Highly Efficient Removal of Uranium from an Aqueous Solution by a Novel Phosphonic Acid-Functionalized Magnetic Microsphere Adsorbent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analyses
2.2. Effect of pH
2.3. Sorption Static Kinetics, Isotherms and Thermodynamic Analysis
2.4. Structural Stability Analysis
2.5. Comparison of the U(VI) Sorption Capacity of Fe3O4/P (GMA-MBA)-PO4 with That of Other Adsorbents in Aqueous Solutions
2.6. Analysis of the Interactions between Uranium and Fe3O4/P(GMA-MBA)-PO4
3. Materials and Methods
3.1. Materials
3.2. Preparation of Fe3O4
3.3. Preparation of Activated Fe3O4
3.4. Preparation of Fe3O4/P (GMA-MBA)
3.5. Preparation of Fe3O4/P (GMA-MBA)-PO4
3.6. Characterization
3.7. Adsorption Tests
3.8. Stability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, D.; Zhang, S.; Tan, J.; Dai, Y.; Wang, Y.; He, Y.; Liu, Y.; Zhao, X.; Zhang, M.; Zhang, Q. Highly efficacious entrapment of Th (IV) and U (VI) from rare earth elements in concentrated nitric acid solution using a phosphonic acid functionalized porous organic polymer adsorbent. Sep. Purif. Technol. 2020, 237, 116379. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Zhao, J.; Wei, P.; Wang, C.; Liu, P.; Zhao, X.; Zeng, K.; Wu, F.; Liu, Z. Unexpected ultrafast and highly efficient removal of uranium from aqueous solutions by a phosphonic acid and amine functionalized polymer adsorbent. New J. Chem. 2021, 45, 10777–10787. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, K.; Wang, C.; Wei, P.; Zhao, X.; Wu, F.; Liu, Z. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions. New J. Chem. 2022, 46, 9238–9249. [Google Scholar] [CrossRef]
- Mori, T.; Takao, K.; Sasaki, K.; Suzuki, T.; Arai, T.; Ikeda, Y. Homogeneous liquid–liquid extraction of U (VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recoveryof extracted U (VI). Sep. Purif. Technol. 2015, 155, 133–138. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Li, B.; Bai, C.; Li, Y.; Wang, L.; Wen, R.; Zhang, M.; Ma, L.; Li, S. “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. J. Hazard. Mater. 2016, 314, 95–104. [Google Scholar] [CrossRef]
- Venkatesan, K.A.; Shyamala, K.V.; Antony, M.P.; Srinivasan, T.G.; Rao, P.R.V. Batch and dynamic extraction of uranium (VI) from nitric acid medium by commercial phosphinic acid resin, Tulsion CH-96. J. Radioanal. Nucl. Chem. Artic. 2008, 275, 563–570. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X. Application of AnMBR Ion Exchange Technology in Water Treatment. IOP Conf. Series Earth Environ. Sci. 2021, 791, 012180. [Google Scholar] [CrossRef]
- Shimojo, K. Solvent Extraction in Analytical Separation Techniques. Anal. Sci. 2018, 34, 1345–1346. [Google Scholar] [CrossRef] [Green Version]
- Osmanlioglu, A.E. Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl. Eng. Technol. 2018, 50, 886–889. [Google Scholar] [CrossRef]
- Hao, S.; Jia, Z.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Progress in adsorptive membranes for separation—A review. Sep. Purif. Technol. 2020, 255, 117772. [Google Scholar] [CrossRef]
- Li, H.; Qing, Q.; Zheng, L.; Xie, L.; Gan, Z.; Huang, L.; Liu, S.; Wang, Z.; Lu, Y.; Chen, J. Carbon dots and carbon nitride composite for photocatalytic removal of uranium under air atmosphere. Chin. Chem. Lett. 2022, 33, 3573–3576. [Google Scholar] [CrossRef]
- Liu, H.; Mao, Y. Graphene Oxide-based Nanomaterials for Uranium Adsorptive Uptake. ES Mater. Manuf. 2021, 13, 3–22. [Google Scholar] [CrossRef]
- Gaillard, C.; Boltoeva, M.; Billard, I.; Georg, S.; Mazan, V.; Ouadi, A. Ionic liquid-based uranium (VI) extraction with malonamide extractant: Cation exchange vs. neutral extraction. RSC Adv. 2016, 6, 70141–70151. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhao, S.; Wen, J.; Wang, D.; Guo, X.; Xu, L.; Wang, X.; Wang, N. Rational Design of Porous Nanofiber Adsorbent by Blow-Spinning with Ultrahigh Uranium Recovery Capacity from Seawater. Adv. Funct. Mater. 2019, 29, 1805380. [Google Scholar] [CrossRef]
