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Abstract: Silver is a well-established antimicrobial agent. Conjugation of organic ligands with silver
nanoparticles has been shown to create antimicrobial nanoparticles with improved pharmacodynamic
properties and reduced toxicity. Twelve novel organic ligand functionalized silver nanoparticles
(AgNPs) were prepared via a light-controlled reaction with derivatives of benzothiazole, benzoxazine,
quinazolinone, 2-butyne-1,4-diol, 3-butyne-1-ol, and heptane-1,7-dioic. UV-vis, Fourier-transform
infrared (FTIR) spectroscopy, and energy-dispersive X-ray (EDAX) analysis were used to confirm the
successful formation of ligand-functionalized nanoparticles. Dynamic light scattering (DLS) revealed
mean nanoparticle diameters between 25 and 278 nm. Spherical and nanotube-like morphologies
were observed using transmission electron microscopy (TEM) and scanning electron microscopy
(SEM). Seven of the twelve nanoparticles exhibited strong antimicrobial activity and five of the twelve
demonstrated significant antibacterial capabilities against E. coli in a zone-of-inhibition assay. The
synthesis of functionalized silver nanoparticles such as the twelve presented is critical for the further
development of silver-nanoconjugated antibacterial agents.

Keywords: silver; Escherichia coli; antibacterial activity; nanoparticle

1. Introduction

Silver is a toxic transition metal and a known antibacterial agent against both aerobic
and anaerobic bacteria [1,2]. It has been incorporated into wound dressings and medical
treatments for centuries. More recently, nanotechnology has amplified the efficiency of
silver in medicine [3,4]. Silver nanoparticles have a high surface area-to-volume ratio
and unique chemical and physical properties, making them ideal for antibacterial use [5].
Specifically, they have been shown to inhibit bacterial growth through mechanisms that
include the precipitation of cellular proteins, interference with DNA function, and inhibition
of the electron transport chain [6]. Silver nanoparticles also demonstrate antibacterial effects
in both Gram-positive and Gram-negative bacteria [7].

Several distinct silver nanoparticles have been synthesized for medicinal use in the last
decade. However, many of the syntheses are limited by low yields and therefore rendered
less useful while the need for new antibacterial nanoparticles remains. Recently, AgNPs
synthesized with quinazolin-4(3H)-one derivatives were developed by Abdulkader Masri’s
group [8]. This work has provided a foundation for new organic ligand-functionalized
AgNPs to be further developed.

One promising route being studied currently for improving the synthesis and ef-
ficacy of silver nanoparticles is the incorporation of organic compounds. For example,
quinazolinone is a highly stable nitrogen-containing heterocyclic scaffold used to generate
antibacterial drugs [8,9]. Benzoxazine is a bicyclic compound containing an oxazine ring
attached to a benzene ring that acts as a basis for the synthesis of other organic ligands
such as quinazolinone [10,11]. Both benzothiazole, a benzene ring fused with a thiazole
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ring, and heptane-1,7-dioic, commonly referred to as pimelic acid, are also used as starting
materials for antibacterial compounds [12,13]. These organic ligands can be coated with
silver, enabling their conjugation with nanoparticles.

Herein, we present the syntheses and characterizations of 12 conjugated silver nanopar-
ticles using red light (620 nm) irradiation with a variety of organic ligands. These nanopar-
ticles were prepared using derivatives of benzothiazole (1–5), benzoxazine (6 and 7), quina-
zolinone (8 and 9), 2-butyne-1,4-diol (10), 3-butyn-1-ol (11), and heptane-1,7-dioic (12),
shown in Figure 1. The 12 organic ligand-conjugated AgNPs were developed with the
hypothesis that different properties of the organic ligands used would influence antimi-
crobial activity, leading to a range of AgNPs with various antibacterial capabilities. The
resulting AgNPs were characterized by several methods to confirm their formation and
determine their properties. Their antimicrobial properties were then tested against E. coli to
evaluate the validity of the hypothesis and determine the potential of the 12 AgNPs for use
as antimicrobial agents.
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Figure 1. Molecular structures of the organic ligands used (1: 2-aminobenzothiazole, 2: 5-methyl-
aminobenzothiazole, 3: 5,6-dimethyl-2-aminobenzothiazole, 4: 2-amino-4-chlorobenzothiazole, 5: 2-
amino-6-bromobenzothiazole, 6: 2-methyl-4H-3,1-benzoxazin-4-one, 7: 2-phenyl-4H-3,1-benzoxazin-
4-one, 8: 3-amino-2-methyl-4(3H)-quinazolinone, 9: 3-amino-2-phenyl-4(3H)-quinazolinone,
10: 2-butyne-1,4-diol, 11: 3-butyn-1-ol, 12: heptane-1,7-dioic).

