Manipulation of Amino Acid Levels with Artificial Diets Induces a Marked Anticancer Activity in Mice with Renal Cell Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Selective Amino Acid Restriction Induces Cytotoxicity and Selectivity in Renal Cell Carcinoma Cells In Vitro
2.2. Selective Amino Acid Restriction Therapy Improves Survival in Mice with Renal Cell Carcinoma
2.3. Screening for In Vivo Anticancer Activity of 10 Diets Based on Diet T2
2.4. Methionine, Cysteine, and Leucine Levels Are Important for In Vivo Anticancer Activity
3. Discussion
4. Materials and Methods
4.1. Drugs and Reagents
4.2. Cell Culture
4.3. In Vitro Experiments
4.4. Animals
4.5. In Vivo Experiments
4.6. Diet Preparation and Composition
4.7. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376, 354–366. [Google Scholar] [CrossRef] [PubMed]
- SEER Cancer Kidney and Renal Pelvis Cancer-Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/kidrp.html (accessed on 6 June 2022).
- Tran, J.; Ornstein, M.C. Clinical Review on the Management of Metastatic Renal Cell Carcinoma. JCO Oncol. Pract. 2022, 18, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, V.; Gil, T.; Lalami, Y.; Piccart, M.; Awada, A. Will the Dark Sky over Advanced Renal Cell Carcinoma Soon Become Brighter? Eur. J. Cancer 2005, 41, 1246–1253. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall Survival and Updated Results for Sunitinib Compared with Interferon Alfa in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef]
- Mennitto, A.; Huber, V.; Ratta, R.; Sepe, P.; de Braud, F.; Procopio, G.; Guadalupi, V.; Claps, M.; Stellato, M.; Daveri, E.; et al. Angiogenesis and Immunity in Renal Carcinoma: Can We Turn an Unhappy Relationship into a Happy Marriage? J. Clin. Med. 2020, 9, 930. [Google Scholar] [CrossRef] [Green Version]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Jonasch, E.; Agarwal, N.; Alva, A.; Baine, M.; Beckermann, K.; Carlo, M.I.; Choueiri, T.K.; Costello, B.A.; Derweesh, I.H.; et al. NCCN Guidelines Version 1.2023 Kidney Cancer Continue NCCN Guidelines Panel Disclosures. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1440 (accessed on 31 July 2022).
- Beatty, G.L.; Gladney, W.L. Immune Escape Mechanisms as a Guide for Cancer Immunotherapy. Clin. Cancer Res. 2015, 21, 687–692. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Albiges, L.; Bex, A.; Grünwald, V.; Porta, C.; Procopio, G.; Schmidinger, M.; Suárez, C.; de Velasco, G. ESMO Clinical Practice Guideline Update on the Use of Immunotherapy in Early Stage and Advanced Renal Cell Carcinoma. Ann. Oncol. 2021, 32, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Lee, J.-L.; Szczylik, C.; Donskov, F.; Malik, J.; Alekseev, B.Y.; Larkin, J.M.G.; Matveev, V.B.; Gafanov, R.A.; Tomczak, P.; et al. Pembrolizumab Monotherapy as First-Line Therapy in Advanced Clear Cell Renal Cell Carcinoma (AccRCC): Results from Cohort A of KEYNOTE-427. J. Clin. Oncol. 2018, 36, 4500. [Google Scholar] [CrossRef]
