Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis
Abstract
:1. Introduction
- (A)
- Patients with untreated MS [8,9] and using disease modification therapies [6] showed lower LAG3 expression levels in peripheral blood mononuclear cells as compared with healthy controls, which were significantly higher in MS patients with low Expanded Disability Status Scale (EDSS) than in those with high EDSS [8], were correlated with the 1-year progression index [5], and were not affected by disease modification therapies [9].
- (B)
- Decreases in the levels of LAG3 in peripheral blood mononuclear cells were age-dependent in healthy controls but not in patients with MS, and was more pronounced in young patients with primary progressive MS than in patients with relapsing-remitting MS, suggesting an accelerated aging process in patients with progressive MS [10].
- (C)
- LAG3 gene was up-regulated by interferon-beta in lymphoblast cell lines of MS patients and primary B cells [11].
- (D)
- The amelioration of clinical symptoms and decrease in inflammation in the myelin oligodendrocyte glycoprotein (MOG)35–55-induced mouse experimental autoimmune encephalomyelitis (EAE) by cannabidiol therapy seems to be related, among other factors, to the up-regulation of LAG3 gene on CD4(+)CD25(−) accessory T cells leading to elevated levels of LAG3 mRNA, as was shown by studies using co-cultures of MOG35–55-activated and spleen-derived antigen-presenting cells [12,13].
- (E)
- Environmental stimuli-induced intraepithelial CD4(+) lymphocytes in the gut epithelium or MOG(35–55)-specific receptor transgenic mice, which inhibit EAE and infiltrate the central nervous system (CNS), markedly up-regulate Lag3 expression in the CNS, inhibiting inflammation [14].
- (F)
- CD4(+) memory T cells expressing the gut-homing chemokine receptor CCR9, which infiltrate the inflamed CNS in the EAE model of MS, express LAG3, and a high proportion of CCR9(+) cells isolated from the cerebrospinal fluid of patients with RRMS and neuromyelitis optica express LAG3 [15].
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients and Controls
4.2. Ethical Aspects
4.3. Genotyping of CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 Variants
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patsopoulos, N.A.; De Jager, P.-L. Genetic and gene expression signatures in multiple sclerosis. Mult. Scler. 2020, 26, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Patsopoulos, N.-A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol. 2022, 44, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, R.; Umeton, R.; Manfrè, G.; Romano, S.; Buscarinu, M.C.; Rinaldi, V.; Bellucc, I.G.; Bigi, R.; Ferraldeschi, M.; Salvetti, M.; et al. Reworking GWAS Data to Understand the Role of Nongenetic Factors in MS Etiopathogenesis. Genes 2020, 11, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarghami, A.; Li, Y.; Claflin, S.B.; van der Mei, I.; Taylor, B.V. Role of environmental factors in multiple sclerosis. Expert Rev. Neurother. 2021, 21, 1389–1408. [Google Scholar] [CrossRef]
