Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size, Infrared Spectra and AFM Analysis of Nanocellulose
2.2. TEM Analysis
2.3. XRD Analysis
2.4. XPS Analysis
2.5. Thermal Stability
2.6. Colorimetric and UV-Vis Spectroscopic Analysis
2.7. Glucose Concentration Detection
3. Materials and Methods
3.1. Materials
3.2. Preparation of Nanocellulose
3.3. Preparation of AgNPs
3.4. Detection of Glucose Concentration
3.5. Characterization Methods
3.5.1. Particle Size Distribution of Nanocellulose
3.5.2. Fourier Transform Infrared Spectroscopy (FT-IR)
3.5.3. Atomic Force Microscopy (AFM)
3.5.4. Transmission Electron Microscopy (TEM)
3.5.5. Colorimetric and UV-Vis Spectrophotometer
3.5.6. X-ray Diffraction (XRD)
3.5.7. X-ray Photoelectron Spectroscopy (XPS)
3.5.8. Thermogravimetric Analysis (TGA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falamarzpour, P.; Behzad, T.; Zamani, A. Preparation of nanocellulose reinforced chitosan films, cross-linked by adipic acid. Int. J. Mol. Sci. 2017, 18, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.Y.; Zhang, Z.K.; Liu, K.F.; Ji, X.X.; Fatehi, P.; Chen, J.C. A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications. J. Nanobiotechnol. 2022, 20, 312. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Wang, X.F.; He, M.; Zhang, Z.J.; Chen, J.C.; Yang, G.H. Fabrication of high-performance nanofiltration membranes by using sulfated cellulose nanofibril as the intermediate support layer. Desalination 2022, 532, 115741. [Google Scholar] [CrossRef]
- Lokanathan, A.R.; Uddin, K.M.A.; Rojas, O.J.; Laine, J. Cellulose nanocrystal-mediated synthesis of silver nanoparticles: Role of sulfate groups in nucleation phenomena. Biomacromolecules 2014, 15, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.S.; Jiang, F.; Hsieh, Y.L.; Nitin, N. Cellulose nanofibrils improve dispersibility and stability of silver nanoparticles and induce production of bacterial extracellular polysaccharides. J. Mater. Chem. B 2014, 2, 6226–6235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.W.; Sun, H.Y.; Tan, S.N.; Gao, J.; Fu, Y.J.; Liu, Z.G. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg. Chem. Commun. 2018, 2, 44–50. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Chen, S.; Feng, C.; Chen, S.Y.; Yin, N.; Yang, J.X.; Wang, H.P.; Xu, Y.M. Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 2015, 22, 373–383. [Google Scholar] [CrossRef]
- Pawcenis, D.; Chlebda, D.K.; Jędrzejczyk, R.J.; Leśniak, M.; Sitarz, M.; Łojewska, J. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose. Eur. Polym. J. 2019, 7, 242–255. [Google Scholar] [CrossRef]
- Cieśla, J.; Chylińska, M.; Zdunek, A.; Szymańska-Chargot, M. Effect of different conditions of synthesis on properties of silver nanoparticles stabilized by nanocellulose from carrot pomace. Carbohydr. Polym. 2020, 10, 116513. [Google Scholar] [CrossRef]
- Liu, H.; Wang, D.; Song, Z.Q.; Shang, S.B. Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 2011, 18, 67–74. [Google Scholar] [CrossRef]
- Zaidi, S.A.; Shin, J.H. Recent developments in nanostructure based electrochemical glucose sensors. Talanta 2016, 3, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Ramon-Marquez, T.; Sesay, A.M.; Panjan, P.; Medina-Castillo, A.L.; Fernandez-Gutierrez, A.; Fernandez-Sanchez, J.F. A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose. Sens. Actuators B-Chem. 2017, 10, 156–161. [Google Scholar] [CrossRef]
- Turkmen, E.; Bas, S.Z.; Gulce, H.; Yildiz, S. Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode. Electrochim. Acta 2014, 3, 93–102. [Google Scholar] [CrossRef]
- Dong, Q.C.; Ryu, H.; Lei, Y. Metal Oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta 2021, 2, 137744. [Google Scholar] [CrossRef]
- Esmaeili, C.; Abdi, M.M.; Mathew, A.P.; Jonoobi, M.; Oksman, K.; Rezayi, M. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose. Sensors 2015, 15, 24681–24697. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Sun, J.S.; Jia, Y.X.; Yang, L.; Wang, N.X.; Xianyu, Y.L.; Chen, W.W.; Li, X.H.; Cha, R.T.; Jiang, X.Y. Nanocrystalline cellulose-assisted generation of silver nanoparticles for non-enzymatic glucose detection and antibacterial agent. Biomacromolecules 2016, 17, 2472–2478. [Google Scholar] [CrossRef]
- Brodin, F.W.; Theliander, H. A comparison of softwood and birch kraft pulp fibers as raw materials for production of TEMPO-oxidized pulp, MFC and superabsorbent foam. Cellulose 2013, 20, 2825–2838. [Google Scholar] [CrossRef] [Green Version]
- Melikoğlu, A.Y.; Bilek, S.E.; Cesur, S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr. Polym. 2019, 215, 330–337. [Google Scholar] [CrossRef]