- Tefferi, A.; Kantarjian, H.; Rajkumar, S.V.; Baker, L.H.; Abkowitz, J.L.; Adamson, J.W.; Advani, R.H.; Allison, J.; Antman, K.H.; Bast, R.C.; et al. In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. Mayo Clin. Proc. 2015, 90, 996–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geynisman, D.M.; Hu, J.C.; Liu, L.; Tina Shih, Y.C. Treatment Patterns and Costs for Metastatic Renal Cell Carcinoma Patients with Private Insurance in the United States. Clin. Genitourin. Cancer 2015, 13, e93–e100. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Selective Amino Acid Restriction Therapy (SAART): A Non- Pharmacological Strategy against All Types of Cancer Cells. Oncoscience 2015, 2, 857. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodado, V.; Dowdy, T.; Lita, A.; Kramp, T.; Zhang, M.; Jung, J.; Dios-Esponera, A.; Zhang, L.; Herold-Mende, C.C.; Camphausen, K.; et al. Cysteine Is a Limiting Factor for Glioma Proliferation and Survival. Mol. Oncol. 2022, 16, 1777–1794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Bauer, C.; Newman, A.C.; Uribe, A.H.; Athineos, D.; Blyth, K.; Maddocks, O.D.K. Polyamine Pathway Activity Promotes Cysteine Essentiality in Cancer Cells. Nat. Metab. 2020, 2, 1062–1076. [Google Scholar] [CrossRef]
- Maddocks, O.D.K.K.; Athineos, D.; Cheung, E.C.; Lee, P.; Zhang, T.; Van Den Broek, N.J.F.F.; Mackay, G.M.; Labuschagne, C.F.; Gay, D.; Kruiswijk, F.; et al. Modulating the Therapeutic Response of Tumours to Dietary Serine and Glycine Starvation. Nature 2017, 544, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Maddocks, O.D.K.K.; Berkers, C.R.; Mason, S.M.; Zheng, L.; Blyth, K.; Gottlieb, E.; Vousden, K.H. Serine Starvation Induces Stress and P53-Dependent Metabolic Remodelling in Cancer Cells. Nature 2013, 493, 542–546. [Google Scholar] [CrossRef]
- LeBoeuf, S.E.; Wu, W.L.; Karakousi, T.R.; Karadal, B.; Jackson, S.R.E.; Davidson, S.M.; Wong, K.K.; Koralov, S.B.; Sayin, V.I.; Papagiannakopoulos, T. Activation of Oxidative Stress Response in Cancer Generates a Druggable Dependency on Exogenous Non-Essential Amino Acids. Cell Metab. 2020, 31, 339–350.e4. [Google Scholar] [CrossRef] [PubMed]
- Alexandrou, C.; Al-Aqbi, S.S.; Higgins, J.A.; Boyle, W.; Karmokar, A.; Andreadi, C.; Luo, J.L.; Moore, D.A.; Viskaduraki, M.; Blades, M.; et al. Sensitivity of Colorectal Cancer to Arginine Deprivation Therapy Is Shaped by Differential Expression of Urea Cycle Enzymes. Sci. Rep. 2018, 8, 12096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.-T.T.; Qi, Y.; Wang, Y.-C.C.; Chi, K.K.; Chung, Y.; Ouyang, C.; Chen, Y.-R.Y.-H.Y.H.R.; Oh, M.E.; Sheng, X.; Tang, Y.; et al. Arginine Starvation Kills Tumor Cells through Aspartate Exhaustion and Mitochondrial Dysfunction. Commun. Biol. 2018, 1, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niklison-Chirou, M.V.; Erngren, I.; Engskog, M.; Haglöf, J.; Picard, D.; Remke, M.; McPolin, P.H.R.; Selby, M.; Williamson, D.; Clifford, S.C.; et al. TAp73 Is a Marker of Glutamine Addiction in Medulloblastoma. Genes Dev. 2017, 31, 1738–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knott, S.R.V.; Wagenblast, E.; Khan, S.; Kim, S.Y.; Soto, M.; Wagner, M.; Turgeon, M.O.; Fish, L.; Erard, N.; Gable, A.L.; et al. Asparagine Bioavailability Governs Metastasis in a Model of Breast Cancer. Nature 2018, 554, 378–381. [Google Scholar] [CrossRef]
