Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other
Abstract
:1. Introduction
2. Results
2.1. Neurons Induce Astrocytes Branching and Tiling
2.2. Astrocyte Branching and Tiling Proceeds during Neuronal Dendritic Growth, before Synaptic Maturation
2.3. Astrocytes Expand Processes to the Area without Other Astrocytes
2.4. Requirements for Astrocyte Tiling
2.5. Glutamate Excitotoxicity Damages Neurons and Causes Astrocyte Deformation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Statistical Analysis
4.4. Primary Neuron–Astrocyte Co-Culture and Glial Culture
4.5. Fluorescent Protein Expression
4.6. Microscopy Imaging
4.7. Morphology Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 2002, 22, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Swanson, R.A.; Liu, J.; Miller, J.W.; Rothstein, J.D.; Farrell, K.; Stein, B.A.; Longuemare, M.C. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J. Neurosci. 1997, 17, 932–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekny, M.; Eliasson, C.; Chien, C.L.; Kindblom, L.G.; Liem, R.; Hamberger, A.; Betsholtz, C. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp. Cell Res. 1998, 239, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.E.; Fields, R.D. Activity-dependent neuron–glial signaling by ATP and leukemia- inhibitory factor promotes hippocampal glial cell development. Neuron Glia. Biol. 2008, 4, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Hasel, P.; Dando, O.; Jiwaji, Z.; Baxter, P.; Todd, A.C.; Heron, S.; Márkus, N.M.; McQueen, J.; Hampton, D.W.; Torvell, M.; et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 2017, 8, 15132. [Google Scholar] [CrossRef]
- Takano, T.; Wallace, J.T.; Baldwin, K.T.; Purkey, A.M.; Uezu, A.; Courtland, J.L.; Soderblom, E.J.; Shimogori, T.; Maness, P.F.; Eroglu, C.; et al. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature 2020, 588, 296–302. [Google Scholar] [CrossRef]
- Hatten, M.E. Neuronal Regulation of Astroglial Morphology and Proliferation in Vitro. J. Cell Biol. 1985, 100, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Perego, C.; Vanoni, C.; Bossi, M.; Massari, S.; Basudev, H.; Longhi, R.; Pietrini, G. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J. Neurochem. 2000, 75, 1076–1084. [Google Scholar] [CrossRef]
- Yang, Y.; Gozen, O.; Watkins, A.; Lorenzini, I.; Lepore, A.; Gao, Y.; Vidensky, S.; Brennan, J.; Poulsen, D.; Won Park, J.; et al. Presynaptic Regulation of Astroglial Excitatory Neurotransmitter Transporter GLT1. Neuron 2009, 61, 880–894. [Google Scholar] [CrossRef] [Green Version]
- Poitry-Yamate, C.L.; Vutskits, L.; Rauen, T. Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function. J. Neurochem. 2002, 82, 987–997. [Google Scholar] [CrossRef]
- Ogata, K.; Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 2002, 113, 221–233. [Google Scholar] [CrossRef]
- Livet, J.; Weissman, T.A.; Kang, H.; Draft, R.W.; Lu, J.; Bennis, R.A.; Sanes, J.R.; Lichtman, J.W. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bushong, E.A.; Martone, M.E.; Ellisman, M.H. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. 2004, 22, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Oberheim, N.A.; Tian, G.F.; Han, X.; Peng, W.; Takano, T.; Ransom, B.; Nedergaard, M. Loss of astrocytic domain organization in the epileptic brain. J. Neurosci. 2008, 28, 3264–3276. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.; Nagelhus, E.A.; Amiry-Moghaddam, M.; Bourque, C.; Agre, P.; Ottersen, O.R. Specialized membrane domains for water transport in glial cells: High- resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 1997, 17, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Derouiche, A.; Frotscher, M. Peripheral astrocyte processes: Monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 2001, 36, 330–341. [Google Scholar] [CrossRef]
- Lavialle, M.; Aumann, G.; Anlauf, E.; Pröls, F.; Arpin, M.; Derouiche, A. Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 2011, 108, 12915–12919. [Google Scholar] [CrossRef] [Green Version]