- Waubant, E.; Lucas, R.; Mowry, E.; Graves, J.; Olsson, T.; Alfredsson, L.; Langer-Gould, A. Environmental and genetic risk factors for MS: An integrated review. Ann. Clin. Transl. Neurol. 2019, 6, 1905–1922. [Google Scholar] [CrossRef] [Green Version]
- Ruffo, E.; Wu, R.C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin. Immunol. 2019, 42, 101305. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, L.; Liu, Q.; Kong, X.; Fang, Y.; Wang, J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy:, Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front. Immunol. 2021, 11, 563258. [Google Scholar] [CrossRef]
- Lavon, I.; Heli, C.; Brill, L.; Charbit, H.; Vaknin-Dembinsky, A. Blood Levels of Co-inhibitory-Receptors, A Biomarker of Disease Prognosis in Multiple Sclerosis. Front. Immunol. 2019, 10, 835. [Google Scholar] [CrossRef]
- Jones, B.E.; Maerz, M.D.; Bahnson, H.T.; Somasundaram, A.; McCarthy, L.H.; Speake, C.; Buckner, J.H. Fewer LAG-3+ T Cells in Relapsing-Remitting Multiple Sclerosis and Type 1 Diabetes. J. Immunol. 2022, 208, 594–602. [Google Scholar] [CrossRef]
- Eschborn, M.; Pawlitzki, M.; Wirth, T.; Nelke, C.; Pfeuffer, S.; Schulte-Mecklenbeck, A.; Lohmann, L.; Rolfes, L.; Pape, K.; Eveslage, M.; et al. Evaluation of Age-Dependent Immune Signatures in Patients with Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1094. [Google Scholar] [CrossRef]
- Khsheibun, R.; Paperna, T.; Volkowich, A.; Lejbkowicz, I.; Avidan, N.; Miller, A. Gene expression profiling of the response to interferon beta in Epstein-Barr-transformed and primary B cells of patients with multiple sclerosis. PLoS ONE 2014, 9, e102331. [Google Scholar] [CrossRef] [PubMed]
- Kozela, E.; Juknat, A.; Kaushansky, N.; Ben-Nun, A.; Coppola, G.; Vogel, Z. Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J. Neuroinflamm. 2015, 12, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozela, E.; Juknat, A.; Gao, F.; Kaushansky, N.; Coppola, G.; Vogel, Z. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J. Neuroinflamm. 2016, 13, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadowaki, A.; Miyake, S.; Saga, R.; Chiba, A.; Mochizuki, H.; Yamamura, T. Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat. Commun. 2016, 7, 11639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadowaki, A.; Saga, R.; Lin, Y.; Sato, W.; Yamamura, T. Gut microbiota-dependent CCR9+CD4+ T cells are altered in secondary progressive multiple sclerosis. Brain 2019, 142, 916–931. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, X.; Leng, S.; Xu, Q.; Sheng, Z.; Zhang, Y.; Yu, J.; Feng, Q.; Hou, M.; Peng, J.; et al. Immune Checkpoint-Related Gene Polymorphisms Are Associated with Primary Immune Thrombocytopenia. Front. Immunol. 2021, 11, 615941. [Google Scholar] [CrossRef]