- Krall, A.S.; Mullen, P.J.; Surjono, F.; Momcilovic, M.; Schmid, E.W.; Halbrook, C.J.; Thambundit, A.; Mittelman, S.D.; Lyssiotis, C.A.; Shackelford, D.B.; et al. Asparagine Couples Mitochondrial Respiration to ATF4 Activity and Tumor Growth. Cell Metab. 2021, 33, 1013–1026.e6. [Google Scholar] [CrossRef]
- Sahu, N.; Dela Cruz, D.; Gao, M.; Sandoval, W.; Haverty, P.M.M.; Liu, J.; Stephan, J.-P.P.; Haley, B.; Classon, M.; Hatzivassiliou, G.; et al. Proline Starvation Induces Unresolved ER Stress and Hinders MTORC1-Dependent Tumorigenesis. Cell Metab. 2016, 24, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Sanderson, S.M.; Dai, Z.; Reid, M.A.; Cooper, D.E.; Lu, M.; Richie, J.P.; Ciccarella, A.; Calcagnotto, A.; Mikhael, P.G.; et al. Dietary Methionine Influences Therapy in Mouse Cancer Models and Alters Human Metabolism. Nature 2019, 572, 397–401. [Google Scholar] [CrossRef]
- Gatenby, R.A. Is the Genetic Paradigm of Cancer Complete? Radiology 2017, 284, 1–3. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Brown, J. Mutations, Evolution and the Central Role of a Self-Defined Fitness Function in the Initiation and Progression of Cancer. Biochim. Biophys. Acta BBA Rev. Cancer 2017, 1867, 162–166. [Google Scholar] [CrossRef]
- López-Lázaro, M. Two Preclinical Tests to Evaluate Anticancer Activity and to Help Validate Drug Candidates for Clinical Trials. Oncoscience 2015, 2, 91. [Google Scholar] [CrossRef] [PubMed]
- Miess, H.; Dankworth, B.; Gouw, A.M.; Rosenfeldt, M.; Schmitz, W.; Jiang, M.; Saunders, B.; Howell, M.; Downward, J.; Felsher, D.W.; et al. The Glutathione Redox System Is Essential to Prevent Ferroptosis Caused by Impaired Lipid Metabolism in Clear Cell Renal Cell Carcinoma. Oncogene 2018, 37, 5435–5450. [Google Scholar] [CrossRef] [PubMed]
- Heravi, G.; Yazdanpanah, O.; Podgorski, I.; Matherly, L.H.; Liu, W. Lipid Metabolism Reprogramming in Renal Cell Carcinoma. Cancer Metastasis Rev. 2022, 41, 17–31. [Google Scholar] [CrossRef]
- Lauer, B.H.; Baker, B.E. Amino Acid Composition of Casein Isolated from the Milks of Different Species. Can. J. Zool. 2011, 55, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Stone, K.P.; Forney, L.A.; Sims, L.C.; Gutierrez, G.C.; Ghosh, S.; Gettys, T.W. Implementation of Dietary Methionine Restriction Using Casein after Selective, Oxidative Deletion of Methionine. iScience 2021, 24, 102470. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Xu, X.; Xu, Q.; Xu, X.; Azcarate-Peril, M.A.; Wu, X.; Liu, J.; Locasale, J.W.; Li, J.-L.; Shats, I.; et al. Dietary Methionine Restriction Impairs Anti-Tumor Immunity through Gut Microbiota. bioRxiv 2021. [Google Scholar] [CrossRef]
- Bian, Y.; Li, W.; Kremer, D.M.; Sajjakulnukit, P.; Li, S.; Crespo, J.; Nwosu, Z.C.; Zhang, L.; Czerwonka, A.; Pawłowska, A.; et al. Cancer SLC43A2 Alters T Cell Methionine Metabolism and Histone Methylation. Nature 2020, 585, 277–282. [Google Scholar] [CrossRef]
- Humayun, M.A.; Turner, J.M.; Elango, R.; Rafii, M.; Langos, V.; Ball, R.O.; Pencharz, P.B. Minimum Methionine Requirement and Cysteine Sparing of Methionine in Healthy School-Age Children. Am. J. Clin. Nutr. 2006, 84, 1080–1085. [Google Scholar] [CrossRef] [Green Version]