2. Results

Twelve organic ligand functionalized silver nanoparticles (AgNPs) were synthesized
and characterized with UV-vis spectroscopy, FTIR, EDAX, zeta potential analysis, TEM,
SEM, and DLS analysis to confirm the formation, size, and shape of the nanoparticles.

2.1. UV-Vis and FTIR Spectroscopy

The UV-vis spectra of the organic ligands (1–12) were measured both independently
and again following conjugation with AgNPs. The presence of SPR maxima within the
typical range of 380–480 nm confirmed successful nanoparticle formation [14]. In Figure 2,
the comparative UV-vis spectra display an SPR maximum of around 460 nm for 2-amino-6-
bromobenzothiazole-AgNPs (5-np) and no peak at all for its independent organic ligand
counterpart. Since the peak present in the AgNPs falls within the characteristic 380–480 nm
range and there is no similar peak in the UV-vis spectrum of the isolated organic ligand,
successful conjugation of the nanoparticle is apparent. Analyses of the UV-vis spectra
for all conjugated silver nanoparticles with their organic ligands can be found in the
Supporting Information (Figure S1). Peaks within the characteristic 380–480 nm range
were visible for all 12 molecules with similarly missing peaks within that range for the
independent organic ligands. This signifies the successful formation of all 12 organic ligand-
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functionalized AgNPs. Both UV band broadening and red shifting were also observed and
can be attributed to some aggregation and size confinement with the size increase of the
AgNPs. This may be the result of less confined charge carrier wave functions [14]. Initially,
some peaks also showed aggregation due to size variation and difficulty controlling the
combination of nanoparticles; however, we were able to overcome the agglomeration by
adjusting the dilution parameters of the conjugated silver nanoparticles.
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Figure 2. Representative UV-vis spectra of functionalized 2-amino-6-bromobenzothiazole–AgNPs
(5-np) (shown in red) with the corresponding organic ligand 5 (shown in yellow). The nanoconjugate
displayed a characteristic SPR band maximum within the typical range of 380–480 nm.

Additionally, FTIR analyses of the 12 conjugated nanoparticles with their correspond-
ing organic ligands were carried out. The complete set of results can be found in the
Supporting Information (Figure S2). The differences between the organic ligands as in-
dependent compounds and as nanoparticle conjugates were highly apparent in the FTIR
spectra. This can especially be seen in the comparative FTIR analyses of 5-np and organic
ligand 5 along with 11-np and organic ligand 11, as shown in Figure 3. All observed bands
with slightly varied shifts can be attributed to the distinct vibrational stretching of newly
formed functional groups, such as N-H, C=O, C-N, and C=N. This clear functional group
transformation was present in the comparative FTIR spectra for all 12 AgNPs and their
corresponding organic ligands, further confirming the successful formation of the organic
ligand functionalized AgNPs. These results signify that NaBH4, the reducing agent used
in the synthesis of the AgNPs, most likely led to a functional group transformation that
promoted silver coordination with the organic ligands. The organic ligands could have also
acted as capping or stabilizing agents for the AgNPs.

