph. Model. 2018, 82, 117–128. [Google Scholar] [CrossRef]
- Kunstmann, S.; Gohlke, U.; Broeker, N.K.; Roske, Y.; Heinemann, U.; Santer, M.; Barbirz, S. Solvent Networks Tune Thermodynamics of Oligosaccharide Complex Formation in an Extended Protein Binding Site. J. Am. Chem. Soc. 2018, 140, 10447–10455. [Google Scholar] [CrossRef]
- Rudling, A.; Orro, A.; Carlsson, J. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks. J. Chem. Inf. Model. 2018, 58, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Jukič, M.; Konc, J.; Gobec, S.; Janežič, D. Identification of Conserved Water Sites in Protein Structures for Drug Design. J. Chem. Inf. Model. 2017, 57, 3094–3103. [Google Scholar] [CrossRef] [PubMed]
- Wahl, J.; Smieško, M. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications Using Molecular Dynamics Simulations. ChemMedChem 2018, 13, 1325–1335. [Google Scholar] [CrossRef]
- Hüfner-Wulsdorf, T.; Klebe, G. Protein–Ligand Complex Solvation Thermodynamics: Development, Parameterization, and Testing of GIST-Based Solvent Functionals. J. Chem. Inf. Model. 2020, 60, 1409–1423. [Google Scholar] [CrossRef]
- Krimmer, S.G.; Betz, M.; Heine, A.; Klebe, G. Methyl, Ethyl, Propyl, Butyl: Futile but Not for Water, as the Correlation of Structure and Thermodynamic Signature Shows in a Congeneric Series of Thermolysin Inhibitors. ChemMedChem 2014, 9, 833–846. [Google Scholar] [CrossRef]
- García-Sosa, A.T.; Mancera, R.L.; Dean, P.M. WaterScore: A Novel Method for Distinguishing between Bound and Displaceable Water Molecules in the Crystal Structure of the Binding Site of Protein-Ligand Complexes. J. Mol. Model. 2003, 9, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Y.; Zhao, M.; Tan, W.; Li, X.; Savidge, T.; Guo, W.; Fan, X. Effective Lead Optimization Targeting the Displacement of Bridging Receptor–Ligand Water Molecules. Phys. Chem. Chem. Phys. 2018, 20, 24399–24407. [Google Scholar] [CrossRef]
- Harriman, G.; Greenwood, J.; Bhat, S.; Huang, X.; Wang, R.; Paul, D.; Tong, L.; Saha, A.K.; Westlin, W.F.; Kapeller, R.; et al. Acetyl-CoA Carboxylase Inhibition by ND-630 Reduces Hepatic Steatosis, Improves Insulin Sensitivity, and Modulates Dyslipidemia in Rats. Proc. Natl. Acad. Sci. USA 2016, 113, E1796–E1805. [Google Scholar] [CrossRef]
- Collin, M.-P.; Lobell, M.; Hübsch, W.; Brohm, D.; Schirok, H.; Jautelat, R.; Lustig, K.; Bömer, U.; Vöhringer, V.; Héroult, M.; et al. Discovery of Rogaratinib (BAY 1163877): A Pan-FGFR Inhibitor. ChemMedChem 2018, 13, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Beuming, T.; Farid, R.; Sherman, W. High-Energy Water Sites Determine Peptide Binding Affinity and Specificity of PDZ Domains. Protein Sci. 2009, 18, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.W.; Kim, M.; Ramsey, S.; Kurtzman, T.; Cho, A.E. Water Pharmacophore: Designing Ligands Using Molecular Dynamics Simulations with Water. Sci. Rep. 2018, 8, 10400. [Google Scholar] [CrossRef]
- Balius, T.E.; Fischer, M.; Stein, R.M.; Adler, T.B.; Nguyen, C.N.; Cruz, A.; Gilson, M.K.; Kurtzman, T.; Shoichet, B.K. Testing Inhomogeneous Solvation Theory in Structure-Based Ligand Discovery. Proc. Natl. Acad. Sci. USA 2017, 114, E6839–E6846. [Google Scholar] [CrossRef] [PubMed]
- de Beer, S.; Vermeulen, N.; Oostenbrink, C. The Role of Water Molecules in Computational Drug Design. Curr. Top. Med. Chem. 2010, 10, 55–66. [Google Scholar] [CrossRef]
- Abel, R.; Young, T.; Farid, R.; Berne, B.J.; Friesner, R.A. Role of the Active-Site Solvent in the Thermodynamics of Factor Xa Ligand Binding. J. Am. Chem. Soc. 2008, 130, 2817–2831. [Google Scholar] [CrossRef]
- Uehara, S.; Tanaka, S. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking. Molecules 2016, 21, 1604. [Google Scholar] [CrossRef]
- Nittinger, E.; Schneider, N.; Lange, G.; Rarey, M. Evidence of Water Molecules—A Statistical Evaluation of Water Molecules Based on Electron Density. J. Chem. Inf. Model. 2015, 55, 771–783. [Google Scholar] [CrossRef]
- Jeszenői, N.; Horváth, I.; Bálint, M.; Van Der Spoel, D.; Hetényi, C. Mobility-Based Prediction of Hydration Structures of Protein Surfaces. Bioinformatics 2015, 31, 1959–1965. [Google Scholar] [CrossRef]
- Savage, H.; Wlodawer, A. Determination of Water Structure around Biomolecules Using X-Ray and Neutron Diffraction Methods. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1986; pp. 162–183. [Google Scholar]
- Halle, B. Protein Hydration Dynamics in Solution: A Critical Survey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 1207–1224. [Google Scholar] [CrossRef]
- Frank, J. Averaging of Low Exposure Electron Micrographs of Non-Periodic Objects. Ultramicroscopy 1975, 1, 159–162. [Google Scholar] [CrossRef]