- Mewes, C.; Alexander, T.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.F.; Beißbarth, T.; Tzvetkov, M.; Grade, M.; Quintel, M.; et al. Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis-A Prospective Genetic Association Study. J. Clin. Med. 2021, 10, 5302. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, M.; Qiu, J.; Lin, Y.; Chen, X.; Huang, S.; Mo, M.; Liu, H.; Peng, G.; Zhu, X.; et al. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J. Neuroinflamm. 2019, 16, 270. [Google Scholar] [CrossRef] [Green Version]
- García-Martín, E.; Pastor, P.; Gómez-Tabales, J.; Alonso-Navarro, H.; Alvarez, I.; Buongiorno, M.; Cerezo-Arias, M.O.; Aguilar, M.; Agúndez, J.A.G.; Jiménez-Jiménez, F.J. Association between LAG3/CD4 genes variants and risk for Parkinson’s disease. Eur. J. Clin. Investig. 2022, 52, e13847. [Google Scholar]
- Zhang, Z.; Duvefelt, K.; Svensson, F.; Masterman, T.; Jonasdottir, G.; Salter, H.; Emahazion, T.; Hellgren, D.; Falk, G.; Olsson, T.; et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun. 2005, 6, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Lundmark, F.; Harbo, H.F.; Celius, E.G.; Saarela, J.; Datta, P.; Oturai, A.; Lindgren, C.M.; Masterman, T.; Salter, H.; Hillert, J. Association analysis of the LAG3 and CD4 genes in multiple sclerosis in two independent populations. J. Neuroimmunol. 2006, 180, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.; Al Qudah, M.; Al Qawasmeh, M. Candidate gene association analysis of multiple sclerosis in the Jordanian Arab population, A case-control study. Gene 2020, 758, 144959. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.; Qudah, M.A.; Qawasmeh, M.A. Association of Multiple Sclerosis Phenotypes with Single Nucleotide Polymorphisms of IL7R, LAG3, and CD40 Genes in a Jordanian Population: A Genotype-Phenotype Study. Biomolecules 2020, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended diagnostic criteria for multiple sclerosis, guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Agúndez, J.A.; Arroyo, R.; Ledesma, M.C.; Martínez, C.; Ladero, J.M.; de Andrés, C.; Jiménez-Jiménez, F.J.; Molina, J.A.; Alvarez-Cermeño, J.C.; Varela de Seijas, E.; et al. Frequency of CYP2D6 allelic variants in multiple sclerosis. Acta Neurol. Scand. 1995, 92, 464–467. [Google Scholar] [CrossRef]
- García-Martín, E.; Martínez, C.; Benito-León, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Alonso-Navarro, H.; Ayuso-Peralta, L.; Torrecilla, D.; Agúndez, J.A.; et al. Histamine-N-methyl transferase polymorphism and risk for multiple sclerosis. Eur. J. Neurol. 2010, 17, 335–338. [Google Scholar] [CrossRef]
- Martínez, C.; García-Martín, E.; Benito-León, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Alonso-Navarro, H.; Ayuso-Peralta, L.; Torrecilla, D.; Agúndez, J.A.; et al. Paraoxonase 1 polymorphisms are not related with the risk for multiple sclerosis. Neuromol. Med. 2010, 12, 217–223. [Google Scholar] [CrossRef]
- García-Martín, E.; Lorenzo-Betancor, O.; Martínez, C.; Pastor, P.; Benito-León, J.; Millán-Pascual, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Turpín-Fenoll, L.; et al. LINGO1 rs9652490 and rs11856808 polymorphisms are not associated with risk for multiple sclerosis. BMC Neurol. 2013, 13, 34. [Google Scholar] [CrossRef] [Green Version]