- Luo, W.; Xiao, G.; Tian, F.; Richardson, J.J.; Wang, Y.; Zhou, J.; Guo, J.; Liao, X.; Shi, B. Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energy Environ. Sci. 2019, 12, 607–614. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, D.; Zhao, J.; Ren, G.; Zhao, X.; Liu, Y.; Wang, Y.; He, Y.; Ma, M.; Zhang, Q. Highly efficient extraction of uranium from strong HNO3 media achieved on phosphine oxide functionalized superparamagnetic composite polymer microspheres. J. Mater. Chem. A 2021, 9, 18393–18405. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, D.; Zhang, Q.; Wang, Y.; Liu, Y.; Zhao, J.; Chen, B. Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent. J. Mater. Chem. A 2020, 8, 10925–10934. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Xu, Z.; Rao, C.; Pi, L.; Fu, Y.; Dong, Y.; Shen, C.; Yao, L.; Xiong, C. Synthesis and application of recyclable core-shell structure microspheres MCTS-g-AT in detection of Hg (II) in aquatic products. J. Chin. Chem. Soc. 2021, 68, 1739–1747. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Wu, Y.; Liu, Z.; Wang, J.; Xu, J.; Tong, Z.; Mu, X.; Liu, B. Fe3O4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase. Materials 2022, 15, 2039. [Google Scholar] [CrossRef]
- Zuo, B.; Li, W.; Wu, X.; Wang, S.; Deng, Q.; Huang, M. Recent Advances in the Synthesis, Surface Modifications and Applications of Core-Shell Magnetic Mesoporous Silica Nanospheres. Chem. Asian J. 2020, 15, 1248–1265. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, C.; Lu, P.; Fan, L.; Liu, Y.; Wang, Y.; Liu, L.; Li, L. Preparation and the adsorption ability of thiolated magnetic core-shell Fe3O4@SiO2@C-SH for removing Hg2+ in water solution. Mater. Lett. 2018, 225, 130–133. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, G.; Yang, F. The elaboration of multifunctional hollow core-shell Fe3O4@PDA@TiO2 architecture with dual magnetic and photo-responsive performance. New J. Chem. 2020, 44, 3487–3492. [Google Scholar] [CrossRef]
- Xu, M.; Han, X.; Wang, T.; Li, S.; Hua, D. Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J. Mater. Chem. A 2018, 6, 13894–13900. [Google Scholar] [CrossRef]
- Xu, M.Y.; Hai, X.L.; Hua, D.B. Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. J. Mater. Chem. A 2017, 5, 12278–12284. [Google Scholar] [CrossRef]
- Calì, E.; Qi, J.; Preedy, O.; Chen, S.; Boldrin, D.; Branford, W.R.; Vandeperre, L.; Ryan, M.P. Functionalised magnetic nanoparticles for uranium adsorption with ultra-high capacity and selectivity. J. Mater. Chem. A 2018, 6, 3063–3073. [Google Scholar] [CrossRef]
- Husnain, S.M.; Um, W.Y.; Chang, W.L.; Chang, Y.S. Magnetite-based adsorbents for sequestration of radionuclides: A review. RSC Adv. 2018, 8, 2521–2540. [Google Scholar] [CrossRef]
- Dai, S.; Wang, N.; Qi, C.; Wang, X.; Ma, Y.; Yang, L.; Liu, X.; Huang, Q.; Nie, C.; Hu, B.; et al. Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U (VI) and EU (III) ions. Sci. Total Environ. 2019, 685, 986–996. [Google Scholar] [CrossRef]
- Song, X.M.; Tan, L.C.; Ma, H.Y.; Guo, Y.; Zhu, L.; Yi, X.Q.; Gao, J.Y.; Yang, R.J.; Dong, Q. Facile preparation of S-doped magnetite hollow spheres for highly efficient sorption of uranium (VI). Dalton. Trans. 2017, 46, 3347–3352. [Google Scholar] [CrossRef]
- Yuan, D.; Xiong, X.; Chen, L.; Lv, Y.; Wang, Y.; Yuan, L.; Liao, S.; Zhang, Q. Removal of uranium from aqueous solution by phosphate functionalized superparamagnetic polymer microspheres Fe3O4/P(GMA-AA-MMA). J. Radioanal. Nucl. Chem. 2016, 309, 729–741. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, L.; Xiong, X.; Zhang, Q.; Liao, S.; Yuan, L.; Wang, Y. Synthesis of PAMAM dendron functionalized superparamagnetic polymer microspheres for highly efficient sorption of uranium (VI). J. Radioanal. Nucl. Chem. 2016, 309, 1227–1240. [Google Scholar] [CrossRef]