- Henderson, R.; Unwin, P.N.T. Three-Dimensional Model of Purple Membrane Obtained by Electron Microscopy. Nature 1975, 257, 28–32. [Google Scholar] [CrossRef]
- Wüthrich, K. The Way to NMR Structures of Proteins. Nat. Struct. Biol. 2001, 8, 923–925. [Google Scholar] [CrossRef]
- Wüthrich, K. Brownian Motion, Spin Diffusion and Protein Structure Determination in Solution. J. Magn. Reson. 2021, 331, 107031. [Google Scholar] [CrossRef] [PubMed]
- Zsidó, B.Z.; Hetényi, C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int. J. Mol. Sci. 2020, 21, 4134. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Biedermannová, L.; Schneider, B. Hydration of Proteins and Nucleic Acids: Advances in Experiment and Theory. A Review. Biochim. et Biophys. Acta (BBA)—Gen. Subj. 2016, 1860, 1821–1835. [Google Scholar] [CrossRef]
- Mattos, C.; Ringe, D. Solvent Structure. In International Tables for Crystallography; International Union of Crystallography: Chester, UK, 2006; pp. 623–647. [Google Scholar]
- Lounnas, V.; Pettitt, B.M. A Connected-Cluster of Hydration around Myoglobin: Correlation between Molecular Dynamics Simulations and Experiment. Proteins: Struct. Funct. Genet. 1994, 18, 133–147. [Google Scholar] [CrossRef]
- Kossiakoff, A.A.; Sintchak, M.D.; Shpungin, J.; Presta, L.G. Analysis of Solvent Structure in Proteins Using Neutron D2O-H2O Solvent Maps: Pattern of Primary and Secondary Hydration of Trypsin. Proteins: Struct. Funct. Genet. 1992, 12, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Shpungin, J.; Kossiakoff, A.A. [24] A Method of Solvent Structure Analysis for Proteins Using D2O-H2O Neutron Difference Maps. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1986; pp. 329–342. [Google Scholar]
- Chatake, T.; Fujiwara, S. A Technique for Determining the Deuterium/Hydrogen Contrast Map in Neutron Macromolecular Crystallography. Acta Crystallogr. D Struct. Biol. 2016, 72, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, I.; Chatake, T.; Fujiwara, S.; Hosoya, T.; Kusaka, K.; Niimura, N.; Yamada, T.; Yano, N. Current Status and near Future Plan of Neutron Protein Crystallography at J-PARC. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2020; pp. 101–123. [Google Scholar]
- Kono, F.; Kurihara, K.; Tamada, T. Current Status of Neutron Crystallography in Structural Biology. Biophys. Physicobiol 2022, 19, e190009. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, C.; Hermans, J. Promise of Advances in Simulation Methods for Protein Crystallography: Implicit Solvent Models, Time-Averaging Refinement, and Quantum Mechanical Modeling. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2003; pp. 412–461. [Google Scholar]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Adams, P.D.; Grosse-Kunstleve, R.W.; Hung, L.-W.; Ioerger, T.R.; McCoy, A.J.; Moriarty, N.W.; Read, R.J.; Sacchettini, J.C.; Sauter, N.K.; Terwilliger, T.C. PHENIX: Building New Software for Automated Crystallographic Structure Determination. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1948–1954. [Google Scholar] [CrossRef]
- Echols, N.; Morshed, N.; Afonine, P.V.; McCoy, A.J.; Miller, M.D.; Read, R.J.; Richardson, J.S.; Terwilliger, T.C.; Adams, P.D. Automated Identification of Elemental Ions in Macromolecular Crystal Structures. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1104–1114. [Google Scholar] [CrossRef]
- Afonine, P.V.; Grosse-Kunstleve, R.W.; Adams, P.D. A Robust Bulk-Solvent Correction and Anisotropic Scaling Procedure. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 850–855. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Langer, G.; Cohen, S.X.; Lamzin, V.S.; Perrakis, A. Automated Macromolecular Model Building for X-ray Crystallography Using ARP/WARP Version 7. Nat. Protoc. 2008, 3, 1171–1179. [Google Scholar] [CrossRef]
- Lamb, A.L.; Kappock, T.J.; Silvaggi, N.R. You Are Lost without a Map: Navigating the Sea of Protein Structures. Biochim. et Biophys. Acta (BBA)—Proteins Proteom. 2015, 1854, 258–268. [Google Scholar] [CrossRef]
- Lamzin, V.S.; Wilson, K.S. Automated Refinement for Protein Crystallography. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1997; pp. 269–305. [Google Scholar]
- Levitt, M.; Park, B.H. Water: Now You See It, Now You Don’t. Structure 1993, 1, 223–226. [Google Scholar] [CrossRef]
- Deng, G.-H.; Shen, Y.; Chen, H.; Chen, Y.; Jiang, B.; Wu, G.; Yang, X.; Yuan, K.; Zheng, J. Ordered-to-Disordered Transformation of Enhanced Water Structure on Hydrophobic Surfaces in Concentrated Alcohol–Water Solutions. J. Phys. Chem. Lett. 2019, 10, 7922–7928. [Google Scholar] [CrossRef]
- Carugo, O. Correlation between Occupancy and B Factor of Water Molecules in Protein Crystal Structures. Protein Eng. Des. Sel. 1999, 12, 1021–1024. [Google Scholar] [CrossRef]