- García-Martín, E.; Agúndez, J.A.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Turpín-Fenoll, L.; Alonso-Navarro, H.; et al. Vitamin D3 receptor (VDR) gene rs2228570 (Fok1) and rs731236 (Taq1) variants are not associated with the risk for multiple sclerosis, results of a new study and a meta-analysis. PLoS ONE 2013, 8, e65487. [Google Scholar] [CrossRef] [Green Version]
- Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Turpín-Fenoll, L.; Alonso-Navarro, H.; et al. MAPT gene rs1052553 variant is not associated with the risk for multiple sclerosis. Hum. Immunol. 2013, 74, 1705–1708. [Google Scholar] [CrossRef] [Green Version]
- Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Pisa, D.; Turpín-Fenoll, L.; Alonso-Navarro, H.; et al. NQO1 gene rs1800566 variant is not associated with risk for multiple sclerosis. BMC Neurol. 2014, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Pisa, D.; Turpín-Fenoll, L.; Alonso-Navarro, H.; et al. The GSTP1 gene variant rs1695 is not associated with an increased risk of multiple sclerosis. Cell. Mol. Immunol. 2015, 12, 777–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Pisa, D.; Turpín-Fenoll, L.; Alonso-Navarro, H.; et al. Heme Oxygenase-1 and 2 Common Genetic Variants and Risk for Multiple Sclerosis. Sci. Rep. 2016, 6, 20830. [Google Scholar] [CrossRef] [Green Version]
- Agúndez, J.A.G.; García-Martín, E.; Rodríguez, C.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Turpín-Fenoll, L.; Alonso-Navarro, H.; García-Albea, E.; et al. Endothelial nitric oxide synthase (NOS3) rs2070744 polymorphism and risk for multiple sclerosis. J. Neural Transm. 2020, 127, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef]
MS Patients (n = 300, 600 Alleles) | Controls (n = 400, 800 Alleles) | Intergroup Comparison OR (95% CI), p; Pc; NPV (95% CI) | |
---|---|---|---|
GENOTYPES | |||
rs1922452 A/A | 51 (17.0; 12.7–21.3) | 67 (16.8; 13.1–20.4) | 1.02 (0.68–1.52); 0.930; 0.952; 0.57 (0.56–0.59) |
rs1922452 A/G | 138 (46.0; 40.4–51.6) | 189 (47.3; 42.4–52.1) | 0.95 (0.70–1.28); 0.743; 0.952; 0.57 (0.53–0.60) |
rs1922452 G/G | 111 (37.0; 31.5–42.5) | 144 (36.0; 31.3–40.7) | 1.04 (0.77–1.43); 0.786; 0.952; 0.58 (0.55–0.60) |
rs951818 A/A | 103 (34.3; 29.0–39.7) | 145 (36.3; 31.5–41.0) | 0.92 (0.67–1.26); 0.600; 0.952; 0.56 (0.54–0.59) |
rs951818 A/C | 151 (50.3; 44.7–56.0) | 193 (48.3; 43.4–53.1) | 1.09 (0.81–1.47); 0.586; 0.952; 0.58 (0.54–0.62) |
rs951818 C/C | 46 (15.3; 11.3–19.4) | 62 (15.5; 12.0–19.0) | 0.99 (0.65–1.50); 0.952; 0.952; 0.57 (0.56–0.59) |
rs870849 C/C | 114 (38.0; 32.5–43.5) | 158 (39.5; 34.7–44.3) | 0.94 (0.69–1.28); 0.687; 0.952; 0.57 (0.54–0.60) |
rs870849 C/T | 145 (48.3; 42.7–54.0) | 192 (48.0; 43.1–52.9) | 1.01 (0.75–1.37); 0.930; 0.952; 0.57 (0.54–0.61) |
rs870849 T/T | 41 (13.7; 9.8–17.6) | 50 (12.5; 9.3–15.7) | 1.11 (0.71–1.73); 0.650; 0.952; 0.58 (0.56–0.59) |
ALLELES | |||
rs1922452 A | 240 (40.0; 36.1–43.9) | 323 (40.4; 37.0–43.8) | 0.98 (0.79–1.22); 0.887; 0.887; 0.57 (0.55–0.59) |
