Parahydrogen-Induced Hyperpolarization of Unsaturated Phosphoric Acid Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Parahydrogen Hydrogenation and Identification of the Products
2.2. Hydrogenation under the ALTADENA Conditions
2.3. Hydrogenation under the PASADENA Conditions
2.4. Spontaneous Polarization Transfer
2.5. Polarization Transfer with the INEPT Pulse Sequence
2.6. Hydrolysis
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Atkinson, K.D.; Cowley, M.J.; Duckett, S.B.; Elliott, P.I.P.; Green, G.G.R.; López-Serrano, J.; Khazal, I.G.; Whitwood, A.C. Para-Hydrogen Induced Polarization without Incorporation of Para-Hydrogen into the Analyte. Inorg. Chem. 2009, 48, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Terreno, E.; Castelli, D.D.; Viale, A.; Aime, S. Challenges for Molecular Magnetic Resonance Imaging. Chem. Rev. 2010, 110, 3019–3042. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Ross, B.D.; Bünger, R. Cardiovascular Applications of Hyperpolarized Contrast Media and Metabolic Tracers. Exp. Biol. Med. 2009, 234, 1395–1416. [Google Scholar] [CrossRef] [PubMed]
- Carravetta, M.; Johannessen, O.G.; Levitt, M.H. Beyond the T 1 Limit: Singlet Nuclear Spin States in Low Magnetic Fields. Phys. Rev. Lett. 2004, 92, 153003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natterer, J.; Bargon, J. Parahydrogen Induced Polarization. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293–315. [Google Scholar] [CrossRef]
- Golman, K.; in ‘t Zandt, R.; Thaning, M. Real-Time Metabolic Imaging. Proc. Natl. Acad. Sci. USA 2006, 103, 11270–11275. [Google Scholar] [CrossRef] [Green Version]
- Koptyug, I.V. Spin Hyperpolarization in NMR to Address Enzymatic Processes in Vivo. Mendeleev Commun. 2013, 23, 299–312. [Google Scholar] [CrossRef]
- Golman, K.; Olsson, L.E.; Axelsson, O.; Månsson, S.; Karlsson, M.; Petersson, J.S. Molecular Imaging Using Hyperpolarized 13C. Br. J. Radiol. 2003, 76, S118–S127. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Clarke, K.; Neubauer, S.; Tyler, D.J. Hyperpolarized Magnetic Resonance: A Novel Technique for the In Vivo Assessment of Cardiovascular Disease. Circulation 2011, 124, 1580–1594. [Google Scholar] [CrossRef] [Green Version]
- Buntkowsky, G.; Theiss, F.; Lins, J.; Miloslavina, Y.A.; Wienands, L.; Kiryutin, A.; Yurkovskaya, A. Recent Advances in the Application of Parahydrogen in Catalysis and Biochemistry. RSC Adv. 2022, 12, 12477–12506. [Google Scholar] [CrossRef]
- Becker, J.; Bermuth, J.; Ebert, M.; Grossmann, T.; Heil, W.; Hofmann, D.; Humblot, H.; Leduc, M.; Otten, E.W.; Rohe, D.; et al. Interdisciplinary Experiments with Polarized 3He. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1998, 402, 327–336. [Google Scholar] [CrossRef]
- Frossati, G. Polarization of 3He, D2 (and Possibly 129Xe) Using Cryogenic Techniques. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1998, 402, 479–483. [Google Scholar] [CrossRef]
- Bouchiat, M.A.; Carver, T.R.; Varnum, C.M. Nuclear Polarization in He 3 Gas Induced by Optical Pumping and Dipolar Exchange. Phys. Rev. Lett. 1960, 5, 373–375. [Google Scholar] [CrossRef]
- Ardenkjaer-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in Signal-to-Noise Ratio of > 10,000 Times in Liquid-State NMR. Proc. Natl. Acad. Sci. USA 2003, 100, 10158–10163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaptein, R.; Oosterhoff, L.J. Chemically Induced Dynamic Nuclear Polarization III (Anomalous Multiplets of Radical Coupling and Disproportionation Products). Chem. Phys. Lett. 1969, 4, 214–216. [Google Scholar] [CrossRef]
- Goldman, M.; Jóhannesson, H.; Axelsson, O.; Karlsson, M. Design and Implementation of 13C Hyper Polarization from Para-Hydrogen, for New MRI Contrast Agents. Comptes Rendus Chim. 2006, 9, 357–363. [Google Scholar] [CrossRef]