Specifically, numerous deviations between 5-np and organic ligand 5 (Figure 3) were
observed. As an example, organic ligand 5 showed two bands at 3190 and 2980 cm−1.
These data are characteristic of a primary amine (NH2) group stretching. Organic ligand 5
possesses an amino-benzothiazole scaffold, but when the organic ligand is conjugated with
silver, the band indicating NH2 disappears, and one strong band appears at 3115 cm−1,
as shown by the FTIR spectrum of 5-np. Also, in the 11-np to organic ligand 11 FTIR
comparison, a minor alcohol peak is apparent at 3680 cm−1 for the ligand, but a strong
broadband can be observed at 3380 cm−1 for the conjugated nanoparticle. This shift could
be due to the remote effects of the typical interaction between silver and the terminal
alkyne of the organic ligand in the AgNPs. These structural changes indicate the successful
formation of the conjugated AgNPs.
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Figure 3. Representative FTIR (Thermo Fisher Scientific MicromATR VisionTM Nicolet IS-5) spec-
tra of (a) (5-np) (shown in red) and corresponding organic ligand 5 (shown in yellow) along with
(b) 3-butyn-1-ol-AgNPs (11-np) (shown in red) and corresponding organic ligand 11 (shown in yellow).

2.2. EDAX Analysis

Scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDAX)
was used to further confirm the formations of the conjugated AgNPs. The data generated by
EDAX analysis yielded spectra showing peaks corresponding to the elements composing
the conjugated AgNPs. This elemental analysis further confirmed the binding of the
nanoparticles to the organic ligands. Representative EDAX analyses are shown in Figure 4
and data for all 12 AgNPs can be found in the Supporting Information (Figures S3–S6).
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(b) 2-phenyl-4H-3,1-benzoxazin-4-one-AgNPs (7-np).

2.3. Zeta Potential and Size Measurement

Zeta potential values indicate nanoparticle stability, and those of higher magnitude are
representative of higher particle stability. Based on the zeta potentials obtained, nine of the
twelve AgNPs were considered to have good stability, with zeta potentials around −50 mV.
This reflects high electrostatic repulsions between adjacent particles. The 2-butyne-1,4-diol-
AgNPs (10-np), 3-butyn-1-ol-AgNPs (11-np), and heptane-1,7-dioic-AgNPs (12-np) showed
zeta potentials of −21.4, −19.4, and −16.3 mV, respectively, suggesting poor comparative
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stability to those of the other AgNPs mentioned in Table 1. These results are displayed by
the representative zeta potential graphs in Figure 5 and in full by the values in Table 1. The
average sizes of the functionalized nanoparticles were also measured and ranged from 25
to 278 nm, confirming size within the nano range. Size information for the AgNPs can also
be found in Table 1.

Table 1. Average sizes and zeta potentials for the 12 AgNPs.

Nanoparticles Size (nm) Zeta Potential (mV)

2-aminobenzothiazole-AgNPs (1-np) 87.30 −42.3
5-methyl-2-aminobenzothiazole-AgNPs (2-np) 121.70 −42.7
5,6-dimethyl-2-aminobenzothiazole-AgNPs (3-np) 56.54 −40.4
2-amino-4-chlorobenzothiazole-AgNPs (4-np) 278.25 −38.5
2-amino-6-bromobenzothiazole-AgNPs (5-np) 171.25 −37.7
2-methyl-4H-3,1-benzoxazine-4-one-AgNPs (6-np) 86.02 −56.3
2-phenyl-4H-3,1-benzoxazin-4-one-AgNPs (7-np) 25.02 −59.2
3-amino-2-methyl-4(3H)-quinazolinone-AgNPs (8-np) 152.42 −50.8
3-amino-2-phenyl-4(3H)-quinazolinone-AgNPs (9-np) 38.72 −53.2
2-butyne-1,4-diol-AgNPs (10-np) 218.60 −21.4
3-butyn-1-ol-AgNPs (11-np) 58.60 −19.4
heptane-1,7-dioic-AgNPs (12-np) 76.60 −16.3
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Figure 5. Representative (a) zeta potential plot and (b) size distribution histogram of 3-amino-2-
phenyl-4(3H)-quinazolinone-AgNPs (9-np) obtained using a Horiba Scientific Nanoparticle Analyzer
SZ-100 (all nanoparticles had mean diameters between 25 and 278 nm and a negative surface charge).