- Reuhl, M.; Vogel, M. Temperature-Dependent Dynamics at Protein–Solvent Interfaces. J. Chem. Phys. 2022, 157, 074705. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Glaeser, R.M.; Nogales, E. How Cryo-EM Became so Hot. Cell 2017, 171, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Pintilie, G.; Zhang, K.; Su, Z.; Li, S.; Schmid, M.F.; Chiu, W. Measurement of Atom Resolvability in Cryo-EM Maps with Q-Scores. Nat. Methods 2020, 17, 328–334. [Google Scholar] [CrossRef]
- Zhang, X.; Walker, S.B.; Chipman, P.R.; Nibert, M.L.; Baker, T.S. Reovirus Polymerase Λ3 Localized by Cryo-Electron Microscopy of Virions at a Resolution of 7.6 Å. Nat. Struct. Mol. Biol. 2003, 10, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Kühlbrandt, W. The Resolution Revolution. Science (1979) 2014, 343, 1443–1444. [Google Scholar] [CrossRef]
- Li, X.; Mooney, P.; Zheng, S.; Booth, C.R.; Braunfeld, M.B.; Gubbens, S.; Agard, D.A.; Cheng, Y. Electron Counting and Beam-Induced Motion Correction Enable Near-Atomic-Resolution Single-Particle Cryo-EM. Nat. Methods 2013, 10, 584–590. [Google Scholar] [CrossRef]
- Allegretti, M.; Mills, D.J.; McMullan, G.; Kühlbrandt, W.; Vonck, J. Atomic Model of the F420-Reducing [NiFe] Hydrogenase by Electron Cryo-Microscopy Using a Direct Electron Detector. eLife 2014, 3, e01963. [Google Scholar] [CrossRef]
- Amunts, A.; Brown, A.; Bai, X.; Llácer, J.L.; Hussain, T.; Emsley, P.; Long, F.; Murshudov, G.; Scheres, S.H.W.; Ramakrishnan, V. Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science (1979) 2014, 343, 1485–1489. [Google Scholar] [CrossRef]
- Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 Ion Channel Determined by Electron Cryo-Microscopy. Nature 2013, 504, 107–112. [Google Scholar] [CrossRef]
- Renaud, J.-P.; Chari, A.; Ciferri, C.; Liu, W.; Rémigy, H.-W.; Stark, H.; Wiesmann, C. Cryo-EM in Drug Discovery: Achievements, Limitations and Prospects. Nat. Rev. Drug Discov. 2018, 17, 471–492. [Google Scholar] [CrossRef]
- Pintilie, G.; Chiu, W. Validation, Analysis and Annotation of Cryo-EM Structures. Acta Crystallogr. D Struct. Biol. 2021, 77, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Prisant, M.G.; Williams, C.J.; Chen, V.B.; Richardson, J.S.; Richardson, D.C. New Tools in MolProbity Validation: CaBLAM for CryoEM Backbone, UnDowser to Rethink “Waters,” and NGL Viewer to Recapture Online 3D Graphics. Protein Sci. 2020, 29, 315–329. [Google Scholar] [CrossRef]
- Hryc, C.F.; Baker, M.L. Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps. Biomolecules 2022, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.D.; Han, S. Overhauser Dynamic Nuclear Polarization To Study Local Water Dynamics. J. Am. Chem. Soc. 2009, 131, 4641–4647. [Google Scholar] [CrossRef]
- Otting, G. NMR Studies of Water Bound to Biological Molecules. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 259–285. [Google Scholar] [CrossRef]
- Kovalenko, A.; Hirata, F. Three-Dimensional Density Profiles of Water in Contact with a Solute of Arbitrary Shape: A RISM Approach. Chem. Phys. Lett. 1998, 290, 237–244. [Google Scholar] [CrossRef]
- Kovalenko, A.; Hirata, F. Self-Consistent Description of a Metal–Water Interface by the Kohn–Sham Density Functional Theory and the Three-Dimensional Reference Interaction Site Model. J. Chem. Phys. 1999, 110, 10095–10112. [Google Scholar] [CrossRef]
- Nittinger, E.; Gibbons, P.; Eigenbrot, C.; Davies, D.R.; Maurer, B.; Yu, C.L.; Kiefer, J.R.; Kuglstatter, A.; Murray, J.; Ortwine, D.F.; et al. Water Molecules in Protein–Ligand Interfaces. Evaluation of Software Tools and SAR Comparison. J. Comput. Aided Mol. Des. 2019, 33, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Rossato, G.; Ernst, B.; Vedani, A.; Smieško, M. AcquaAlta: A Directional Approach to the Solvation of Ligand–Protein Complexes. J. Chem. Inf. Model. 2011, 51, 1867–1881. [Google Scholar] [CrossRef]
- Vedani, A.; Huhta, D.W. Algorithm for the Systematic Solvation of Proteins Based on the Directionality of Hydrogen Bonds. J. Am. Chem. Soc. 1991, 113, 5860–5862. [Google Scholar] [CrossRef]
- Pitt, W.R.; Goodfellow, J.M. Modelling of Solvent Positions around Polar Groups in Proteins. Protein Eng. Des. Sel. 1991, 4, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Schymkowitz, J.W.H.; Rousseau, F.; Martins, I.C.; Ferkinghoff-Borg, J.; Stricher, F.; Serrano, L. Prediction of Water and Metal Binding Sites and Their Affinities by Using the Fold-X Force Field. Proc. Natl. Acad. Sci. USA 2005, 102, 10147–10152. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Olson, A.J. A Force Field with Discrete Displaceable Waters and Desolvation Entropy for Hydrated Ligand Docking. J. Med. Chem. 2012, 55, 623–638. [Google Scholar] [CrossRef]