- Nogami, M.; Sugiyama, Y.; Ikeda, Y. Adsorptivity of silica-supported adsorbents impregnated with polyphosphine polyoxides to U(VI) and some other metal ions in nitric acid media. J. Radioanal. Nucl. Chem. Artic. 2010, 284, 195–199. [Google Scholar] [CrossRef]
- Broda, E.; Gładysz-Płaska, A.; Skwarek, E.; Payentko, V.V. Structural properties and adsorption of uranyl ions on the nanocomposite hydroxyapatite/white clay. Appl. Nanosci. 2022, 12, 1101–1111. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Skwarek, E.; Osypiuk, D.; Cristóvao, B. Synthesis of Hydroxyapatite/Iron Oxide Composite and Comparison of Selected Structural, Surface, and Electrochemical Properties. Materials 2022, 15, 1139. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Skwarek, E.; Hanna, U.M. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 2021, 291, 102401. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, Z.; Zhang, S.; Wang, X. Enrich and seal radionuclides in magnetic agarose microspheres. Chem. Eng. J. 2011, 172, 892–897. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, S.; Xiang, Z.; He, Y.; Wang, Y.; Liu, Y.; Zhao, X.; Zhou, X.; Zhang, Q. Highly Efficient Removal of Thorium in Strong HNO3 Media Using a Novel Polymer Adsorbent Bearing a Phosphonic Acid Ligand: A Combined Experimental and Density Functional Theory Study. ACS Appl. Mater. Interfaces 2019, 11, 24512–24522. [Google Scholar] [CrossRef]
- Jonsson, M.; Nyström, D.; Nordin, O.; Malmström, E. Surface modification of thermally expandable microspheres by grafting poly(glycidyl methacrylate) using ARGET ATRP. Eur. Polym. J. 2009, 45, 2374–2382. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Xu, X.; Alsaedi, A.; Hayat, T.; Li, J. Adsorption and desorption of U(VI) on different-size graphene oxide. Chem. Eng. J. 2019, 360, 941–950. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, L.Y.; Guo, W.L.; Luo, S.Z.; Chai, Z.F.; Shi, W.Q. Extending the Use of Highly Porous and Functionalized MOFs to Th (IV) Capture. ACS Appl. Mater. Interfaces 2017, 9, 25216–25224. [Google Scholar] [CrossRef]
- Han, X.; Wang, Y.; Cao, X.; Dai, Y.; Liu, Y.; Dong, Z.; Zhang, Z.; Liu, Y. Adsorptive performance of ship-type nano-cage polyoxometalates for U (VI) in aqueous solution. Appl. Surf. Sci. 2019, 484, 1035–1040. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Y.; Xiao, D.; Qiao, Q.; Yin, P.; Yang, Z.; Li, J.; Winchester, W.; Wang, Z.; Hayat, T. Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. J. Hazard. Mater. 2019, 371, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ouyang, Y.; Huang, D.; Jiang, C.; Liu, X.; Wang, Y.; Dai, Y.; Yuan, D.; Chew, J.W. N, P and S co-doped carbon materials derived from polyphosphazene for enhanced selective U (VI) adsorption. Sci. Total Environ. 2020, 706, 136019. [Google Scholar] [CrossRef] [PubMed]
- Amesh, P.; Suneesh, A.S.; Selvan, B.R.; Venkatesan, K.A.; Chandra, M. Magnetic assisted separation of uranium (VI) from aqueous phase using diethylenetriamine modified high capacity iron oxide adsorbent. J. Environ. Chem. Eng. 2020, 8, 103661. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Zhao, L.; Zhang, S.; Huang, Y.; Wu, X.; Wang, X. Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 2014, 235, 275–283. [Google Scholar] [CrossRef]
- Zong, P.; Wang, S.; Zhao, Y.; Wang, H.; Pan, H.; He, C. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J. 2013, 220, 45–52. [Google Scholar] [CrossRef]
- Liu, Q.; Li, W.; Zhao, W.; Tan, L.; Jing, X.; Liu, J.; Song, D.; Zhang, H.; Li, R.; Liu, L.; et al. Synthesis of ketoxime-functionalized Fe3O4@C core–shell magnetic microspheres for enhanced uranium(vi) removal. RSC Adv. 2016, 6, 22179–22186. [Google Scholar] [CrossRef]