rs1922452 G | 360 (60.0; 56.1–63.9) | 477 (59.6; 56.2–63.0) | 1.02 (0.82–1.26); 0.887; 0.887; 0.57 (0.54–0.61) |
rs951818 A | 357 (59.5; 55.6–63.4) | 483 (60.4; 57.0–63.8) | 0.96 (0.78–1.20); 0.741; 0.887; 0.57 (0.53–0.60) |
rs951818 C | 243 (40.5; 36.6–44.4) | 317 (39.6; 36.2–43.0) | 1.04 (0.84–1.29); 0.741; 0.887; 0.58 (0.55–0.60) |
rs870849 C | 373 (62.2; 58.3–66.0) | 508 (63.5; 60.2–66.8) | 0.95 (0.76–1.18); 0.609; 0.887; 0.56 (0.53–0.60) |
rs870849 T | 227 (37.8; 34.0–41.7) | 292 (36.5; 33.2–39.8) | 1.06 (0.85–1.32); 0.609; 0.887; 0.58 (0.56–0.60) |
MS Women (n = 207, 414 Alleles) | Control Women (n = 276, 552 Alleles) | Intergroup Comparison OR (95% CI), p; Pc; NPV (95% CI) | MS Men (n = 93, 186 Alleles) | Control Men (n = 124, 248 Alleles) | Intergroup Comparison OR (95% CI), p; Pc; NPV (95% CI) | |
---|---|---|---|---|---|---|
GENOTYPES | ||||||
rs1922452 A/A | 35 (16.9; 11.8–22.0) | 47 (17.0; 12.6–21.5) | 0.99 (0.61–1.60); 0.972; 1.000; 0.57 (0.55–0.59) | 16 (17.2; 9.5–24.9) | 20 (16.1; 9.7–22.6) | 1.08 (0.53–2.22); 0.833; 0.833; 0.58 (0.54–0.61) |
rs1922452 A/G | 97 (46.9; 40.1–53.7) | 129 (46.7; 40.9–52.6) | 1.01 (0.70–1.44); 0.979; 1.000; 0.57 (0.53–0.62) | 41 (44.1; 34.0–54.2) | 61 (49.2; 40.4–58.0) | 0.81 (0.48–1.40); 0.457; 0.738; 0.55 (0.48–0.61) |
rs1922452 G/G | 75 (36.2; 29.7–42.8) | 100 (36.2; 30.6–41.9) | 1.00 (0.69–1.46); 1.000; 1.000; 0.57 (0.54–0.61) | 36 (38.7; 28.8–48.6) | 43 (34.7; 26.3–43.1) | 1.19 (0.68–2.08); 0.542; 0.738; 0.59 (0.53–0.64) |
rs951818 A/A | 72 (34.8; 28.3–41.3) | 99 (35.9; 30.2–41.5) | 0.95 (0.65–1.39); 0.805; 1.000; 0.57 (0.53–0.60) | 31 (33.3; 23.8–42.9) | 48 (38.7; 30.1–47.3) | 0.79 (0.45–1.39); 0.416; 0.738; 0.55 (0.50–0.60) |
rs951818 A/C | 105 (50.7; 43.9–57.5) | 134 (48.6; 42.7–54.4) | 1.09 (0.76–1.56); 0.637; 1.000; 0.58 (0.54–0.63) | 46 (49.5; 39.3–59.6) | 59 (47.6; 38.8–56.4) | 1.08 (0.63–1.85); 0.784; 0.833; 0.58 (0.51–0.65) |
rs951818 C/C | 30 (14.5; 9.7–19.3) | 43 (15.6; 11.3–19.9) | 0.92 (0.55–1.52); 0.742; 1.000; 0.57 (0.55–0.59) | 16 (17.2; 9.5–24.9) | 17 (13.7; 7.7–19.8) | 1.31 (0.62–2.75); 0.479; 0.738; 0.58 (0.55–0.61) |
rs870849 C/C | 80 (38.6; 32.0–45.3) | 108 (39.1; 33.4–44.9) | 0.98 (0.68–1.42); 0.914; 1.000; 0.57 (0.53–0.61) | 34 (36.6; 26.8–46.3) | 50 (40.3; 31.7–49.0) | 0.85 (0.49–1.48); 0.574; 0.738; 0.56 (0.50–0.61) |
rs870849 C/T | 97 (46.9; 40.1–53.7) | 135 (48.9; 43.0–54.8) | 0.92 (0.64–1.32); 0.655; 1.000; 0.56 (0.52–0.61) | 48 (51.6; 41.5–61.8) | 56 (45.2; 36.4–53.9) | 1.30 (0.76–2.22); 0.348; 0.738; 0.60 (0.53–0.67) |
rs870849 T/T | 30 (14.5; 9.7–19.3) | 33 (12.0; 8.1–15.8) | 1.25 (0.73–2.12); 0.413; 1.000; 0.58 (0.56–0.60) | 11 (11.8; 5.3–18.4) | 18 (14.5; 8.3–20.7) | 0.79 (0.36–1.76); 0.566; 0.738; 0.56 (0.54–0.59) |
ALLELES | ||||||
rs1922452 A | 167 (40.3; 35.6–45.1) | 223 (40.4; 36.3–44.5) | 1.00 (0.77–1.29); 0.985; 1.000; 0.57 (0.55–0.60) | 73 (39.2; 32.2–46.3) | 101 (40.7; 34.6–46.8) | 0.94 (0.64–1.39); 0.756; 0.909; 0.57 (0.53–0.61) |