- Gabellieri, C.; Reynolds, S.; Lavie, A.; Payne, G.S.; Leach, M.O.; Eykyn, T.R. Therapeutic Target Metabolism Observed Using Hyperpolarized 15 N Choline. J. Am. Chem. Soc. 2008, 130, 4598–4599. [Google Scholar] [CrossRef]
- Lumata, L.; Jindal, A.K.; Merritt, M.E.; Malloy, C.R.; Sherry, A.D.; Kovacs, Z. DNP by Thermal Mixing under Optimized Conditions Yields >60 000-Fold Enhancement of 89 Y NMR Signal. J. Am. Chem. Soc. 2011, 133, 8673–8680. [Google Scholar] [CrossRef] [Green Version]
- Nardi-Schreiber, A.; Gamliel, A.; Harris, T.; Sapir, G.; Sosna, J.; Gomori, J.M.; Katz-Brull, R. Biochemical Phosphates Observed Using Hyperpolarized 31P in Physiological Aqueous Solutions. Nat. Commun. 2017, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.J.; Rayner, P.J.; Green, G.G.R.; Highton, L.A.R.; Mewis, R.E.; Duckett, S.B. Improving the Hyperpolarization of 31 P Nuclei by Synthetic Design. J. Phys. Chem. B 2015, 119, 5020–5027. [Google Scholar] [CrossRef]
- Iali, W.; Rayner, P.J.; Duckett, S.B. Using Para Hydrogen to Hyperpolarize Amines, Amides, Carboxylic Acids, Alcohols, Phosphates, and Carbonates. Sci. Adv. 2018, 4, eaao6250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhivonitko, V.V.; Skovpin, I.V.; Koptyug, I.V. Strong 31 P Nuclear Spin Hyperpolarization Produced via Reversible Chemical Interaction with Parahydrogen. Chem. Commun. 2015, 51, 2506–2509. [Google Scholar] [CrossRef] [PubMed]
- Bowers, C.R.; Weitekamp, D.P. Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment. J. Am. Chem. Soc. 1987, 109, 5541–5542. [Google Scholar] [CrossRef] [Green Version]
- Pravica, M.G.; Weitekamp, D.P. Net NMR Alignment by Adiabatic Transport of Parahydrogen Addition Products to High Magnetic Field. Chem. Phys. Lett. 1988, 145, 255–258. [Google Scholar] [CrossRef]
- Morris, G.A. Sensitivity Enhancement in Nitrogen-15 NMR: Polarization Transfer Using the INEPT Pulse Sequence. J. Am. Chem. Soc. 1980, 102, 428–429. [Google Scholar] [CrossRef]
- Anderson, M.P.; Pignolet, L.H. Rhodium Complexes of 1,4-Bis(Diphenylphosphino)Butane. Crystal and Molecular Structures of [Rh(Dppb)2]BF4.Cntdot.C4H10O and [Rh(Cod)(Dppb)]BF4. Inorg. Chem. 1981, 20, 4101–4107. [Google Scholar] [CrossRef]
- Kiryutin, A.S.; Sauer, G.; Yurkovskaya, A.V.; Limbach, H.-H.; Ivanov, K.L.; Buntkowsky, G. Parahydrogen Allows Ultrasensitive Indirect NMR Detection of Catalytic Hydrogen Complexes. J. Phys. Chem. C 2017, 121, 9879–9888. [Google Scholar] [CrossRef]
- Knecht, S.; Kiryutin, A.S.; Yurkovskaya, A.V.; Ivanov, K.L. Mechanism of Spontaneous Polarization Transfer in High-Field SABRE Experiments. J. Magn. Reson. 2018, 287, 74–81. [Google Scholar] [CrossRef]
- Matsumoto, M.; Espenson, J.H. Kinetics of the Interconversion of Parahydrogen and Orthohydrogen Catalyzed by Paramagnetic Complex Ions. J. Am. Chem. Soc. 2005, 127, 11447–11453. [Google Scholar] [CrossRef] [PubMed]
- Haake, M.; Natterer, J.; Bargon, J. Efficient NMR Pulse Sequences to Transfer the Parahydrogen-Induced Polarization to Hetero Nuclei. J. Am. Chem. Soc. 1996, 118, 8688–8691. [Google Scholar] [CrossRef]
- Skovpin, I.V.; Zhivonitko, V.V.; Kaptein, R.; Koptyug, I.V. Generating Parahydrogen-Induced Polarization Using Immobilized Iridium Complexes in the Gas-Phase Hydrogenation of Carbon–Carbon Double and Triple Bonds. Appl. Magn. Reson. 2013, 44, 289–300. [Google Scholar] [CrossRef]
- Fekete, M.; Bayfield, O.; Duckett, S.B.; Hart, S.; Mewis, R.E.; Pridmore, N.; Rayner, P.J.; Whitwood, A. Iridium(III) Hydrido N-Heterocyclic Carbene–Phosphine Complexes as Catalysts in Magnetization Transfer Reactions. Inorg. Chem. 2013, 52, 13453–13461. [Google Scholar] [CrossRef] [PubMed]