2.4. TEM and SEM Analyses

The 12 synthesized silver nanoparticles were further analyzed with TEM. Results
showed the formation of nanoparticles with a wide distribution of shapes and sizes, shown
in Figure 6. Among the 12 AgNPs, eight were spherically shaped (1-np, 3-np, 5-np, 6-np,
7-np, 9-np, 11-np, and 12-np) whereas the other four displayed nanotube morphologies
(2-np, 4-np, 8-np, and 10-np). Agglomeration in some of the samples (namely 4-np, 10-np,
11-np, and 12-np) occurred due to covalent and metallic bond formation as a result of
functionalization by the organic ligand.

SEM images of the 12 AgNPs were also obtained, yielding the morphological data
presented in Figure 7. The morphological details provided by the SEM analyses matched
the data shown in the TEM images. Both sets of images confirm spherical morphologies
for eight nanoparticles and nanotube morphologies for four nanoparticles. The nanotube-
like structure of these four AgNPs could be attributed to high-speed crystal growth or
overgrowth within a short time.
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Figure 6. TEM (Zeiss West Germany 900, Grid-Quantifoil Cu Holy Carbon) images of the twelve
functionalized silver nanoparticles (images outlined in red indicate additional nanoparticle im-
ages on lower magnification). (a) 2-aminobenzothiazole-AgNPs (1-np) (250,000×), (b) 5-methyl-
2-aminobenzothiazole-AgNPs (2-np) (185,000×), (c) 5,6 dimethyl-2-aminobenzothiazole-AgNPs
(3-np) (250,000×), (d) 2-amino-4-chlorobenzothiazole-AgNPs (4-np) (185,000×), (e) 2-amino-6-
bromobenzothiazole-AgNPs (5-np) (140,000×), (f) 2-methyl-4H-3,1-benzoxazin-4-one-AgNPs (6-np)
(250,000×), (g) 2-phenyl-4H-3,1-benzoxazin-4-one-AgNPs (7-np) (250,000×), (h) 3-amino-2-methyl-
4(3H)-quinazolinone-AgNPs (8-np) (250,000×), (i) 3-amino-2-phenyl-4(3H)-quinazolinone AgNPs
(9-np) (185,000×), (j) 2-butyne-1,4-diol-AgNPs (10-np) (250,000×), (k) 3-butyn-1-ol-AgNPs (11-np)
(250,000×), (l) heptane-1,7-dioic-AgNPs (12-np) (250,000×).

2.5. Antibacterial Assay Analysis

The antimicrobial activities of the 12 conjugated silver nanoparticles and organic
compounds 1–10 were compared to silver nitrate in a zone of inhibition assay using E. coli,
a Gram-negative bacterium that has been extensively used in biotechnology, microbiology,
and molecular biology [15]. The organism is common, genetically versatile, and can
replicate rapidly, making it an excellent choice for this study. Strong antimicrobial activity
was observed for silver nitrate (AgNO3), with no visual colony formation. Additionally,
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a white precipitate was observed on the plate. Similarly strong antibacterial activity was
apparent for the following nanoparticles with no visible colony formation in the zones of
inhibition: 4-np, 6-np, 7-np, 8-np, 9-np, 10-np, and 12-np. These nanoparticles all had zone
of inhibition diameters of approximately 9.00 mm or higher except 9-np. 7-np and 12-np
both produced zones of inhibition with diameters higher than 11.00 mm. These two AgNPs
show the most promise for further development as antimicrobial agents. Several of the
other nanoparticles showed modest activity, including 1-np, 2-np, 3-np, 5-np, and 11-np.
These organic ligand-functionalized AgNPs all produced zone-of-inhibition diameters of
approximately 6.00 mm or above, which is larger than the zones of inhibition produced by
any of the singular organic ligands (Figure 8).
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Figure 8. Representative zones of inhibition of the AgNPs with their respective organic ligands (bacterial
assays were performed as triplicates and mean values are presented with ± standard errors).

Only three of the unconjugated organic compounds showed noticeable antimicrobial
activities with full bacterial clearance being the standard for measurable activity. How-
ever, following conjugation, all 12 of the organic ligand-functionalized AgNPs demon-
strated bacterial clearance to an extent significantly higher than their respective
singular ligands [16,17].