rs1922452 G | 247 (59.7; 54.9–64.4) | 329 (59.6; 55.5–63.7) | 1.00 (0.77–1.30); 0.985; 1.000; 0.57 (0.53–0.61) | 113 (60.8; 53.7–67.8) | 147 (59.3; 53.2–65.4) | 1.06 (0.72–1.57); 0.756; 0.909; 0.58 (0.52–0.64) |
rs951818 A | 249 (60.1; 55.4–64.9) | 332 (60.1; 56.1–64.2) | 1.00 (0.77–1.30); 1.000; 1.000; 0.57 (0.53–0.61) | 108 (58.1; 51.0–65.2) | 155 (62.5; 56.5–68.5) | 0.83 (0.56–1.23); 0.305; 0.909; 0.54 (0.48–0.60) |
rs951818 C | 165 (39.9; 35.1–44.6) | 220 (39.9; 35.8–43.9) | 1.00 (0.77–1.30); 1.000; 1.000; 0.57 (0.55–0.60) | 78 (41.9; 34.8–49.0) | 93 (37.5; 31.5–43.5) | 1.20 (0.82–1.78); 0.350; 0.909; 0.59 (0.55–0.63) |
rs870849 C | 257 (62.1; 57.4–66.8) | 351 (63.6; 59.6–67.6) | 0.94 (0.72–1.22); 0.631; 1.000; 0.56 (0.52–0.60) | 116 (62.4; 55.4–69.3) | 156 (62.9; 56.9–68.9) | 0.98 (0.66–1.45); 0.909; 0.909; 0.57 (0.50–0.63) |
rs870849 T | 157 (37.9; 33.2–42.6) | 201 (36.4; 32.4–40.4) | 1.07 (0.82–1.39); 0.631; 1.000; 0.58 (0.55–0.60) | 70 (37.6; 30.7–44.6) | 92 (37.1; 31.1–43.1) | 1.02 (0.69–1.52); 0.909; 0.909; 0.57 (0.54–0.61) |
Age at Onset ≥ 31 (n = 154, 308 Alleles) | Age at Onset ≤ 30 (n = 146, 292 Alleles) | Intergroup Comparison OR (95% CI), p; Pc; NPV (95% CI) | |
---|---|---|---|
GENOTYPES | |||
rs1922452 A/A | 23 (14.9; 9.3–20.6) | 28 (19.2; 12.8–25.6) | 0.74 (0.40–1.36); 0.329; 0.615; 0.47 (0.45–0.50) |
rs1922452 A/G | 76 (49.4; 41.5–57.2) | 62 (42.5; 34.4–50.5) | 1.32 (0.84–2.08); 0.233; 0.615; 0.52 (0.46–0.57) |
rs1922452 G/G | 55 (35.7; 28.1–43.3) | 56 (38.4; 30.5–46.2) | 0.89 (0.56–1.43); 0.636; 0.818; 0.48 (0.42–0.57) |
rs951818 A/A | 47 (30.5; 23.2–37.8) | 56 (38.4; 30.5–46.2) | 0.71 (0.44–1.14); 0.154; 0.615; 0.46 (0.41–0.50) |
rs951818 A/C | 78 (50.6; 42.8–58.5) | 73 (50.0; 41.9–58.1) | 1.03 (0.65–1.61); 0.911; 0.988; 0.49 (0.43–0.55) |
rs951818 C/C | 29 (18.8; 12.7–25.0) | 17 (11.6; 6.4–16.8) | 1.76 (0.92–3.36); 0.085; 0.615; 0.51 (0.48–0.53) |
0.51 (0.48−0.53) | 55 (35.7; 28.1−43.3) | 59 (40.4; 32.5−48.4) | 0.82 (0.51−1.31); 0.403; 0.615; 0.47 (0.42−0.52) |
rs870849 C/T | 78 (50.6; 42.8−58.5) | 67 (45.9; 37.8−54.0) | 1.21 (0.77−1.91); 0.410; 0.615; 0.51 (0.45−0.57) |
rs870849 T/T | 21 (13.6; 8.2–19.1) | 20 (13.7; 8.1–19.3) | 1.00 (0.52–1.92); 0.988; 0.988; 0.49 (0.46–0.51) |
ALLELES | |||
rs1922452 A | 122 (39.6; 34.1–45.1) | 118 (40.4; 34.8–46.0) | 0.97 (0.70–1.34); 0.842; 0.842; 0.48 (0.45–0.52) |
rs1922452 G | 186 (60.4; 54.9–65.9) | 174 (59.6; 54.0–65.2) | 1.03 (0.75–1.43); 0.842; 0.842; 0.49 (0.44–0.54) |
rs951818 A | 172 (55.8; 50.3–61.4) | 185 (63.4; 57.8–68.9) | 0.73 (0.53–1.02); 0.061; 0.183; 0.44 (0.39–0.49) |
rs951818 C | 136 (44.2; 38.6–49.7) | 107 (36.6; 31.1–42.2) | 1.37 (0.99–1.90); 0.061; 0.183; 0.52 (0.48–0.55) |
rs870849 C | 188 (61.0; 55.6–66.5) | 185 (63.4; 57.8–68.9) | 0.91 (0.65–1.26); 0.559; 0.839; 0.47 (0.42–0.53) |
rs870849 T | 120 (39.0; 33.5–44.4) | 107 (36.6; 31.1–42.2) | 1.10 (0.79–1.54); 0.559; 0.839; 0.50 (0.46–0.53) |
EDSS Score < 3 (n = 149, 298 Alleles) | EDSS Score ≥ 3 (n = 151, 302 Alleles) | Intergroup Comparison OR (95% CI), p; Pc; NPV (95% CI) | |
---|---|---|---|