- Svyatova, A.; Kozinenko, V.P.; Chukanov, N.V.; Burueva, D.B.; Chekmenev, E.Y.; Chen, Y.-W.; Hwang, D.W.; Kovtunov, K.V.; Koptyug, I.V. PHIP Hyperpolarized [1-13C]Pyruvate and [1-13C]Acetate Esters via PH-INEPT Polarization Transfer Monitored by 13C NMR and MRI. Sci. Rep. 2021, 11, 5646. [Google Scholar] [CrossRef]
- Dagys, L.; Jagtap, A.P.; Korchak, S.; Mamone, S.; Saul, P.; Levitt, M.H.; Glöggler, S. Nuclear Hyperpolarization of (1-13 C)-Pyruvate in Aqueous Solution by Proton-Relayed Side-Arm Hydrogenation. Analyst 2021, 146, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Pravdivtsev, A.N.; Yurkovskaya, A.V.; Zimmermann, H.; Vieth, H.-M.; Ivanov, K.L. Enhancing NMR of Insensitive Nuclei by Transfer of SABRE Spin Hyperpolarization. Chem. Phys. Lett. 2016, 661, 77–82. [Google Scholar] [CrossRef]
- Eisenschmid, T.C.; McDonald, J.; Eisenberg, R.; Lawler, R.G. INEPT in a Chemical Way. Polarization Transfer from Para Hydrogen to Phosphorus-31 by Oxidative Addition and Dipolar Relaxation. J. Am. Chem. Soc. 1989, 111, 7267–7269. [Google Scholar] [CrossRef]
- Dueymes, C.; Pirat, C.; Pascal, R. Facile Synthesis of Simple Mono-Alkyl Phosphates from Phosphoric Acid and Alcohols. Tetrahedron Lett. 2008, 49, 5300–5301. [Google Scholar] [CrossRef]
- Seelhorst, K.; Piernitzki, T.; Lunau, N.; Meier, C.; Hahn, U. Synthesis and Analysis of Potential A1,3-Fucosyltransferase Inhibitors. Bioorg. Med. Chem. 2014, 22, 6430–6437. [Google Scholar] [CrossRef]
- Kiryutin, A.S.; Sauer, G.; Hadjiali, S.; Yurkovskaya, A.V.; Breitzke, H.; Buntkowsky, G. A Highly Versatile Automatized Setup for Quantitative Measurements of PHIP Enhancements. J. Magn. Reson. 2017, 285, 26–36. [Google Scholar] [CrossRef]
- Kiryutin, A.S.; Yurkovskaya, A.V.; Zimmermann, H.; Vieth, H.-M.; Ivanov, K.L. Complete Magnetic Field Dependence of SABRE-Derived Polarization. Magn. Reson. Chem. 2018, 56, 651–662. [Google Scholar] [CrossRef]
- Zhukov, I.V.; Kiryutin, A.S.; Yurkovskaya, A.V.; Grishin, Y.A.; Vieth, H.-M.; Ivanov, K.L. Field-Cycling NMR Experiments in an Ultra-Wide Magnetic Field Range: Relaxation and Coherent Polarization Transfer. Phys. Chem. Chem. Phys. 2018, 20, 12396–12405. [Google Scholar] [CrossRef] [PubMed]
- Kozienko, V.P.; Kiryutin, A.S.; Yurkovskaya, A.V. Polarizing Insensitive Nuclei at Ultralow Magnetic Fields Using Parahydrogen: A Facile Route to Optimize Adiabatic Magnetic Field Sweeps. J. Chem. Phys. 2022, 157, 174201. [Google Scholar] [CrossRef] [PubMed]
- Dufourc, E.J.; Mayer, C.; Stohrer, J.; Althoff, G.; Kothe, G. Dynamics of Phosphate Head Groups in Biomembranes. Comprehensive Analysis Using Phosphorus-31 Nuclear Magnetic Resonance Lineshape and Relaxation Time Measurements. Biophys. J. 1992, 61, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Cheshkov, D.A.; Sinitsyn, D.O. Total Line Shape Analysis of High-Resolution NMR Spectra. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 100, pp. 61–96. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlobina, V.V.; Kiryutin, A.S.; Nikovskiy, I.A.; Artyushin, O.I.; Kozinenko, V.P.; Peregudov, A.S.; Yurkovskaya, A.V.; Novikov, V.V. Parahydrogen-Induced Hyperpolarization of Unsaturated Phosphoric Acid Derivatives. Int. J. Mol. Sci. 2023, 24, 557. https://doi.org/10.3390/ijms24010557
Zlobina VV, Kiryutin AS, Nikovskiy IA, Artyushin OI, Kozinenko VP, Peregudov AS, Yurkovskaya AV, Novikov VV. Parahydrogen-Induced Hyperpolarization of Unsaturated Phosphoric Acid Derivatives. International Journal of Molecular Sciences. 2023; 24(1):557. https://doi.org/10.3390/ijms24010557
Chicago/Turabian StyleZlobina, Veronika V., Alexey S. Kiryutin, Igor A. Nikovskiy, Oleg I. Artyushin, Vitaly P. Kozinenko, Alexander S. Peregudov, Alexandra V. Yurkovskaya, and Valentin V. Novikov. 2023. "Parahydrogen-Induced Hyperpolarization of Unsaturated Phosphoric Acid Derivatives" International Journal of Molecular Sciences 24, no. 1: 557. https://doi.org/10.3390/ijms24010557