- Elshorbagy, A.K.; Valdivia-Garcia, M.; Mattocks, D.A.L.; Plummer, J.D.; Smith, A.D.; Drevon, C.A.; Refsum, H.; Perrone, C.E. Cysteine Supplementation Reverses Methionine Restriction Effects on Rat Adiposity: Significance of Stearoyl-Coenzyme A Desaturase. J. Lipid Res. 2011, 52, 104. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Cholewa, J.; Shang, H.; Yang, Y.; Ding, X.; Wang, Q.; Su, Q.; Zanchi, N.E.; Xia, Z. Advances in the Role of Leucine-Sensing in the Regulation of Protein Synthesis in Aging Skeletal Muscle. Front. Cell Dev. Biol. 2021, 9, 663. [Google Scholar] [CrossRef]
- Mitchell, J.C.; Evenson, A.R.; Tawa, N.E. Leucine Inhibits Proteolysis by the MTOR Kinase Signaling Pathway in Skeletal Muscle. J. Surg. Res. 2004, 121, 311. [Google Scholar] [CrossRef]
- Hodson, N.; Brown, T.; Joanisse, S.; Aguirre, N.; West, D.; Moore, D.; Baar, K.; Breen, L.; Philp, A. Characterisation of L-Type Amino Acid Transporter 1 (LAT1) Expression in Human Skeletal Muscle by Immunofluorescent Microscopy. Nutrients 2017, 10, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Alonso, J.J.; Guillén-Mancina, E.; Calderón-Montaño, J.M.; Jiménez-González, V.; Díaz-Ortega, P.; Burgos-Morón, E.; López-Lázaro, M. Artificial Diets Based on Selective Amino Acid Restriction versus Capecitabine in Mice with Metastatic Colon Cancer. Nutrients 2022, 14, 3378. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Reyes, I.; Chandel, N.S. Cancer Metabolism: Looking Forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef]
- Tajan, M.; Vousden, K.H. Dietary Approaches to Cancer Therapy. Cancer Cell 2020, 37, 767–785. [Google Scholar] [CrossRef]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, A.A.; Reznik, E.; Lee, C.H.; Creighton, C.J.; Brannon, A.R.; Luna, A.; Aksoy, B.A.; Liu, E.M.; Shen, R.; Lee, W.; et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 2016, 29, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Balan, M.; Sabarwal, A.; Choueiri, T.K.; Pal, S. Metabolic Reprogramming in Renal Cancer: Events of a Metabolic Disease. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188559. [Google Scholar] [CrossRef]
- Ochocki, J.D.; Khare, S.; Hess, M.; Ackerman, D.; Qiu, B.; Daisak, J.I.; Worth, A.J.; Lin, N.; Lee, P.; Xie, H.; et al. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metab. 2018, 27, 1263–1280.e6. [Google Scholar] [CrossRef] [Green Version]
- Yoon, C.-Y.; Shim, Y.-J.; Kim, E.-H.; Lee, J.-H.; Won, N.-H.; Kim, J.-H.; Park, I.-S.; Yoon, D.-K.; Min, B.-H. Renal Cell Carcinoma Does Not Express Argininosuccinate Synthetase and Is Highly Sensitive to Arginine Deprivation via Arginine Deiminase. Int. J. Cancer 2007, 120, 897–905. [Google Scholar] [CrossRef]