GENOTYPES | |||
rs1922452 A/A | 26 (17.4; 11.4–23.5) | 25 (16.6; 10.6–22.5) | 1.07 (0.58–1.95); 0.837; 0.976; 0.51 (0.48–0.53) |
rs1922452 A/G | 69 (46.3; 38.3–54.3) | 69 (45.7; 37.7–53.6) | 1.03 (0.65–1.61); 0.915; 0.976; 0.51 (0.45–0.56) |
rs1922452 G/G | 54 (36.2; 28.5–44.0) | 57 (37.7; 30.0–45.5) | 0.94 (0.59–1.50); 0.787; 0.976; 0.50 (0.45–0.54) |
rs951818 A/A | 51 (34.2; 26.6–41.8) | 52 (34.4; 26.9–42.0) | 0.99 (0.62–1.60); 0.970; 0.976; 0.50 (0.46–0.55) |
rs951818 A/C | 75 (50.3; 42.3–58.4) | 76 (50.3; 42.4–58.3) | 1.01 (0.63–1.63); 0.976; 0.976; 0.50 (0.46–0.55) |
rs951818 C/C | 23 (15.4; 9.6–21.2) | 23 (15.2; 9.5–21.0) | 1.02 (0.54–1.90); 0.961; 0.976; 0.50 (0.48–0.53) |
rs870849 C/C | 55 (36.9; 29.2–44.7) | 59 (39.1; 31.3–46.9) | 0.91 (0.57–1.46); 0.700; 0.976; 0.50 (0.45–0.54) |
rs870849 C/T | 69 (46.3; 38.3–54.3) | 76 (50.3; 42.4–58.3) | 0.85 (0.54–1.34); 0.486; 0.976; 0.48 (0.43–0.54) |
rs870849 T/T | 25 (16.8; 10.8–22.8) | 16 (10.6; 5.7–15.5) | 1.70 (0.87–3.34); 0.120; 0.976; 0.52 (0.50–0.54) |
ALLELES | |||
rs1922452 A | 121 (40.6; 35.0–46.2) | 119 (39.4; 33.9–44.9) | 1.05 (0.76–1.46); 0.764; 0.959; 0.51 (0.47–0.54) |
rs1922452 G | 177 (59.4; 53.8–65.0) | 183 (60.6; 55.1–66.1) | 0.95 (0.69–1.32); 0.764; 0.959; 0.50 (0.45–0.55) |
rs951818 A | 177 (59.4; 53.8–65.0) | 180 (59.6; 54.1–65.1) | 0.99 (0.72–1.37); 0.959; 0.959; 0.50 (0.45–0.55) |
rs951818 C | 121 (40.6; 35.0–46.2) | 122 (40.4; 34.9–45.9) | 1.01 (0.73–1.40); 0.959; 0.959; 0.50 (0.47–0.54) |
rs870849 C | 179 (60.1; 54.5–65.6) | 194 (64.2; 58.8–69.6) | 0.84 (0.60–1.17); 0.293; 0.879; 0.48 (0.42–0.53) |
rs870849 T | 119 (39.9; 34.4–45.5) | 108 (35.8; 30.4–41.2) | 1.19 (0.86–1.66); 0.293; 0.879; 0.52 (0.49–0.55) |
Relapsing-Remitting MS n = 163 | Secondary Progressive n = 94 | Primary Progressive n = 43 | Controls (n = 400) | |
---|---|---|---|---|
GENOTYPES | ||||
rs1922452 A/A | 32 (19.6; 13.5–25.7) | 14 (14.9; 7.7–22.1) | 5 (11.6; 2.0–21.2) | 67 (16.8; 13.1–20.4) |
rs1922452 A/G | 78 (47.9; 40.2–55.5) | 41 (43.6; 33.6–53.6) | 19 (44.2; 29.3–59.0) | 189 (47.3; 42.4–52.1) |
rs1922452 G/G | 53 (32.5; 25.3–39.7) | 39 (41.5; 31.5–51.4) | 19 (44.2; 29.3–59.0) | 144 (36.0; 31.3–40.7) |
rs951818 A/A | 61 (37.4; 30.0–44.9) | 31 (33.0; 23.5–42.5) | 11 (25.6; 12.5–38.6) | 145 (36.3; 31.5–41.0) |
rs951818 A/C | 79 (48.5; 40.8–56.1) | 47 (50.0; 39.9–60.1) | 25 (58.1; 43.4–72.9) | 193 (48.3; 43.4–53.1) |
rs951818 C/C | 23 (14.1; 8.8–19.5) | 16 (17.0; 9.4–24.6) | 7 (16.3; 5.2–27.3) | 62 (15.5; 12.0–19.0) |
rs870849 C/C | 70 (42.9; 35.3–50.5) | 34 (36.2; 26.5–45.9) | 10 (23.3; 10.6–35.9) | 158 (39.5; 34.7–44.3) |
rs870849 C/T | 74 (45.4; 37.8–53.0) | 46 (48.9; 38.8–59.0) | 25 (58.1; 43.4–72.9) | 192 (48.0; 43.1–52.9) |
rs870849 T/T | 19 (11.7; 6.7–16.6) | 14 (14.9; 7.7–22.1) | 8 (18.6; 7.0–30.2) | 50 (12.5; 9.3–15.7) |
ALLELES | ||||
rs1922452 A | 142 (43.6; 38.2–48.9) | 69 (36.7; 29.8–43.6) | 29 (33.7; 23.7–43.7) | 323 (40.4; 37.0–43.8) |
rs1922452 G | 184 (56.4; 51.1–61.8) | 119 (63.3; 56.4–70.2) | 57 (66.3; 56.3–76.3) | 477 (59.6; 56.2–63.0) |
