GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis
Abstract
:1. Introduction
2. Results
2.1. Identification of DEGs
2.2. WGCNA
2.3. KEGG and GO
2.4. Selection of Hub Genes
2.5. Prognostic Value of GOLM1 and FAM49B in HNSCC
2.6. PPI Analysis of GOLM1 and FAM49B
2.7. Correlation Analyses between GOLM1 and FAM49B Expression and Immune Cell Infiltration
2.8. GSEA
2.9. Expression of GOLM1 and FAM49B in HNSCC Tissues
2.10. Clinicopathological Significance of GOLM1 and FAM49B Expression in HNSCC
2.11. Correlation between GOLM1 and FAM49B Expression in Tumor Cells
3. Discussion
4. Materials and Methods
4.1. Microarray Datasets
4.2. Identification of DEGs
4.3. Weighted Gene Co-Expression Network Analysis
4.4. GO and KEGG Pathway Analysis
4.5. Survival Analysis of Hub Genes
4.6. PPI Analysis of Two Single Genes
4.7. GSEA
4.8. TIMER2.0 Database Analysis
4.9. Tissue Microarrays
4.10. Immunohistochemistry Analysis
4.11. Evaluation of Immunohistochemistry
4.12. Evaluating Results of GOLM1 and FAM49B Expression
4.13. Multiplex Immunofluorescence Staining
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Tolstonog, G.; Simon, C. Trends in Surgical Research in Head and Neck Cancer. Curr. Treat. Options Oncol. 2017, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.L.; Even, C.; Mesia, R.; Remenar, E.; Daste, A.; Delord, J.P.; Krauss, J.; Saba, N.F.; Nabell, L.; Ready, N.E.; et al. Safety and Efficacy of Durvalumab With or Without Tremelimumab in Patients With PD-L1-Low/Negative Recurrent or Metastatic HNSCC The Phase 2 CONDOR Randomized Clinical Trial. JAMA Oncol. 2019, 5, 195–203. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, J.; Zhang, L.; Dong, S.; Zhang, J.; Liu, Y.; Zhou, H.; Dong, W. Identification of Potential Biomarkers and Survival Analysis for Head and Neck Squamous Cell Carcinoma Using Bioinformatics Strategy: A Study Based on TCGA and GEO Datasets. BioMed Res. Int. 2019, 2019, 7376034. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, Y.; Linares, A.G.; Roncoroni, M.; Liu, C.; Steensels, J.; Verstrepen, K.J. High-throughput system-wide engineering and screening for microbial biotechnology. Curr. Opin. Biotechnol. 2017, 46, 120–125. [Google Scholar] [CrossRef]
- Kitamura, N.; Sento, S.; Yoshizawa, Y.; Sasabe, E.; Kudo, Y.; Yamamoto, T. Current Trends and Future Prospects of Molecular Targeted Therapy in Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 22, 240. [Google Scholar] [CrossRef]
- Canning, M.; Guo, G.; Yu, M.; Myint, C.; Groves, M.W.; Byrd, J.K.; Cui, Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front. Cell Dev. Biol. 2019, 7, 52. [Google Scholar] [CrossRef]
- Fort, L.; Batista, J.M.; Thomason, P.A.; Spence, H.J.; Whitelaw, J.A.; Tweedy, L.; Greaves, J.; Martin, K.J.; Anderson, K.I.; Brown, P.; et al. Fam49/CYRI interacts with Rac1 and locally suppresses protrusions. Nat. Cell Biol. 2018, 20, 1159–1171. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, E.; Stone, R.; Hume, P.J.; Greene, N.P.; Koronakis, V. Structure of CYRI-B (FAM49B), a key regulator of cellular actin assembly. Acta Cryst. D Struct. Biol. 2020, 76, 1015–1024. [Google Scholar] [CrossRef]
