Synthesis and Characterization of Ligand-Stabilized Silver Nanoparticles and Comparative Antibacterial Activity against E. coli
Abstract
1. Introduction
2. Results
2.1. UV-Vis and FTIR Spectroscopy
2.2. EDAX Analysis
2.3. Zeta Potential and Size Measurement
2.4. TEM and SEM Analyses
2.5. Antibacterial Assay Analysis
3. Discussion
4. Materials and Methods
4.1. Synthesis of Benzoxazin-4-One Derivatives
4.2. Synthesis of Quinazolinone Derivatives
4.3. Synthesis of Silver Nanoparticles
4.4. Antibacterial Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgNPs | silver nanoparticles |
NPs | nanoparticles |
NaBH4 | sodium borohydride |
h | hour(s) |
min | minute(s) |
H2O | Water |
References
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Houdt, R.V. Antimicrobial Silver: Uses, Toxicity, and Potential for Resistance. BioMetals 2013, 26, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical Uses of Silver: History, Myths, and Scientific Evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Buyana, B.; Feketshane, Z.; Aderibigbe, B.A. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021, 13, 964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A Mechanistic Study of the Antibacterial Effect of Silver Ions On Escherichia coli And Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schluesener, H.J. Nanosilver: A Nanoproduct in Medical Application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. J. Nanobiotechnology 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Masri, A.; Anwar, A.; Khan, N.A.; Shahbaz, M.S.; Khan, K.M.; Shahabuddin, S.; Siddiqui, R. Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics 2019, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An Overview of Quinazolines: Pharmacological Significance and Recent Developments. Eur. J. Med. Chem. 2018, 151, 628–685. [Google Scholar] [CrossRef] [PubMed]
- Dogan, Y.E.; Satilmis, B.; Uyar, T. Synthesis and Characterization of Bio-Based Benzoxazines Derived from Thymol. J. Appl. Polym. Sci. 2019, 136, 47371. [Google Scholar] [CrossRef]
- Liu, J.; Agag, T.; Ishida, H. Main-Chain Benzoxazine Oligomers: A New Approach for Resin Transfer Moldable Neat Benzoxazines for High Performance Applications. Polymer 2010, 51, 5688–5694. [Google Scholar] [CrossRef]
- Gjorgjieva, M.; Tomašič, T.; Kikelj, D.; Mašič, L.P. Benzothiazole-Based Compounds in Antibacterial Drug Discovery. Curr. Med. Chem. 2019, 25, 5218–5236. [Google Scholar] [CrossRef] [PubMed]
- Cherrington, C.A.; Hinton, M.; Mead, G.C.; Chopra, I. Organic Acids: Chemistry, Antibacterial Activity, and Practical Applications. Adv. Microb. Physiol. 1991, 32, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Jana, J.; Ganguly, M.; Pal, T. Enlightening Surface Plasmon Resonance Effect of Metal Nanoparticles for Practical Spectroscopic Application. RSC Adv. 2016, 6, 86174–86211. [Google Scholar] [CrossRef]
- Lee, P.S.; Lee, K.H. Escherichia Coli—A Model System That Benefits from and Contributes to the Evolution of Proteomics. Biotechnol. Bioeng. 2003, 84, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Radwan, A.A.; Alanazi, F.K. Biological Activity of Quinazolinones. Quinazolinone Quinazoline Deriv. 2020. [Google Scholar] [CrossRef]
- Wahan, S.K.; Sharma, B.; Chawla, P.A. Medicinal Perspective of Quinazolinone Derivatives: Recent Developments and Structure-Activity Relationship Studies. J. Heterocycl. Chem. 2021, 59, 239–257. [Google Scholar] [CrossRef]
- Prabha, S.; Arya, G.; Chandra, R.; Ahmed, B.; Nimesh, S. Effect of Size on Biological Properties of Nanoparticles Employed in Gene Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 83–91. [Google Scholar] [CrossRef] [PubMed]
Nanoparticles | Size (nm) | Zeta Potential (mV) |
---|---|---|
2-aminobenzothiazole-AgNPs (1-np) | 87.30 | −42.3 |
5-methyl-2-aminobenzothiazole-AgNPs (2-np) | 121.70 | −42.7 |
5,6-dimethyl-2-aminobenzothiazole-AgNPs (3-np) | 56.54 | −40.4 |
2-amino-4-chlorobenzothiazole-AgNPs (4-np) | 278.25 | −38.5 |
2-amino-6-bromobenzothiazole-AgNPs (5-np) | 171.25 | −37.7 |
2-methyl-4H-3,1-benzoxazine-4-one-AgNPs (6-np) | 86.02 | −56.3 |
2-phenyl-4H-3,1-benzoxazin-4-one-AgNPs (7-np) | 25.02 | −59.2 |
3-amino-2-methyl-4(3H)-quinazolinone-AgNPs (8-np) | 152.42 | −50.8 |
3-amino-2-phenyl-4(3H)-quinazolinone-AgNPs (9-np) | 38.72 | −53.2 |
2-butyne-1,4-diol-AgNPs (10-np) | 218.60 | −21.4 |
3-butyn-1-ol-AgNPs (11-np) | 58.60 | −19.4 |
heptane-1,7-dioic-AgNPs (12-np) | 76.60 | −16.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egodawaththa, N.M.; Knight, A.L.; Ma, J.; Knight, D.A.; Guisbert, E.; Nesnas, N. Synthesis and Characterization of Ligand-Stabilized Silver Nanoparticles and Comparative Antibacterial Activity against E. coli. Int. J. Mol. Sci. 2022, 23, 15251. https://doi.org/10.3390/ijms232315251
Egodawaththa NM, Knight AL, Ma J, Knight DA, Guisbert E, Nesnas N. Synthesis and Characterization of Ligand-Stabilized Silver Nanoparticles and Comparative Antibacterial Activity against E. coli. International Journal of Molecular Sciences. 2022; 23(23):15251. https://doi.org/10.3390/ijms232315251
Chicago/Turabian StyleEgodawaththa, Nishal M., Amy L. Knight, Jingxuan Ma, D. Andrew Knight, Eric Guisbert, and Nasri Nesnas. 2022. "Synthesis and Characterization of Ligand-Stabilized Silver Nanoparticles and Comparative Antibacterial Activity against E. coli" International Journal of Molecular Sciences 23, no. 23: 15251. https://doi.org/10.3390/ijms232315251
APA StyleEgodawaththa, N. M., Knight, A. L., Ma, J., Knight, D. A., Guisbert, E., & Nesnas, N. (2022). Synthesis and Characterization of Ligand-Stabilized Silver Nanoparticles and Comparative Antibacterial Activity against E. coli. International Journal of Molecular Sciences, 23(23), 15251. https://doi.org/10.3390/ijms232315251