3. Discussion

The zone-of-inhibition assay demonstrated strong antimicrobial activities in 4-np,
6-np, 7-np, 8-np, 9-np, 10-np, and 12-np. Neither strong nor significant antibacterial ac-
tivity was found in the organic ligands corresponding to the AgNPs. This signifies that
the conjugation of the silver nanoparticles to the organic ligands was the factor increasing
antimicrobial activity. Among these seven conjugated AgNPs, three had nanotube-like mor-
phologies (4-np, 8-np, and 10-np) and four had spherical morphologies (6-np, 7-np, 9-np,
and 12-np). These data alone show no correlation between conjugated AgNP morphology
and antimicrobial ability. However, in combination with size data, the shapes of the AgNPs
gain significance. The three nanotube-shaped AgNPs were additionally three of the largest
particles analyzed with sizes of 278.25 nm, 152.42 nm, and 218.60 nm. The 2-np particle,
which was also nanotube-shaped, showed significant but not strong antibacterial activity,
with a zone-of-inhibition diameter of 6.35 mm; 2-np only had a size of 121.70 nm, which is
lower than those of the other nanotube-shaped AgNPs. This difference in both size and
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antimicrobial activity could be an indicator that larger nanotube-shaped AgNPs tend to be
more effective for antibacterial purposes. As for 5-np, it was also relatively large, 171.25 nm,
but was spherical. Antimicrobial activity was determined to be significant, but not strong
like the other large particles. This was concluded from the 6.47 mm clearance diameter. The
lowered antibacterial capabilities of 5-np show that the size benefit for bacterial inhibition
is most likely exclusive to nanoparticles with nanotube-like morphologies.

In contrast to this, the opposite seems to hold true for the spherically shaped nanopar-
ticles, but with less strong of a correlation. Both 7-np and 9-np have the smallest sizes of
all 12 nanoparticles: 25.02 nm and 38.72 nm, respectively. The high antibacterial activity
for particles 7-np and 9-np could be due to the small sizes and spherical shapes providing
a more facile transport through the E. coli’s cytoplasmic membrane, increasing biodistri-
bution [18]. Particles 6-np and 12-np, however, are much more average in size: 86.02 nm
to 76.60 nm, respectively. This signifies that antimicrobial capabilities are influenced by
factors other than size and shape.

A few of these factors to be examined include agglomeration, organic ligand identity,
and organic ligand functionalized AgNP complexity. All nanoparticles for which agglom-
eration was observed (4-np, 10-np, 11-np, and 12-np) except for 11-np showed strong
antimicrobial activity with zones of inhibition above 9.00 mm. While the exception of 11-np
lessens the validity of this correlation, links between agglomeration and antimicrobial
activity could yield useful results with larger samples. The wide distribution between both
the properties of the varying organic ligands and their respective antimicrobial activities
when conjugated with AgNPs also suggests that the individual identities of the ligands
greatly affect results. Both AgNPs with benzoxazine (6-np and 7-np) performed excep-
tionally well in the zone-of-inhibition assay, and the same held true for the two AgNPs
with quinazolinone (8-np and 9-np). It is notable that the use of quinazolinone derivatives
for conjugation with AgNPs for antimicrobial activity has been explored and found to be
effective [8]. However, this pairing pattern was not matched by the other nanoparticles,
showing that the actual changes made to the compounds from which the organic ligands
were derived influenced antimicrobial activity as well. Furthermore, functionalization of
the nanoparticles themselves was shown to alter antibacterial ability. The organic ligands
3, 5, and 7 showed promising antimicrobial activity in the zone-of-inhibition assay, with
moderate bacterial clearances. Despite this, when conjugated with nanoparticles, only
7-np showed strong antibacterial activity. These results exemplify the structural alteration
caused by the conjugation of the AgNPs. This outcome confirms that not only the structure
of the organic ligand but the structural interactions between the ligand and the silver
must be considered in the synthesis of new organic ligand functionalized AgNP-based
antimicrobial agents.

The results presented here suggest a high potential for the discovery of new antimi-
crobial agents using a variety of organic ligands. Studies conducted with a larger set of
organic ligand-functionalized AgNPs could provide further insight into the conceptual link
between organic ligand differentiation and antimicrobial activity distribution. Additional
biological analysis could also be useful. This study presents numerous correlations between
the characteristics of organic ligand-conjugated AgNPs and their respective antibacterial
capabilities. However, more research is needed to confirm definitive causation for the
proposed factors. The variety of organic ligands used led to a differentiation between the
abilities of the conjugated nanoparticles, resulting in seven strong candidates for use as
antimicrobial agents.