- Shang, W.; Jiang, Y.; Boettcher, M.; Ding, K.; Mollenauer, M.; Liu, Z.; Wen, X.; Liu, C.; Hao, P.; Zhao, S.; et al. Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Proc. Natl. Acad. Sci. USA 2018, 115, E4051–E4060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Du, P.; Li, Y.; Zhu, Q.; Song, X.; Liu, S.; Hao, J.; Liu, L.; Liu, F.; Hu, Y.; et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int. J. Biol. Sci. 2020, 16, 739–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Xiong, Y.; Wang, Z.; Han, J.; Shi, S.; He, J.; Shen, N.; Wu, W.; Wang, R.; Lv, W.; et al. FAM49B promotes breast cancer proliferation, metastasis, and chemoresistance by stabilizing ELAVL1 protein and regulating downstream Rab10/TLR4 pathway. Cancer Cell Int. 2021, 21, 534. [Google Scholar] [CrossRef] [PubMed]
- Chattaragada, M.S.; Riganti, C.; Sassoe, M.; Principe, M.; Santamorena, M.M.; Roux, C.; Curcio, C.; Evangelista, A.; Allavena, P.; Salvia, R.; et al. FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis. Oncogene 2018, 37, 697–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Marian, T.A.; Wei, Z. ZFR promotes cell proliferation and tumor development in colorectal and liver cancers. Biochem. Biophys. Res. Commun. 2019, 513, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Kladney, R.D.; Bulla, G.A.; Guo, L.; Mason, A.L.; Tollefson, A.E.; Simon, D.J.; Koutoubi, Z.; Fimmel, C.J. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 2000, 249, 53–65. [Google Scholar] [CrossRef]
- Kladney, R.D.; Cui, X.; Bulla, G.A.; Brunt, E.M.; Fimmel, C.J. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology 2002, 35, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Varambally, S.; Laxman, B.; Mehra, R.; Cao, Q.; Dhanasekaran, S.M.; Tomlins, S.A.; Granger, J.; Vellaichamy, A.; Sreekumar, A.; Yu, J.; et al. Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer. Neoplasia 2008, 10, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; He, X.; Xiong, Y.; Wang, J.; Zhang, L.; Leung, E.L.; Li, G. The functional landscape of Golgi membrane protein 1 (GOLM1) phosphoproteome reveal GOLM1 regulating P53 that promotes malignancy. Cell Death Discov. 2021, 7, 42. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, B.; Li, H.; Guo, L.; Ye, Q. Recent advances of GOLM1 in hepatocellular carcinoma. Hepat. Oncol. 2020, 7, HEP22. [Google Scholar] [CrossRef]
- Sui, T.; Wang, X.; Li, L.; Liu, J.; Qiao, N.; Duan, L.; Shi, M.; Huang, J.; Yang, H.; Cheng, G. GOLM1 suppresses autophagy-mediated anti-tumor immunity in hepatocellular carcinoma. Signal Transduct. Target. Ther. 2021, 6, 335. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yao, M.; Yan, Y.; Liu, Y.; Wen, X.; Chen, X.; Lu, F. Deoxycholic Acid Upregulates Serum Golgi Protein 73 through Activating NF-κB Pathway and Destroying Golgi Structure in Liver Disease. Biomolecules 2021, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, X.; Liu, S.; Zhou, S.; Chen, Z.; Jin, H. Golgi Phosphoprotein 73: The Driver of Epithelial-Mesenchymal Transition in Cancer. Front. Oncol. 2021, 11, 783860. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, L.; Hu, L.; Peng, T. Golgi phosphoprotein 2 (GOLPH2/GP73/GOLM1) interacts with secretory clusterin. Mol. Biol. Rep. 2011, 38, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Liu, G.L.; Liu, B.; Liu, T. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway. J. Cell. Mol. Med. 2018, 22, 1650–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Liu, Q.; Li, Z.; Zhang, R.; Jia, C.; Yang, Z.; Zhao, H.; Ya, S.; Mao, R.; Ailijiang, T.; et al. GP73 promotes epithelial-mesenchymal transition and invasion partly by activating TGF-β1/Smad2 signaling in hepatocellular carcinoma. Carcinogenesis 2018, 39, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Deng, G.; Liu, J.; Liu, B.; Yuan, F.; Yang, X.; Chen, Q. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway. Brain Res. 2019, 1717, 117–126. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Z.; Liu, L.; Zhang, R.; Geng, Y.; Fan, M.; Zhu, W.; Lu, M.; Lu, L.; Jia, H.; et al. GOLM1 exacerbates CD8+ T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct. Target. Ther. 2021, 6, 397. [Google Scholar] [CrossRef]