- Sadeghi, S.; Azhdari, H.; Arabi, H.; Moghaddam, A.Z. Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J. Hazard. Mater. 2012, 215–216, 208–216. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, X.; Liu, Q.; Jing, X.; Liu, J.; Song, D.; Hu, S.; Liu, L.; Wang, J. Synthesis of Fe3O4@TiO2 core–shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surfaces A Physicochem. Eng. Asp. 2015, 469, 279–286. [Google Scholar] [CrossRef]
- Song, W.; Liu, M.; Hu, R.; Tan, X.; Li, J. Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chem. Eng. J. 2014, 246, 268–276. [Google Scholar] [CrossRef]
- Fan, F.L.; Qin, Z.; Bai, J.; Rong, W.D.; Fan, F.Y.; Tian, W.; Wu, X.L.; Wang, Y.; Zhao, L. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@ SiO2 composite particles. J. Environ. Radioact. 2012, 106, 40–46. [Google Scholar] [CrossRef]
- Singhal, P.; Vats, B.G.; Yadav, A.; Pulhani, V. Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: Understanding adsorption and binding mechanisms. J. Hazard. Mater. 2020, 384, 121353. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Sureshkumar, M.; Koley, S.; Mithal, N.; Pillai, C. Sorption of uranium on magnetite nanoparticles. J. Radioanal. Nucl. Chem. 2010, 285, 447–454. [Google Scholar] [CrossRef]
- Li, L.; Huang, F.; Yuan, Y.; Hu, J.; Tang, Q.; Tang, S. Preparation and sorption performance of magnetic 18-crown-6/Fe3O4 nanocomposite for uranium (VI) in solution. J. Radioanal. Nucl. Chem. 2013, 298, 227–235. [Google Scholar] [CrossRef]
- El-Maghrabi, H.H.; Younes, A.A.; Salem, A.R.; Rabie, K.; El-Shereafy, E.S. Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): Preparation, characterization and adsorption optimization. J. Hazard. Mater. 2019, 378, 120703. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Ma, W.; Guo, J.; Lin, Y.; Wang, C. Uniform Magnetic Core/Shell Microspheres Functionalized with Ni2+–Iminodiacetic Acid for One Step Purification and Immobilization of His-Tagged Enzymes. ACS Appl. Mater. Interfaces 2013, 5, 2626–2633. [Google Scholar] [CrossRef]
Absorbent | qmax (mg g−1) | pH | Ref. |
---|---|---|---|
Fe-DETA | 236.0 | 6.0 | [43] |
Amidoxime-modified Fe3O4@SiO2 | 105.0 | 5.0 | [44] |
Fe3O4/GO | 69.5 | 5.5 | [45] |
Fe3O4@C-KO | 38.7 | 6.0 | [46] |
Quercetin-modified Fe3O4 nanoparticles | 12.3 | 3.7 | [47] |
Fe3O4@TiO2 | 118.8 | 6.0 | [48] |
Fe3O4@PAM | 220.9 | 5.0 | [49] |
Fe3O4@SiO2 | 52.0 | 6.0 | [50] |
Phosphoramide-functionalized Fe3O4 | 95.2 | 6.0 | [51] |
Fe3O4 | <50 | 7.0 | [52] |
MCFN | 91.1 | 5.5 | [53] |
MNHA | 310.0 | 5.0 | [54] |
Fe3O4/P(GMA-MBA)-PO4 | 333.3 | 4.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Lu, P.; He, T.; Huang, J.; Zhang, S.; Liu, Y.; Wang, Y.; Meng, C.; Yuan, D. Highly Efficient Removal of Uranium from an Aqueous Solution by a Novel Phosphonic Acid-Functionalized Magnetic Microsphere Adsorbent. Int. J. Mol. Sci. 2022, 23, 16227. https://doi.org/10.3390/ijms232416227
Zhao J, Lu P, He T, Huang J, Zhang S, Liu Y, Wang Y, Meng C, Yuan D. Highly Efficient Removal of Uranium from an Aqueous Solution by a Novel Phosphonic Acid-Functionalized Magnetic Microsphere Adsorbent. International Journal of Molecular Sciences. 2022; 23(24):16227. https://doi.org/10.3390/ijms232416227
Chicago/Turabian StyleZhao, Jizhou, Peng Lu, Tengteng He, Jing Huang, Shiao Zhang, Yan Liu, Yun Wang, Cheng Meng, and Dingzhong Yuan. 2022. "Highly Efficient Removal of Uranium from an Aqueous Solution by a Novel Phosphonic Acid-Functionalized Magnetic Microsphere Adsorbent" International Journal of Molecular Sciences 23, no. 24: 16227. https://doi.org/10.3390/ijms232416227
APA StyleZhao, J., Lu, P., He, T., Huang, J., Zhang, S., Liu, Y., Wang, Y., Meng, C., & Yuan, D. (2022). Highly Efficient Removal of Uranium from an Aqueous Solution by a Novel Phosphonic Acid-Functionalized Magnetic Microsphere Adsorbent. International Journal of Molecular Sciences, 23(24), 16227. https://doi.org/10.3390/ijms232416227