- Tang, X.; Wu, J.; Ding, C.-K.K.; Lu, M.; Keenan, M.M.; Lin, C.-C.; Lin, C.-A.; Wang, C.C.; George, D.; Hsu, D.S.; et al. Cystine Deprivation Triggers Programmed Necrosis in VHL-Deficient Renal Cell Carcinomas. Cancer Res. 2016, 76, 1892–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoerner, C.R.; Chen, V.J.; Fan, A.C. The “achilles Heel” of Metabolism in Renal Cell Carcinoma: Glutaminase Inhibition as a Rational Treatment Strategy. Kidney Cancer 2019, 3, 15–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meric-Bernstam, F.; Tannir, N.M.; Mier, J.W.; DeMichele, A.; Telli, M.L.; Fan, A.C.; Munster, P.N.; Carvajal, R.D.; Orford, K.W.; Bennett, M.K.; et al. Phase 1 Study of CB-839, a Small Molecule Inhibitor of Glutaminase (GLS), Alone and in Combination with Everolimus (E) in Patients (Pts) with Renal Cell Cancer (RCC). J. Clin. Oncol. 2016, 34, 4568. [Google Scholar] [CrossRef]
- Wu, J.; Yeung, S.-C.J.; Liu, S.; Qdaisat, A.; Jiang, D.; Liu, W.; Cheng, Z.; Liu, W.; Wang, H.; Li, L.; et al. Cyst(e)Ine in Nutrition Formulation Promotes Colon Cancer Growth and Chemoresistance by Activating MTORC1 and Scavenging ROS. Signal Transduct. Target Ther. 2021, 6, 188. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y.; Gao, X.; Kang, K.; Williams, J.G.; Tong, L.; Liu, J.; Ji, M.; Deterding, L.J.; Tong, X.; et al. HNF4α Regulates Sulfur Amino Acid Metabolism and Confers Sensitivity to Methionine Restriction in Liver Cancer. Nat. Commun. 2020, 11, 3978. [Google Scholar] [CrossRef]
- Lopez-Lazaro, M. Dual Role of Hydrogen Peroxide in Cancer: Possible Relevance to Cancer Chemoprevention and Therapy. Cancer Lett. 2007, 252, 1–8. [Google Scholar] [CrossRef]
- Jagannathan, L.; Cuddapah, S.; Costa, M. Oxidative Stress Under Ambient and Physiological Oxygen Tension in Tissue Culture. Curr. Pharmacol. Rep. 2016, 2, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, R.M.; Starkey, J.R.; Meadows, G.G. Dietary Restriction of Tyrosine and Phenylalanine: Inhibition of Metastasis of Three Rodent Tumors. J. Natl. Cancer Inst. 1987, 78, 759–769. [Google Scholar] [CrossRef]
- Bobulescu, I.A.; Pop, L.M.; Mani, C.; Turner, K.; Rivera, C.; Khatoon, S.; Kairamkonda, S.; Hannan, R.; Palle, K. Renal Lipid Metabolism Abnormalities in Obesity and Clear Cell Renal Cell Carcinoma. Metabolites 2021, 11, 608. [Google Scholar] [CrossRef]
- Hamaker, M.E.; Oosterlaan, F.; van Huis, L.H.; Thielen, N.; Vondeling, A.; van den Bos, F. Nutritional Status and Interventions for Patients with Cancer–A Systematic Review. J. Geriatr. Oncol. 2021, 12, 6–21. [Google Scholar] [CrossRef]
- Plaisance, E.P.; Greenway, F.L.; Boudreau, A.; Hill, K.L.; Johnson, W.D.; Krajcik, R.A.; Perrone, C.E.; Orentreich, N.; Cefalu, W.T.; Gettys, T.W. Dietary Methionine Restriction Increases Fat Oxidation in Obese Adults with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E836–E840. [Google Scholar] [CrossRef] [PubMed]
- Solms, J. The Taste of Amino Acids, Peptides, and Proteins. J. Agric. Food Chem. 1969, 17, 686–688. [Google Scholar] [CrossRef]
- Snaebjornsson, M.T.; Janaki-Raman, S.; Schulze, A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab. 2020, 31, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Tan, Y.; Cardenas, H.; Vayngart, D.; Huang, H.; Wang, Y.; Keathley, R.; Wei, J.-J.; Ferreira, C.R.; Cheng, J.-X.; et al. The Balance between Saturated and Unsaturated Fatty Acids Regulates Ovarian Cancer Cell Fate. bioRxiv 2022. [Google Scholar] [CrossRef]