- van Dijk, A.D.J.; Bonvin, A.M.J.J. Solvated Docking: Introducing Water into the Modelling of Biomolecular Complexes. Bioinformatics 2006, 22, 2340–2347. [Google Scholar] [CrossRef]
- Huggins, D.J.; Tidor, B. Systematic Placement of Structural Water Molecules for Improved Scoring of Protein-Ligand Interactions. Protein Eng. Des. Sel. 2011, 24, 777–789. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Holloway, M.K.; Wang, R. Prediction of the Favorable Hydration Sites in a Protein Binding Pocket and Its Application to Scoring Function Formulation. J. Chem. Inf. Model. 2020, 60, 4359–4375. [Google Scholar] [CrossRef]
- Virtanen, J.J.; Makowski, L.; Sosnick, T.R.; Freed, K.F. Modeling the Hydration Layer around Proteins: HyPred. Biophys. J. 2010, 99, 1611–1619. [Google Scholar] [CrossRef]
- Rarey, M.; Kramer, B.; Lengauer, T. The Particle Concept: Placing Discrete Water Molecules during Protein-Ligand Docking Predictions. Proteins: Struct. Funct. Genet. 1999, 34, 17–28. [Google Scholar] [CrossRef]
- Wei, W.; Luo, J.; Waldispühl, J.; Moitessier, N. Predicting Positions of Bridging Water Molecules in Nucleic Acid–Ligand Complexes. J. Chem. Inf. Model. 2019, 59, 2941–2951. [Google Scholar] [CrossRef]
- Bayden, A.S.; Moustakas, D.T.; Joseph-McCarthy, D.; Lamb, M.L. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP. J. Chem. Inf. Model. 2015, 55, 1552–1565. [Google Scholar] [CrossRef]
- Ross, G.A.; Morris, G.M.; Biggin, P.C. Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites. PLoS ONE 2012, 7, e32036. [Google Scholar] [CrossRef]
- Mason, J.S.; Bortolato, A.; Weiss, D.R.; Deflorian, F.; Tehan, B.; Marshall, F.H. High End GPCR Design: Crafted Ligand Design and Druggability Analysis Using Protein Structure, Lipophilic Hotspots and Explicit Water Networks. In Silico Pharmacol. 2013, 1, 23. [Google Scholar] [CrossRef]
- Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A Common Reference Framework for Analyzing/Comparing Proteins and Ligands. Fingerprints for Ligands and Proteins (FLAP): Theory and Application. J. Chem. Inf. Model. 2007, 47, 279–294. [Google Scholar] [CrossRef]
- Nittinger, E.; Flachsenberg, F.; Bietz, S.; Lange, G.; Klein, R.; Rarey, M. Placement of Water Molecules in Protein Structures: From Large-Scale Evaluations to Single-Case Examples. J. Chem. Inf. Model. 2018, 58, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.-H.; Schiewe, A.J.; Haworth, I.S. WATGEN: An Algorithm for Modeling Water Networks at Protein-Protein Interfaces. J. Comput. Chem. 2007, 28, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Lill, M.A. WATsite: Hydration Site Prediction Program with PyMOL Interface. J. Comput. Chem. 2014, 35, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Barillari, C.; Taylor, J.; Viner, R.; Essex, J.W. Classification of Water Molecules in Protein Binding Sites. J. Am. Chem. Soc. 2007, 129, 2577–2587. [Google Scholar] [CrossRef]
- Huang, P.; Xing, H.; Zou, X.; Han, Q.; Liu, K.; Sun, X.; Wu, J.; Fan, J. Accurate Prediction of Hydration Sites of Proteins Using Energy Model with Atom Embedding. Front. Mol. Biosci. 2021, 8, 756075. [Google Scholar] [CrossRef]
- Lazaridis, T.; Karplus, M. Thermodynamics of Protein Folding: A Microscopic View. Biophys. Chem. 2002, 100, 367–395. [Google Scholar] [CrossRef]
- Warshel, A. Energetics of Enzyme Catalysis. Proc. Natl. Acad. Sci. USA 1978, 75, 5250–5254. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Rev. 1999, 99, 2161–2200. [Google Scholar] [CrossRef] [PubMed]
- Spoel, D.; Zhang, J.; Zhang, H. Quantitative Predictions from Molecular Simulations Using Explicit or Implicit Interactions. WIREs Comput. Mol. Sci. 2022, 12, e1560. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, B.; Kollman, P.A. A Ligand That Is Predicted to Bind Better to Avidin than Biotin: Insights from Computational Fluorine Scanning. J. Am. Chem. Soc. 2000, 122, 3909–3916. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Stouten, P.F.W.; Frömmel, C.; Nakamura, H.; Sander, C. An Effective Solvation Term Based on Atomic Occupancies for Use in Protein Simulations. Mol. Simul. 1993, 10, 97–120. [Google Scholar] [CrossRef]
- Mehler, E.L.; Solmajer, T. Electrostatic Effects in Proteins: Comparison of Dielectric and Charge Models. Protein Eng. Des. Sel. 1991, 4, 903–910. [Google Scholar] [CrossRef]
- Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36, 1132–1156. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE); 2022.02 Chemical Computing Group ULC: Montreal, QC, Canada, 2023; Available online: https://www.chemcomp.com/Research-Citing_MOE.htm (accessed on 18 July 2023).
- Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 1. Development and Validation of FITTED 1.0. J. Chem. Inf. Model. 2007, 47, 435–449. [Google Scholar] [CrossRef]
- Liu, C.; Wrobleski, S.T.; Lin, J.; Ahmed, G.; Metzger, A.; Wityak, J.; Gillooly, K.M.; Shuster, D.J.; McIntyre, K.W.; Pitt, S.; et al. 5-Cyanopyrimidine Derivatives as a Novel Class of Potent, Selective, and Orally Active Inhibitors of P38α MAP Kinase. J. Med. Chem. 2005, 48, 6261–6270. [Google Scholar] [CrossRef]
- Nasief, N.N.; Tan, H.; Kong, J.; Hangauer, D. Water Mediated Ligand Functional Group Cooperativity: The Contribution of a Methyl Group to Binding Affinity Is Enhanced by a COO—Group Through Changes in the Structure and Thermodynamics of the Hydration Waters of Ligand–Thermolysin Complexes. J. Med. Chem. 2012, 55, 8283–8302. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces; Springer: Berlin/Heidelberg, Germany, 1981; pp. 331–342. [Google Scholar]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Lazaridis, T. Inhomogeneous Fluid Approach to Solvation Thermodynamics. 1. Theory. J. Phys. Chem. B 1998, 102, 3531–3541. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Kurtzman Young, T.; Gilson, M.K. Grid Inhomogeneous Solvation Theory: Hydration Structure and Thermodynamics of the Miniature Receptor Cucurbit[7]Uril. J. Chem. Phys. 2012, 137, 044101. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.B.; Repasky, M.P.; Greenwood, J.R.; Tubert-Brohman, I.; Jerome, S.; Annabhimoju, R.; Boyles, N.A.; Schmitz, C.D.; Abel, R.; Farid, R.; et al. WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand–Receptor Docking. J. Med. Chem. 2016, 59, 4364–4384. [Google Scholar] [CrossRef]
- Bucher, D.; Stouten, P.; Triballeau, N. Shedding Light on Important Waters for Drug Design: Simulations versus Grid-Based Methods. J. Chem. Inf. Model. 2018, 58, 692–699. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2 1993, 799–805. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Dobeš, P.; Řezáč, J.; Fanfrlík, J.; Otyepka, M.; Hobza, P. Semiempirical Quantum Mechanical Method PM6-DH2X Describes the Geometry and Energetics of CK2-Inhibitor Complexes Involving Halogen Bonds Well, While the Empirical Potential Fails. J. Phys. Chem. B 2011, 115, 8581–8589. [Google Scholar] [CrossRef]
- Pecina, A.; Meier, R.; Fanfrlík, J.; Lepšík, M.; Řezáč, J.; Hobza, P.; Baldauf, C. The SQM/COSMO Filter: Reliable Native Pose Identification Based on the Quantum-Mechanical Description of Protein–Ligand Interactions and Implicit COSMO Solvation. Chem. Commun. 2016, 52, 3312–3315. [Google Scholar] [CrossRef]
- Fanfrlík, J.; Bronowska, A.K.; Řezáč, J.; Přenosil, O.; Konvalinka, J.; Hobza, P. A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. J. Phys. Chem. B 2010, 114, 12666–12678. [Google Scholar] [CrossRef]
- Urquiza-Carvalho, G.A.; Fragoso, W.D.; Rocha, G.B. Assessment of Semiempirical Enthalpy of Formation in Solution as an Effective Energy Function to Discriminate Native-like Structures in Protein Decoy Sets. J. Comput. Chem. 2016, 37, 1962–1972. [Google Scholar] [CrossRef]
- Sulimov, A.V.; Kutov, D.C.; Katkova, E.V.; Ilin, I.S.; Sulimov, V.B. New Generation of Docking Programs: Supercomputer Validation of Force Fields and Quantum-Chemical Methods for Docking. J. Mol. Graph. Model. 2017, 78, 139–147. [Google Scholar] [CrossRef]
- Sulimov, A.V.; Kutov, D.C.; Taschilova, A.S.; Ilin, I.S.; Stolpovskaya, N.V.; Shikhaliev, K.S.; Sulimov, V.B. In Search of Non-Covalent Inhibitors of SARS-CoV-2 Main Protease: Computer Aided Drug Design Using Docking and Quantum Chemistry. Supercomput. Front. Innov. 2020, 7. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Application of Localized Molecular Orbitals to the Solution of Semiempirical Self-Consistent Field Equations. Int. J. Quantum Chem. 1996, 58, 133–146. [Google Scholar] [CrossRef]
- Nikitina, E.; Sulimov, V.; Zayets, V.; Zaitseva, N. Semiempirical Calculations of Binding Enthalpy for Protein-Ligand Complexes. Int. J. Quantum Chem. 2004, 97, 747–763. [Google Scholar] [CrossRef]
- Nikitina, E.; Sulimov, V.; Grigoriev, F.; Kondakova, O.; Luschenka, S. Mixed Implicit/Explicit Solvation Modelsin Quantum Mechanical Calculations OfBinding Enthalpy for Protein–LigandComplexes. Int. J. Quantum Chem. 2006, 106, 1943–1963. [Google Scholar] [CrossRef]