- Regan, M.R.; Huang, Y.H.; Kim, Y.S.; Dykes-Hoberg, M.I.; Jin, L.; Watkins, A.M.; Bergles, D.E.; Rothstein, J.D. Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J. Neurosci. 2007, 27, 6607–6619. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, D.L. Morphological and Biochemical Alterations in Foetal Rat Brain Cells cultured in the Presence of Monobutyryl Cyclic AMP. Nature 1973, 241, 203–204. [Google Scholar] [CrossRef]
- Bloch-Tardy, M.; Fages, C.; Gonnard, P. Cyclic Guanosine Monophosphate in Primary Cultures of Glial Cells. J. Neurochem. 1980, 35, 612–615. [Google Scholar] [CrossRef]
- Koyama, Y.; Ishibashi, T.; Hayata, K.; Baba, A. Endothelins modulate dibutyryl cAMP-induced stellation of cultured astrocytes. Brain Res. 1993, 600, 81–88. [Google Scholar] [CrossRef]
- Nicchia, G.P.; Rossi, A.; Mola, M.G.; Procino, G.; Frigeri, A.; Svelto, M. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes. Glia 2008, 56, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Puschmann, T.B.; Zandén, C.; De Pablo, Y.; Kirchhoff, F.; Pekna, M.; Liu, J.; Pekny, M. Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia 2013, 61, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Li, D.; Hao, Z.; Wang, L.; Pan, B.; Gao, L.; Qu, X.; He, J. Effects of astrocyte on neuronal outgrowth in a layered 3D structure. Biomed. Eng. Online 2019, 18, 74. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.P.; Kuwada, J.Y. Formation of the receptive fields of leech mechanosensory neurons during embryonic development. J. Neurosci. 1983, 3, 2474–2486. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.P.; Stent, G.S. Developmental arborization of sensory neurons in the leech haementeria ghilianii. II. Experimentally induced variations in the branching pattern. J. Neurosci. 1985, 5, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grueber, W.B.; Jan, L.Y.; Jan, Y.N. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 2002, 129, 2867–2878. [Google Scholar] [CrossRef]
- Grueber, W.B.; Ye, B.; Moore, A.W.; Jan, L.Y.; Jan, Y.N. Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion Wesley. Curr. Biol. 2003, 13, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Sugimura, K.; Yamamoto, M.; Niwa, R.; Satoh, D.; Goto, S.; Taniguchi, M.; Hayashi, S.; Uemura, T. Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J. Neurosci. 2003, 23, 3752–3760. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.E.; Shrestha, B.R.; Blazeski, R.; Mason, C.A.; Grueber, W.B. Integrins Establish Dendrite-Substrate Relationships that Promote Dendritic Self-Avoidance and Patterning in Drosophila Sensory Neurons. Neuron 2012, 73, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Perry, V.H.; Linden, R. Evidence for dendritic competition in the developing retina. Nature 1982, 297, 683–685. [Google Scholar] [CrossRef] [PubMed]
- Dacey, D.M. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 1993, 13, 5334–5355. [Google Scholar] [CrossRef] [PubMed]
- Millard, S.S.; Flanagan, J.J.; Pappu, K.S.; Wu, W.; Zipursky, S.L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 2007, 447, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Soba, P.; Zhu, S.; Emoto, K.; Younger, S.; Yang, S.J.; Yu, H.H.; Lee, T.; Jan, L.Y.; Jan, Y.N. Drosophila Sensory Neurons Require Dscam for Dendritic Self-Avoidance and Proper Dendritic Field Organization. Neuron 2007, 54, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Matthews, B.J.; Kim, M.E.; Flanagan, J.J.; Hattori, D.; Clemens, J.C.; Zipursky, S.L.; Grueber, W.B. Dendrite Self-Avoidance Is Controlled by Dscam. Cell 2007, 129, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.E.; Bortnick, R.; Tsubouchi, A.; Bäumer, P.; Kondo, M.; Uemura, T.; Schmucker, D. Homophilic Dscam Interactions Control Complex Dendrite Morphogenesis. Neuron 2007, 54, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, P.G.; Bruce, F.; Tian, M.; Wei, W.; Elstrott, J.; Feller, M.B.; Erskine, L.; Singer, J.H.; Burgess, R.W. DSCAM and DSCAML1 Function in Self-Avoidance in Multiple Cell Types in the Developing Mouse Retina. Neuron 2009, 64, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, J.L.; Kostadinov, D.; Chen, W.V.; Maniatis, T.; Sanes, J.R. Protocadherins Mediate Dendritic Self-Avoidance in the Mammalian Nervous System. Nature 2012, 488, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Molumby, M.J.; Keeler, A.B.; Weiner, J.A. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity. Cell Rep. 2016, 15, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Ing-Esteves, S.; Kostadinov, D.; Marocha, J.; Sing, A.D.; Joseph, K.S.; Laboulaye, M.; Sanes, J.R.; Lefebvre, J.L. Combinatorial effects of Alpha- and Gamma-Protocadherins on neuronal survival and dendritic self-avoidance. J. Neurosci. 2018, 38, 2713–2729. [Google Scholar] [CrossRef] [Green Version]
- Ly, A.; Nikolaev, A.; Suresh, G.; Zheng, Y.; Tessier-Lavigne, M.; Stein, E. DSCAM Is a Netrin Receptor that Collaborates with DCC in Mediating Turning Responses to Netrin-1. Cell 2008, 133, 1241–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, D.A.; Tymanskyj, S.; Yuan, R.C.; Leung, H.C.; Lefebvre, J.L.; Sanes, J.R.; Chédotal, A.; Ma, L.; Chedotal, A.; Ma, L. Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 2014, 81, 1040–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostadinov, D.; Sanes, J.R. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. Elife 2015, 4, e08964. [Google Scholar] [CrossRef] [PubMed]
- Dascenco, D.; Erfurth, M.L.; Izadifar, A.; Song, M.; Sachse, S.; Bortnick, R.; Urwyler, O.; Petrovic, M.; Ayaz, D.; He, H.; et al. Slit and Receptor Tyrosine Phosphatase 69D Confer Spatial Specificity to Axon Branching via Dscam1. Cell 2015, 162, 1140–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stogsdill, J.A.; Ramirez, J.; Liu, D.; Kim, Y.H.; Baldwin, K.T.; Enustun, E.; Ejikeme, T.; Ji, R.R.; Eroglu, C. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017, 551, 192–197. [Google Scholar] [CrossRef]
- Foo, L.C.; Allen, N.J.; Bushong, E.A.; Ventura, P.B.; Chung, W.S.; Zhou, L.; Cahoy, J.D.; Daneman, R.; Zong, H.; Ellisman, M.H.; et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 2011, 71, 799–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Takai, Y.; Kusano-Arai, O.; Ramadhanti, J.; Iwanari, H.; Miyauchi, T.; Sakihama, T.; Han, J.Y.; Aoki, M.; Hamakubo, T.; et al. The binding property of a monoclonal antibody against the extracellular domains of aquaporin-4 directs aquaporin-4 toward endocytosis. Biochem. Biophys. Rep. 2016, 7, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Arganda-Carreras, I.; Fernández-González, R.; Muñoz-Barrutia, A.; Ortiz-De-Solorzano, C. 3D reconstruction of histological sections: Application to mammary gland tissue. Microsc. Res. Tech. 2010, 73, 1019–1029. [Google Scholar] [CrossRef]
Correlation Coefficient (Average) | n | |
---|---|---|
GLAST–GLT1 | 0.23 | 10 |
GLAST–GAT3 | 0.46 | 5 |
GLAST–AQP4 | 0.27 | 5 |
GLT1–GAT3 | 0.46 | 5 |
GLT1–AQP4 | 0.39 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, M.K.; Sato, K.; Sekino, Y. Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other. Int. J. Mol. Sci. 2022, 23, 4161. https://doi.org/10.3390/ijms23084161
Hayashi MK, Sato K, Sekino Y. Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other. International Journal of Molecular Sciences. 2022; 23(8):4161. https://doi.org/10.3390/ijms23084161
Chicago/Turabian StyleHayashi, Mariko Kato, Kaoru Sato, and Yuko Sekino. 2022. "Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other" International Journal of Molecular Sciences 23, no. 8: 4161. https://doi.org/10.3390/ijms23084161
APA StyleHayashi, M. K., Sato, K., & Sekino, Y. (2022). Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other. International Journal of Molecular Sciences, 23(8), 4161. https://doi.org/10.3390/ijms23084161