- Elshorbagy, A.K.; Valdivia-Garcia, M.; Mattocks, D.A.L.; Plummer, J.D.; Orentreich, D.S.; Orentreich, N.; Refsum, H.; Perrone, C.E. Effect of Taurine and N-Acetylcysteine on Methionine Restriction-Mediated Adiposity Resistance. Metabolism 2013, 62, 509–517. [Google Scholar] [CrossRef]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef] [Green Version]
- López-Lázaro, M. A Simple and Reliable Approach for Assessing Anticancer Activity in Vitro. Curr. Med. Chem. 2015, 22, 1324–1334. [Google Scholar] [CrossRef]
- Calderon-Montano, J.M.; Burgos-Moron, E.; Lopez-Lazaro, M. The in Vivo Antitumor Activity of Cardiac Glycosides in Mice Xenografted with Human Cancer Cells Is Probably an Experimental Artifact. Oncogene 2014, 33, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.P.; Hrushesky, W.J. A Murine Renal Cell Carcinoma. J. Natl. Cancer Inst. 1973, 50, 1013–1025. [Google Scholar] [CrossRef]
Amino Acid (g/L) | M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
---|---|---|---|---|---|---|---|---|
Leucine | 0.528 | 0.528 | 0.528 | 0.705 | 0.705 | 0.705 | 0.705 | 0.528 |
Isoleucine | 0.096 | 0.096 | 0.096 | 0.096 | 0.096 | 0.096 | 0.096 | 0.096 |
Lysine | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
Valine | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
Phenylalanine | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 |
Threonine | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Histidine | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Methionine | 0.048 | 0.048 | 0.048 | 0.133 | 0.133 | 0.133 | 0.133 | 0.048 |
Tryptophan | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
Glutamine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Glycine | 0.2 | - | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Aspartate | 0.02 | - | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | - |
Alanine | 0.02 | - | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | - |
Arginine | 0.1 | - | 0.1 | - | - | - | - | - |
Serine | 0.04 | - | - | 0.04 | 0.04 | - | - | - |
Cysteine | 0.06 | - | - | - | 0.06 | 0.06 | - | - |
Asparagine | 0.05 | - | - | - | - | - | - | - |
Proline | 0.02 | - | - | - | - | - | - | - |
Glutamate | 0.02 | - | - | - | - | - | - | - |
Tyrosine | 0.1 | - | - | - | - | - | - | - |
Artificial Diet | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 |
---|---|---|---|---|---|---|---|---|---|---|
Dietary Constituents | ||||||||||
Casein | - | - | - | - | - | - | - | - | - | - |
Glutamine (Gln) | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Leucine (Leu) | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Methionine (Met) | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Phenylalanine (Phe) | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 |
Histidine (His) | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Lysine (Lys) | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 |
Threonine (Thr) | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 |
Isoleucine (Iso) | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 |
Valine (Val) | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 |
Tryptophan (Trp) | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
Cystine (CySS) | - | - | - | - | - | - | - | - | - | 1.00 |