4. Materials and Methods

The molecular structures of the twelve organic ligands used for this study are rep-
resented in Figure 1. The 2-aminobenzothiazole derivatives (1–5) were obtained from
Fisher Scientific (Waltham, MA, USA) and the two benzoxazine derivatives, 2-methyl-
4H-3,1-benzoxazin-4-one (6) and 2-phenyl-4H-3,1-benzoxazin-4-one (7) were synthesized
according to the procedures described below in Scheme 1. The other two quinazoli-



Int. J. Mol. Sci. 2022, 23, 15251 10 of 13

none derivatives, 3-amino-2-methyl-4(3H)-quinazolinone (8) and 3-amino-2-phenyl-4(3H)-
quinazolinone (9), were synthesized from ligands 6 and 7 respectively, as illustrated in
Scheme 2. Silver nitrate was used as the starting material for the synthesis of all twelve
silver nanoparticles, and all reagents and chemicals were obtained from Fisher Scientific
(Waltham, MA, USA). The successful synthesis of all derivatives was confirmed using pro-
ton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (C-13 NMR),
and liquid chromatography–mass spectrometry (LC-MS).
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4.1. Synthesis of Benzoxazin-4-One Derivatives

2-aminobenzoic acid: Sodium hydroxide (10.00 g, 250 mmol) was added to a 250 mL
Erlenmeyer flask containing ice-cold water (60.00 mL) and a magnetic stir bar. The solution
was stirred until the sodium hydroxide dissolved. The phthalimide (10.00 g, 73 mmol)
was quickly added to the sodium hydroxide solution. An ice bath was placed around the
flask and stirring was continued. Sodium hypochlorite (14.00 mL, 5.00 M) was added to
the solution, which was stirred for another 15 min before removal from the ice bath. The
solution, which had turned a faint-yellow color, was then heated to 75 ◦C. This temperature
was maintained for an additional 15 min. The solution was cooled in an ice bath and
10.00 mL of the solution was transferred to a small beaker. Hydrochloric acid (8.00 M) was
added until the solution reached a neutral pH (7.0). Then, glacial acetic acid (10.00 mL) was
added, and the resulting precipitate was washed and recrystallized with cold water.

(6) 2-methyl-4H-3,1-benzoxazin-4-one: A mixture of anthranilic acid (10.00 mmol)
and acetic anhydride (1.50 mL) was heated at 150 ◦C for 2.5 h. Excess acetic anhydride
was then removed under reduced pressure and the resulting solid was triturated with
petroleum ether, collected by filtration, and dried in a vacuum.

(7) 2-phenyl-4H-3,1-benzoxazin-4-one: Anthranilic acid (5.00 g, 22 mmol) was dis-
solved slowly at room temperature in 10.00 mL of anhydrous pyridine with continuous
stirring. The solution was heated by the addition of anhydrous pyridine, then cooled to
10 ◦C in a water bath. Cooling of the mixture contributed to the production of solid crystals.
Benzoyl chloride (2.60 mL, 22 mmol) was then slowly added to 10.00 mL of anhydrous
pyridine and stirred for 30 min. The resulting solid was washed with water and treated
with aqueous sodium bicarbonate to remove any unreacted acid. The reaction mixture
was left stirring overnight when the resulting product was not formed immediately. The
reaction can be slowed by various conditions, but the crude can be recrystallized using
ethanol in these situations. Following the addition of the DI water and the dissolution of
the precipitate in its entirety, the final solid product was formed through the neutralization
of the reaction mixture using sodium bicarbonate.
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4.2. Synthesis of Quinazolinone Derivatives

(8) 3-amino-2-methyl-4(3H)-quinazolinone: Hydrazine hydrate (10.00 mL, 99%) was
added to a solution containing 2-methyl-4H-3,1-benzoxazin-4-one (6) (3.00 g, 20 mmol) and
absolute ethanol (15.00 mL). The mixture was refluxed for 27 h, cooled, and the resulting
precipitate was filtered and recrystallized from water.