- Horváth, I.; Jeszenői, N.; Bálint, M.; Paragi, G.; Hetényi, C. A Fragmenting Protocol with Explicit Hydration for Calculation of Binding Enthalpies of Target-Ligand Complexes at a Quantum Mechanical Level. Int. J. Mol. Sci. 2019, 20, 4384. [Google Scholar] [CrossRef] [PubMed]
- Cavasotto, C.N.; Aucar, M.G. High-Throughput Docking Using Quantum Mechanical Scoring. Front. Chem. 2020, 8, 246. [Google Scholar] [CrossRef]
- Hylsová, M.; Carbain, B.; Fanfrlík, J.; Musilová, L.; Haldar, S.; Köprülüoğlu, C.; Ajani, H.; Brahmkshatriya, P.S.; Jorda, R.; Kryštof, V.; et al. Explicit Treatment of Active-Site Waters Enhances Quantum Mechanical/Implicit Solvent Scoring: Inhibition of CDK2 by New Pyrazolo[1,5-a]Pyrimidines. Eur. J. Med. Chem. 2017, 126, 1118–1128. [Google Scholar] [CrossRef]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Śledź, P.; Caflisch, A. Protein Structure-Based Drug Design: From Docking to Molecular Dynamics. Curr. Opin. Struct. Biol. 2018, 48, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Xu, Z.; Zhong, W.; Peng, S. Parallelization of Molecular Docking: A Review. Curr. Top. Med. Chem. 2018, 18, 1015–1028. [Google Scholar] [CrossRef]
- Ballante, F.; Kooistra, A.J.; Kampen, S.; de Graaf, C.; Carlsson, J. Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You? Pharmacol. Rev. 2021, 73, 1698–1736. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Potlitz, F.; Link, A.; Schulig, L. Advances in the Discovery of New Chemotypes through Ultra-Large Library Docking. Expert. Opin. Drug Discov. 2023, 18, 303–313. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Jiang, Y.-J.; Lv, J.; Zou, J.-W.; Wu, T.-X. Role of Bridging Water Molecules in GSK3β-Inhibitor Complexes: Insights from QM/MM, MD, and Molecular Docking Studies. J. Comput. Chem. 2011, 32, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Hritz, J.; Oostenbrink, C. Role of Water in Molecular Docking Simulations of Cytochrome P450 2D6. J. Chem. Inf. Model. 2010, 50, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Zhang, K.Y.J. Investigation on the Effect of Key Water Molecules on Docking Performance in CSARdock Exercise. J. Chem. Inf. Model. 2013, 53, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, C.; Pospisil, P.; Pos, W.; Folkers, G.; Vermeulen, N.P.E. Binding Mode Prediction of Cytochrome P450 and Thymidine Kinase Protein−Ligand Complexes by Consideration of Water and Rescoring in Automated Docking. J. Med. Chem. 2005, 48, 2308–2318. [Google Scholar] [CrossRef] [PubMed]
- Birch, L.; Murray, C.; Hartshorn, M.; Tickle, I.; Verdonk, M. Sensitivity of Molecular Docking to Induced Fit Effects in Influenza Virus Neuraminidase. J. Comput. Aided Mol. Des. 2002, 16, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hou, X.; Wang, C.; Zhang, Y. Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions. J. Chem. Inf. Model. 2019, 59, 4540–4549. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, L.; Peng, S.; Huang, N. Incorporating Replacement Free Energy of Binding-Site Waters in Molecular Docking. Proteins: Struct. Funct. Bioinform. 2014, 82, 1765–1776. [Google Scholar] [CrossRef]
- Mahmoud, A.H.; Masters, M.R.; Yang, Y.; Lill, M.A. Elucidating the Multiple Roles of Hydration for Accurate Protein-Ligand Binding Prediction via Deep Learning. Commun. Chem. 2020, 3, 19. [Google Scholar] [CrossRef]
- Schnecke, V.; Kuhn, L.A. Virtual Screening with Solvation and Ligand-Induced Complementarity. In Virtual Screening: An Alternative or Complement to High Throughput Screening? Kluwer Academic Publishers: Dordrecht, The Netherlands, 2010; pp. 171–190. [Google Scholar]
- Therrien, E.; Weill, N.; Tomberg, A.; Corbeil, C.R.; Lee, D.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 7. Impact of Protein Flexibility and Water Molecules on Docking-Based Virtual Screening Accuracy. J. Chem. Inf. Model. 2014, 54, 3198–3210. [Google Scholar] [CrossRef]
- Lie, M.A.; Thomsen, R.; Pedersen, C.N.S.; Schiøtt, B.; Christensen, M.H. Molecular Docking with Ligand Attached Water Molecules. J. Chem. Inf. Model. 2011, 51, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Shoichet, B.K. Exploiting Ordered Waters in Molecular Docking. J. Med. Chem. 2008, 51, 4862–4865. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.W.; Baker, D. RosettaLigand Docking with Full Ligand and Receptor Flexibility. J. Mol. Biol. 2009, 385, 381–392. [Google Scholar] [CrossRef]