Arginine (Arg) | - | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Glycine (Gly) | - | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Serine (Ser) | - | - | - | - | - | - | - | - | 1.50 | - |
Tyrosine (Tyr) | - | - | - | - | - | - | 1.00 | - | - | - |
Alanine (Ala) | - | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Aspartate (Asp) | - | 2.00 | - | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Proline (Pro) | - | - | - | - | - | 1.50 | - | - | - | - |
Asparagine (Asn) | - | - | - | - | 1.50 | - | - | - | - | - |
Glutamate (Glu) | - | - | - | - | - | - | - | 2.00 | - | - |
Olive Oil | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 |
Salmon Oil | - | - | - | - | - | - | - | - | - | - |
Choline | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Vitamin Mix | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Mineral Mix | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 |
Sucrose | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
Celulose | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Corn Starch | 37.25 | 31.75 | 34.75 | 32.75 | 30.25 | 30.25 | 30.75 | 29.75 | 30.25 | 30.75 |
Total (g or %) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Artificial Diet | T11 | T12 | T13 | T14 | T15 | T16 | T17 | T18 | ||
Dietary Constituents | ||||||||||
Casein | - | - | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | ||
Glutamine (Gln) | 6.00 | 6.00 | - | - | - | - | - | 5.00 | ||
Leucine (Leu) | 6.00 | 6.00 | - | - | - | - | 2.50 | 2.50 | ||
Methionine (Met) | 0.60 | 0.60 | - | - | 0.50 | 0.50 | - | - | ||
Phenylalanine (Phe) | 2.16 | 2.16 | - | - | - | - | - | - | ||
Histidine (His) | 0.85 | 0.85 | - | - | - | - | - | - | ||
Lysine (Lys) | 2.64 | 2.64 | - | - | - | - | - | - | ||
Threonine (Thr) | 1.80 | 1.80 | - | - | - | - | - | - | ||
Isoleucine (Iso) | 1.07 | 1.07 | - | - | - | - | - | - | ||
Valine (Val) | 2.64 | 2.64 | - | - | - | - | - | - | ||
Tryptophan (Trp) | 0.24 | 0.24 | - | - | - | - | - | - | ||
Cystine (CySS) | - | - | - | 0.50 | - | 0.50 | - | - | ||
Arginine (Arg) | 1.50 | 1.50 | - | - | - | - | - | - | ||
Glycine (Gly) | 1.00 | 1.00 | - | - | - | - | - | - | ||
Serine (Ser) | - | - | - | - | - | - | - | - | ||
Tyrosine (Tyr) | - | - | - | - | - | - | - | - | ||
Alanine (Ala) | 1.00 | 1.00 | - | - | - | - | - | - | ||
Aspartate (Asp) | 2.00 | 2.00 | - | - | - | - | - | - | ||
Proline (Pro) | - | - | - | - | - | - | - | - | ||
Asparagine (Asn) | - | - | - | - | - | - | - | - | ||
Glutamate (Glu) | - | - | - | - | - | - | - | - | ||
Olive oil | 5.00 | 25.00 | - | - | - | - | - | - | ||
Salmon oil | - | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
Choline | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | ||
Vitamin Mix | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
Mineral Mix | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | ||
Sucrose | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | ||
Celulose | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | ||
Corn starch | 40.75 | 20.75 | 68.25 | 67.75 | 67.75 | 67.25 | 65.75 | 60.75 | ||