- Fan, F.W.; Zhu, M.T.; Fang, K.Y.; Cao, E.D.; Yang, Y.Z.; Xie, J.P.; Deng, Z.M.; Chen, Y.R.; Cao, X.W. Extraction and characterization of cellulose nanowhiskers from TEMPO oxidized sisal fibers. Cellulose 2022, 29, 213–222. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, H.Y.; Chung, Y.S.; Park, W.H.; Youk, J.H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Xue, Y.; He, M.; Yan, J.Q.; Lucia, L.A.; Chen, J.C.; Yu, J.H.; Yang, G.H. Facile preparation and characteristic analysis of sulfated cellulose nanofibril via the pretreatment of sulfamic acid-glycerol based deep eutectic solvents. Nanomaterials 2021, 11, 2778. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Xie, C.; Fang, G.Z.; Bu, L.X.; Liu, L.Y.; Guo, P.L.; Li, Z.L. Morphology analysis of nano/microcrystalline cellulose from eucalyptus pulp and cotton nanocrystalline cellulose. Biomass Chem. Eng. 2011, 45, 5–8. [Google Scholar]
- Xing, L.D.; Hu, C.S.; Zhang, W.W.; Guan, L.T.; Gu, J. Transition of cellulose supramolecular structure during concentrated acid treatment and its implication for cellulose nanocrystal yield. Carbohydr. Polym. 2019, 229, 115539. [Google Scholar] [CrossRef]
- Li, C.X.; Liu, Y.Y.; Feng, H.S.; Ma, S.Z. Effect of superfine grinding on the physicochemical properties of bulbs of Fritillaria unibracteata Hsiao et K. C. Hsia powder. Food Sci. Nutr. 2019, 7, 3527–3538. [Google Scholar] [CrossRef] [Green Version]
- Winuprasith, T.; Suphantharika, M. Microfibrillated cellulose from mangosteen (Garcini mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll. 2013, 32, 383–394. [Google Scholar] [CrossRef]
- Rhim, J.W.; Reddy, J.P.; Luo, X.G. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 2015, 22, 407–420. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Li, W.Y.; Fan, X.Z.; Liu, J.G.; Xu, W.G.; Yan, C.W. Modified multi-walled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 2013, 111, 635–641. [Google Scholar] [CrossRef]
- Shen, Z.G.; Han, G.C.; Liu, C.F.; Wang, X.Y.; Sun, R.C. Green synthesis of silver nanoparticles with bagasse for colorimetric detection of cysteine in serum samples. J. Alloys Compd. 2016, 686, 82–89. [Google Scholar] [CrossRef]
- Natarajan, K.; Selvaraj, S.; Murty, V.R. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct. 2010, 5, 135–140. [Google Scholar]
- Fan, L.; Zhang, H.; Gao, M.X.; Zhang, M.; Liu, P.T.; Liu, X.L. Cellulose nanocrystals/silver nanoparticles: In-situ preparation and application in PVA films. Holzforschung 2020, 74, 523–528. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Stamplecoskie, K.G.; Scaiano, J.C. Kinetics of the formation of silver dimers: Early stages in the formation of silver nanoparticles. J. Am. Chem. Soc. 2011, 133, 3913–3920. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Yang, G.H.; Chen, J.C.; Ji, X.X.; Wang, Q. Production and characterization of cellulose nanofibrils from different chemical and mechanical pulps. J. Wood Chem. Technol. 2018, 2, 149–158. [Google Scholar] [CrossRef]
- Shen, Z.H.; Oh, K.K.; Kwon, S.; Toivakka, M.; Lee, H.L. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage. Int. J. Biol. Macromol. 2021, 3, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.R.; He, M.; Yang, G.H.; Ji, X.X.; Lucia, L.A.; Chen, J.C. A feasible approach efficiently redisperse dried cellulose nanofibrils in water: Vacuum or freeze drying in the presence of sodium chloride. Cellulose 2021, 28, 829–842. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef]
- Tonoli, G.H.D.; Teixeira, E.M.; Corrêa, A.C.; Marconcini, J.M.; Caixeta, L.A.; Pereira-da-Silva, M.A.; Mattoso, L.H.C. Cellulose micro/nanofibers from Eucalyptus kraft pulp: Preparation and properties. Carbohydr. Polym. 2012, 89, 80–88. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yang, G.; He, M.; Qi, L.; Li, X.; Chen, J. Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer. Int. J. Mol. Sci. 2022, 23, 15345. https://doi.org/10.3390/ijms232315345
Zhang Z, Yang G, He M, Qi L, Li X, Chen J. Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer. International Journal of Molecular Sciences. 2022; 23(23):15345. https://doi.org/10.3390/ijms232315345
Chicago/Turabian StyleZhang, Zhiguo, Guihua Yang, Ming He, Letian Qi, Xincai Li, and Jiachuan Chen. 2022. "Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer" International Journal of Molecular Sciences 23, no. 23: 15345. https://doi.org/10.3390/ijms232315345
APA StyleZhang, Z., Yang, G., He, M., Qi, L., Li, X., & Chen, J. (2022). Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer. International Journal of Molecular Sciences, 23(23), 15345. https://doi.org/10.3390/ijms232315345