- Bakhoum, M.F.; Esmaeli, B. Molecular Characteristics of Uveal Melanoma: Insights from the Cancer Genome Atlas (TCGA) Project. Cancers 2019, 11, 1061. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D. The Gene Ontology and the Meaning of Biological Function. Methods Mol. Biol. 2017, 1446, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020, 48, W509–W514. [Google Scholar] [CrossRef]
Name of Pathway | NES | NOM p-Val | FDR q-Val | |
---|---|---|---|---|
GOLM1 | Cell adhesion molecules (CAMs) | 2.19 | 0.000 | 0.003 |
Complement and coagulation cascades | 2.12 | 0.000 | 0.008 | |
TGF-beta signaling pathway | 2.10 | 0.000 | 0.007 | |
Focal adhesion | 2.06 | 0.002 | 0.011 | |
Vascular smooth muscle contraction | 2.06 | 0.000 | 0.009 | |
ECM–receptor interaction | 2.05 | 0.000 | 0.010 | |
Colorectal cancer | 2.05 | 0.002 | 0.009 | |
Systemic lupus erythematosus | 2.01 | 0.004 | 0.015 | |
Pathways in cancer | 1.99 | 0.000 | 0.016 | |
N-Glycan biosynthesis | 1.96 | 0.004 | 0.020 | |
FAM49B | Antigen processing and presentation | 2.33 | 0.000 | 0.000 |
Oocyte meiosis | 2.31 | 0.000 | 0.000 | |
RNA degradation | 2.29 | 0.000 | 0.000 | |
NOD-like receptor signaling pathway | 2.28 | 0.000 | 0.000 | |
Cytosolic DNA-sensing pathway | 2.25 | 0.000 | 0.000 | |
Ubiquitin mediated proteolysis | 2.20 | 0.000 | 0.001 | |
RIG-I-like receptor signaling pathway | 2.16 | 0.000 | 0.002 | |
Basal transcription factors | 2.13 | 0.000 | 0.003 | |
Proteasome | 2.12 | 0.002 | 0.003 | |
Pyrimidine metabolism | 2.12 | 0.000 | 0.003 |
Parameters | Cases (n = 81) | GOLM1 in Tumor Cells | ||
---|---|---|---|---|
High | Low | p Value | ||
Gender | 1.000 * | |||
Male | 73 | 10 | 63 | |
Female | 8 | 1 | 7 | |
Age | 0.965 * | |||
≤64 | 63 | 8 | 55 | |
>64 | 18 | 3 | 15 | |
Depth of invasion (T) | 1.000 * | |||
T1, T2 | 45 | 6 | 39 | |
T3, T4 | 36 | 5 | 31 | |
Lymph-node metastasis (N) | 0.648 | |||
N0 | 42 | 5 | 37 | |
N1, N2 | 39 | 6 | 33 | |
Grade | <0.001 * | |||
I, II | 58 | 2 | 56 | |
III | 23 | 9 | 14 | |
TNM stage | 0.272 | |||
I + II | 24 | 1 | 23 | |
III | 41 | 7 | 34 | |
IVA | 16 | 3 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; Zhang, T.; Sun, W.; Liang, R.; Ganesh, S.; Chen, H. GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis. Int. J. Mol. Sci. 2022, 23, 15433. https://doi.org/10.3390/ijms232315433
Xi Y, Zhang T, Sun W, Liang R, Ganesh S, Chen H. GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis. International Journal of Molecular Sciences. 2022; 23(23):15433. https://doi.org/10.3390/ijms232315433
Chicago/Turabian StyleXi, Yue, Tiange Zhang, Wei Sun, Ruobing Liang, Sridha Ganesh, and Honglei Chen. 2022. "GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis" International Journal of Molecular Sciences 23, no. 23: 15433. https://doi.org/10.3390/ijms232315433
APA StyleXi, Y., Zhang, T., Sun, W., Liang, R., Ganesh, S., & Chen, H. (2022). GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis. International Journal of Molecular Sciences, 23(23), 15433. https://doi.org/10.3390/ijms232315433