Total (g or %) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Treatment | n | Survival Time (Mean ± SEM; Days) | Survival Improvement vs. Control (Days) | p-Value vs. Control |
---|---|---|---|---|
Control | 16 | 35.2 ± 2.5 | - | - |
Anti-PD-1 | 9 | 41.9 ± 4.2 | +6.7 | 0.1070 |
Sunitinib | 7 | 62.1 ± 7.8 | +27.0 | 0.0032 |
Diet T2 | 27 | 137.8 ± 42.6 | +102.6 | <0.0001 |
Treatment | n | Survival Time (Mean ± SEM; Days) | Survival Improvement vs. Control (Days) | p-Value vs. Control |
---|---|---|---|---|
Control diet | 3 | 30.3 ± 1.3 | - | - |
Anti-PD-1 | 6 | 43.8 ± 5.1 | +13.4 | 0.0141 |
T2 | 7 | 47.3 ± 4.1 | +16.9 | 0.0016 |
T3 (−Ala, −Asp) | 3 | 36.7 ± 13.0 | +6.3 | 0.5023 |
T4 (−Gly) | 3 | 40.3 ± 2.0 | +10.0 | 0.0310 |
T5 (+Asn) | 3 | 50.3 ± 3.7 | +20.0 | 0.0310 |
T6 (+Pro) | 3 | 47.0 ± 5.7 | +16.7 | 0.0310 |
T7 (+Tyr) | 3 | 73.0 ± 14.0 | +42.7 | 0.0310 |
T8 (+Glu) | 3 | 40.3 ± 7.9 | +10.0 | 0.1120 |
T9 (+Ser) | 3 | 54.7 ± 7.8 | +24.3 | 0.0310 |
T10 (+CySS) | 3 | 38.7 ± 0.9 | +8.3 | 0.0310 |
T11 (5% lipids) | 3 | 55.0 ± 4.0 | +24.7 | 0.0310 |
T12 (25% lipids) | 3 | 43.0 ± 3.0 | +12.7 | 0.0310 |
Treatment | n | Methionine Supplement (%) | Cysteine * Supplement (%) | Leucine Supplement (%) | Survival Time (Mean ± SEM; Days) | Survival Improvement vs. Control (Days) | p-Value vs. Control |
---|---|---|---|---|---|---|---|
Control | 4 | - | - | - | 30.3 ± 3.6 | - | - |
Sunitinib | 4 | - | - | - | 48.0 ± 3.6 | +17.3 | 0.0308 |
T13 | 4 | - | - | - | 33.3 ± 4.4 | +3.0 | 0.5654 |
T14 | 4 | - | 0.5 | - | 52.5 ± 12.8 | +22.3 | 0.1893 |
T15 | 4 | 0.5 | - | - | 30.0 ± 2.1 | −0,3 | - |
T16 | 4 | 0.5 | 0.5 | - | 29.8 ± 1.9 | −0.5 | 0.8864 |
T17 | 4 | - | - | 2.5 | 103.0 ± 62.5 | +72.3 | 0.0704 |
Treatment | n | Survival Time (Mean ± SEM; Days) | Survival Improvement vs. Control (Days) | p-Value vs. Control |
---|---|---|---|---|
Control | 7 | 26.9 ± 3.2 | - | - |
Sunitinib | 7 | 47.8 ± 2.8 | +20.6 | 0.0009 |
T18 | 10 | 41.4 ± 11.0 | +14.5 | 0.0788 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Montaño, J.M.; Guillén-Mancina, E.; Jiménez-Alonso, J.J.; Jiménez-González, V.; Burgos-Morón, E.; Mate, A.; Pérez-Guerrero, M.C.; López-Lázaro, M. Manipulation of Amino Acid Levels with Artificial Diets Induces a Marked Anticancer Activity in Mice with Renal Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 16132. https://doi.org/10.3390/ijms232416132
Calderón-Montaño JM, Guillén-Mancina E, Jiménez-Alonso JJ, Jiménez-González V, Burgos-Morón E, Mate A, Pérez-Guerrero MC, López-Lázaro M. Manipulation of Amino Acid Levels with Artificial Diets Induces a Marked Anticancer Activity in Mice with Renal Cell Carcinoma. International Journal of Molecular Sciences. 2022; 23(24):16132. https://doi.org/10.3390/ijms232416132
Chicago/Turabian StyleCalderón-Montaño, José Manuel, Emilio Guillén-Mancina, Julio José Jiménez-Alonso, Víctor Jiménez-González, Estefanía Burgos-Morón, Alfonso Mate, María Concepción Pérez-Guerrero, and Miguel López-Lázaro. 2022. "Manipulation of Amino Acid Levels with Artificial Diets Induces a Marked Anticancer Activity in Mice with Renal Cell Carcinoma" International Journal of Molecular Sciences 23, no. 24: 16132. https://doi.org/10.3390/ijms232416132