(9) 3-amino-2-phenyl-4(3H)-quinazolinone: A mixture of 2-phenyl-4H-1,3-benzo-
xazin-4-one (7) (100 mg, 0.45 mmol) and hydrazine hydrate (4.0 mL, 82 mmol) was refluxed
for 25 min at 200–250 ◦C using an oil bath. The mixture was then cooled to room tempera-
ture and poured over ice for the collection of the precipitate. The resulting solid was then
separated and purified using ethanol [17].

4.3. Synthesis of Silver Nanoparticles

For the syntheses of the AgNPs, the benzothiazole, benzoxazine, quinazolinone,
heptane-1,7-dioic, 2-butyne-1,4-diol, and 3-butyn-1-ol derivatives were conjugated with
silver to generate the twelve functionalized silver nanoparticles. Each organic ligand
derivative (1–12) (10.00 mg) was reacted aqueously with silver nitrate in ethanol (0.1 mM,
3.00 mL). The mixture was then stirred for 6 h in the dark and a solution of NaBH4 (10 µL,
6 mM) was added. The mixture transitioned from transparent to light brown following the
addition of the reducing agent, suggesting the reduction of silver ions and the formation of
silver-functionalized nanoparticles. All organic derivatives (1–12) were conjugated through
adjustments to the diverse volume ratio (v/v) of the twelve derivatives to the silver nitrate
solution [14]. The procedure was performed in duplicate under red light at 620 nm for 6 h
and the nanoparticle formation yields were compared.

4.4. Antibacterial Assay

The effects of the synthesized nanoparticles on bacterial growth were evaluated using
a halo assay. A bacterial lawn was generated from a saturated overnight culture of E. coli
bacteria (DH5A) grown in lysogeny broth (LB), diluted 100-fold in LB, and spread onto LB
agar plates using sterile glass beads. Plates were dried for approximately 15 min before
solutions of the organic ligand-modified AgNPs (1 µg/mL, 3 µL) were spotted onto the
plates. As a control, the organic ligands corresponding to their respective nanoparticles
were also spotted on the plates (1 µg/mL, 3 µL). Ampicillin (100 mg/mL, 3 µL, Fisher
Bioreagents) was used as a positive control and ultrapure water (3 µL) was used as a
negative control. An AgNO3 solution was included as a reference. The plates were then
incubated at 37 ◦C overnight before imaging with a BioRad ChemiDoc MP Imaging System
and Image Lab Software 5.2 (Bio-Rad, Hercules, CA, USA). Analysis was performed using
Mac OS 10.15.7 Preview, Microsoft PowerPoint, and NIH ImageJ. Antimicrobial activity was
determined by the clearance of bacteria. Each assay was performed using three independent
biological replicates.

5. Conclusions

Twelve silver nanoparticles functionalized with organic ligands were synthesized with
red light and characterized through a variety of methods. Various analyses confirmed
successful nanoparticle conjugation with the organic ligands. A variety of nanoparticle
sizes and shapes also resulted from the array of organic ligands used, and all tested AgNPs
exhibited some antibacterial capabilities against E. coli. However, seven of the AgNPs
showed especially strong antimicrobial properties, indicating the potential for further
development. A correlation between the morphological details of the conjugated nanopar-
ticles and the extent of their antimicrobial activities was observed. The differentiation
between the organic ligands led to a wide distribution of antibacterial capabilities of the
produced AgNPs. While nanoparticles are more effective and less toxic than traditional
antibacterial agents, further research on the biological effects of these nanoparticles must
be conducted. More research must be conducted on the seven AgNPs possessing strong
antibacterial capabilities. Optical density (OD) measurement of the bacterial assay should
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be analyzed for more precise quantitative data. Future investigation of the nanoparticle
solutions at varying concentrations along with the determination of MIC values would also
be beneficial. Nevertheless, this research reveals promising new insights into the use of
organic ligand-functionalized AgNPs as antimicrobial agents with high potency, reduced
toxicity, and strong mechanisms of activity. These particles represent both concrete and
conceptual contributions to the field of nanomedical chemistry.
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