- Lemmon, G.; Meiler, J. Towards Ligand Docking Including Explicit Interface Water Molecules. PLoS ONE 2013, 8, e67536. [Google Scholar] [CrossRef]
- Verdonk, M.L.; Chessari, G.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Modeling Water Molecules in Protein−Ligand Docking Using GOLD. J. Med. Chem. 2005, 48, 6504–6515. [Google Scholar] [CrossRef]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Use of Molecular Docking Computational Tools in Drug Discovery. Prog. Med. Chem. 2021, 60, 273–343. [Google Scholar]
- Roberts, B.C.; Mancera, R.L. Ligand−Protein Docking with Water Molecules. J. Chem. Inf. Model. 2008, 48, 397–408. [Google Scholar] [CrossRef]
- Hartshorn, M.J.; Verdonk, M.L.; Chessari, G.; Brewerton, S.C.; Mooij, W.T.M.; Mortenson, P.N.; Murray, C.W. Diverse, High-Quality Test Set for the Validation of Protein−Ligand Docking Performance. J. Med. Chem. 2007, 50, 726–741. [Google Scholar] [CrossRef] [PubMed]
- Thilagavathi, R.; Mancera, R.L. Ligand−Protein Cross-Docking with Water Molecules. J. Chem. Inf. Model. 2010, 50, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, P.L.; Visscher, K.M.; van Dijk, A.D.J.; Bonvin, A.M.J.J. Solvated Protein-Protein Docking Using Kyte-Doolittle-Based Water Preferences. Proteins: Struct. Funct. Bioinform. 2013, 81, 510–518. [Google Scholar] [CrossRef]
- Pavlovicz, R.E.; Park, H.; DiMaio, F. Efficient Consideration of Coordinated Water Molecules Improves Computational Protein-Protein and Protein-Ligand Docking Discrimination. PLoS Comput. Biol. 2020, 16, e1008103. [Google Scholar] [CrossRef] [PubMed]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method Using an Incremental Construction Algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef]
- Raymer, M.L.; Sanschagrin, P.C.; Punch, W.F.; Venkataraman, S.; Goodman, E.D.; Kuhn, L.A. Predicting Conserved Water-Mediated and Polar Ligand Interactions in Proteins Using a K-Nearest-Neighbors Genetic Algorithm. J. Mol. Biol. 1997, 265, 445–464. [Google Scholar] [CrossRef]
- Zsidó, B.Z.; Börzsei, R.; Szél, V.; Hetényi, C. Determination of Ligand Binding Modes in Hydrated Viral Ion Channels to Foster Drug Design and Repositioning. J. Chem. Inf. Model. 2021, 61, 4011–4022. [Google Scholar] [CrossRef]
- Thomaston, J.L.; Polizzi, N.F.; Konstantinidi, A.; Wang, J.; Kolocouris, A.; DeGrado, W.F. Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters. J. Am. Chem. Soc. 2018, 140, 15219–15226. [Google Scholar] [CrossRef]
- Bello, M.; Martínez-Archundia, M.; Correa-Basurto, J. Automated Docking for Novel Drug Discovery. Expert. Opin. Drug Discov. 2013, 8, 821–834. [Google Scholar] [CrossRef]
- Yuriev, E.; Agostino, M.; Ramsland, P.A. Challenges and Advances in Computational Docking: 2009 in Review. J. Mol. Recognit. 2011, 24, 149–164. [Google Scholar] [CrossRef]
- Hetényi, C.; Paragi, G.; Maran, U.; Timár, Z.; Karelson, M.; Penke, B. Combination of a Modified Scoring Function with Two-Dimensional Descriptors for Calculation of Binding Affinities of Bulky, Flexible Ligands to Proteins. J. Am. Chem. Soc. 2006, 128, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Abel, R.; Kim, B.; Berne, B.; Friesner, R. Motifs for Molecular Recognition Exploiting Hydrophobic Enclosure in Protein–Ligand Binding. Proc. Natl. Acad. Sci. USA 2007, 104, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kang, X.; Kuntz, I.D.; Kollman, P.A. Hierarchical Database Screenings for HIV-1 Reverse Transcriptase Using a Pharmacophore Model, Rigid Docking, Solvation Docking, and MM−PB/SA. J. Med. Chem. 2005, 48, 2432–2444. [Google Scholar] [CrossRef]
- Huang, N.; Kalyanaraman, C.; Irwin, J.J.; Jacobson, M.P. Physics-Based Scoring of Protein−Ligand Complexes: Enrichment of Known Inhibitors in Large-Scale Virtual Screening. J. Chem. Inf. Model. 2006, 46, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, C.; Bernacki, K.; Jacobson, M.P. Virtual Screening against Highly Charged Active Sites: Identifying Substrates of Alpha−Beta Barrel Enzymes. Biochemistry 2005, 44, 2059–2071. [Google Scholar] [CrossRef]
- Perola, E. Minimizing False Positives in Kinase Virtual Screens. Proteins Struct. Funct. Bioinform. 2006, 64, 422–435. [Google Scholar] [CrossRef]
- Collie, G.W.; Parkinson, G.N. The Application of DNA and RNA G-Quadruplexes to Therapeutic Medicines. Chem. Soc. Rev. 2011, 40, 5867. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Howe, J.A.; Wang, H.; Fischmann, T.O.; Balibar, C.J.; Xiao, L.; Galgoci, A.M.; Malinverni, J.C.; Mayhood, T.; Villafania, A.; Nahvi, A.; et al. Selective Small-Molecule Inhibition of an RNA Structural Element. Nature 2015, 526, 672–677. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Y.; Liang, C.; Lu, A.; Zhang, G. Recent Advances in Developing Small Molecules Targeting Nucleic Acid. Int. J. Mol. Sci. 2016, 17, 779. [Google Scholar] [CrossRef]
- Feng, Y.; Yan, Y.; He, J.; Tao, H.; Wu, Q.; Huang, S.-Y. Docking and Scoring for Nucleic Acid–Ligand Interactions: Principles and Current Status. Drug Discov. Today 2022, 27, 838–847. [Google Scholar] [CrossRef]
- Ran, X.; Gestwicki, J.E. Inhibitors of Protein–Protein Interactions (PPIs): An Analysis of Scaffold Choices and Buried Surface Area. Curr. Opin. Chem. Biol. 2018, 44, 75–86. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Sun, X.; Li, W.; Liu, G.; Tang, Y. Accuracy Assessment of Protein-Based Docking Programs against RNA Targets. J. Chem. Inf. Model. 2010, 50, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Mayol, G.F.; Defelipe, L.A.; Arcon, J.P.; Turjanski, A.G.; Marti, M.A. Solvent Sites Improve Docking Performance of Protein–Protein Complexes and Protein–Protein Interface-Targeted Drugs. J. Chem. Inf. Model. 2022, 62, 3577–3588. [Google Scholar] [CrossRef] [PubMed]
- Parikh, H.I.; Kellogg, G.E. Intuitive, but Not Simple: Including Explicit Water Molecules in Protein-Protein Docking Simulations Improves Model Quality. Proteins: Struct. Funct. Bioinform. 2014, 82, 916–932. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [PubMed]
Method | Concept | Type a | #System/#Water b | Match Tolerance (Å) | SR (%) |
---|---|---|---|---|---|
3D-RISM c [85,86,87] | Knowledge | IF | 18/113 d | 2.5 | 91 |
IF | 13/113 e | 1.5 | 65 | ||
SF | 8/101 e | 1.5 | 60 | ||
AcquaAlta c [88] | Geometry | IF | 20/77 | 1.4 | 76 |
Auto-SOL c [89] | Geometry | SF | 5/1337 | 1.5 | 64 |
AQUARIUS f [90] | Knowledge | SF | 7/1376 | 1.4 | 59 |
Fold-X c [91] | Energy | SF | 74/2687 | 1.0 | 76 |
Forli et al., 2012 c [92] | Geometry g | IF | 27/51 | 2.0 | 96 |
HADDOCK c [93] | Geometry g | IF | 27/50 | 2.0 | 90 |
Huggins and Tidor, 2011 [94] | Geometry | IF | 5/19 | 2.0 | 68 |
HydraMap c [95] | Dynamic | IF | 13/113 e | 1.5 | 72 |
SF | 8/101 e | 1.5 | 69 | ||
HyPred f [96] | Dynamic | SF | 3/233 | 1.0 | 12 |
MobyWat c [13,40] | Dynamic | SF | 20/1500 | 1.5 | 80 |
IF | 31/344 | 1.5 | 90 | ||
Particle concept h [97] | Geometry | IF | 200/232 | 1.5 | 35 |
Splash’Em c [98] | Knowledge | IF | 91/230 | 1.0 | 62 |
SZMAP h [99] | Knowledge | IF | 18/113 d | 2.5 | 96 |
WaterDock c [100] | Energy | SF | 7/92 | 2.0 | 88 |
WaterFLAP h [87,101,102] | Knowledge | IF | 18/113 d | 2.5 | 98 |
WaterMap h [37,87] | Dynamic | SF | 1/11 | 1.5 | 82 |
IF | 18/113 d | 2.5 | 96 | ||
WarPP c [103] | Geometry | IF | 1500/20,000 | 1.0 | 80 |
WATGEN f [104] | Geometry | IF | 126/1264 | 2.0 | 88 |
WATsite c [95,105] | Dynamic | IF | 13/113 e | 1.5 | 75 |
SF | 8/101 e | 1.5 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zsidó, B.Z.; Bayarsaikhan, B.; Börzsei, R.; Szél, V.; Mohos, V.; Hetényi, C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int. J. Mol. Sci. 2023, 24, 11784. https://doi.org/10.3390/ijms241411784
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. International Journal of Molecular Sciences. 2023; 24(14):11784. https://doi.org/10.3390/ijms241411784
Chicago/Turabian StyleZsidó, Balázs Zoltán, Bayartsetseg Bayarsaikhan, Rita Börzsei, Viktor Szél, Violetta Mohos, and Csaba Hetényi. 2023. "The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering" International Journal of Molecular Sciences 24, no. 14: 11784. https://doi.org/10.3390/ijms241411784
APA StyleZsidó, B. Z., Bayarsaikhan, B., Börzsei, R., Szél, V., Mohos, V., & Hetényi, C. (2023). The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. International Journal of Molecular Sciences, 24(14), 11784. https://doi.org/10.3390/ijms241411784