rs951818 A | 201 (61.7; 56.4–66.9) | 109 (58.0; 50.9–65.0) | 47 (54.7; 44.1–65.2) | 483 (60.4; 57.0–63.8) |
rs951818 C | 125 (38.3; 33.1–43.6) | 79 (42.0; 35.0–49.1) | 39 (45.3; 34.8–55.9) | 317 (39.6; 36.2–43.0) |
rs870849 C | 214 (65.6; 60.5–70.8) | 114 (60.6; 53.7–67.6) | 45 (52.3; 41.8–62.9) | 508 (63.5; 60.2–66.8) |
rs870849 T | 112 (34.4; 29.2–39.5) | 74 (39.4; 32.4–46.3) | 41 (47.7; 37.1–58.2) | 292 (36.5; 33.2–39.8) |
HLADRB1*1501 T/T n = 181 | HLADRB1*1501 T/A n = 110 | Intergroup Comparison Values (T/T vs. T/A) OR (95% CI), p; Pc; NPV (95% CI) | HLADRB1*1501 A/A n = 9 | |
---|---|---|---|---|
GENOTYPES | ||||
rs1922452 A/A | 25 (13.8; 8.8–18.8) | 25 (22.7; 14.9–30.6) | 0.55 (0.30–1.00); 0.051; 0.392; 0.35 (0.33–0.38) | 1 (11.1; −9.4–31.6) |
rs1922452 A/G | 82 (45.3; 38.1–52.6) | 50 (45.5; 36.1–54.8) | 0.99 (0.62–1.60); 0.980; 0.980; 0.38 (0.32–0.43) | 6 (66.7; 35.9–97.5) |
rs1922452 G/G | 74 (40.9; 33.7–48.0) | 35 (31.8; 23.1–40.5) | 1.48 (0.90–2.44); 0.122; 0.392; 0.41 (0.37–0.46) | 2 (22.2; −4.9–49.4) |
rs951818 A/A | 61 (33.7; 26.8–40.6) | 40 (36.4; 27.4–45.4) | 0.89 (0.54–1.46); 0.644; 0.828; 0.37 (0.33–0.41) | 2 (22.2; −4.9–49.4) |
rs951818 A/C | 89 (49.2; 41.9–56.5) | 58 (52.7; 43.4–62.1) | 0.87 (0.54–1.39); 0.557; 0.828; 0.36 (0.30–0.42) | 4 (44.4; 12.0–76.9) |
rs951818 C/C | 31 (17.1; 11.6–22.6) | 12 (10.9; 5.1–16.7) | 1.69 (0.83–3.44); 0.148; 0.392; 0.40 (0.37–0.42) | 3 (33.3; 2.5–64.1) |
rs870849 C/C | 74 (40.9; 33.7–48.0) | 37 (33.6; 24.8–42.5) | 1.36 (0.83–2.24); 0.218; 0.925; 0.41 (0.36–0.45) | 3 (33.3; 2.5–64.1) |
rs870849 C/T | 86 (47.5; 40.2–54.8) | 54 (49.1; 39.7–58.4) | 0.94 (0.58–1.51); 0.794; 0.893; 0.37 (0.31–0.43) | 5 (55.6; 23.1–88.0) |
rs870849 T/T | 21 (11.6; 6.9–16.3) | 19 (17.3; 10.2–24.3) | 0.63 (0.32–1.23); 0.174; 0.392; 0.36 (0.34–0.39) | 1 (11.1; −9.4–31.6) |
ALLELES | ||||
rs1922452 A | 132 (36.5; 31.5–41.4) | 100 (45.5; 38.9–52.0) | 0.69 (0.49–0.97); 0.032; 0.096; 0.34 (0.31–0.38) | 8 (44.4; 21.5–67.4) |
rs1922452 G | 230 (63.5; 58.6–68.5) | 120 (54.5; 48.0–61.1) | 1.45 (1.03–2.04); 0.032; 0.096; 0.43 (0.38–0.48) | 10 (55.6; 32.6–78.5) |
rs951818 A | 211 (58.3; 53.2–63.4) | 138 (62.7; 56.3–69.1) | 0.83 (0.59–1.17); 0.290; 0.290; 0.35 (0.30–0.40) | 8 (44.4; 21.5–67.4) |
rs951818 C | 151 (41.7; 36.6–46.8) | 82 (37.3; 30.9–43.7) | 1.20 (0.85–1.70); 0.290; 0.290; 0.40 (0.36–0.43) | 10 (55.6; 32.6–78.5) |
rs870849 C | 234 (64.6; 59.7–69.6) | 128 (58.2; 51.7–64.7) | 1.31 (0.93–1.85); 0.119; 0.179; 0.42 (0.37–0.47) | 11 (61.1; 38.6–83.6) |
rs870849 T | 128 (35.4; 30.4–40.3) | 92 (41.8; 35.3–48.3) | 0.76 (0.54–1.07); 0.119; 0.179; 0.35 (0.32–0.39) | 7 (38.9; 16.4–61.4) |
Group | Controls (n = 400) | MS (n = 300) |
---|---|---|
Age, y, mean (SD) | 44.1 (11.1) | 43.9 (11.4) |
Age at onset, y, mean (SD) | NA | 32.8 (18.2) |
Female % | 276 (69.0%) | 207 (69.0%) |
EDSS | NA | 3.27 (2.44) |
MS evolutive type | ||
Relapsing–remitting MS | NA | 163 (54.3%) |
Secondary progressive MS | NA | 93 (31.0%) |
Primary progressive MS | NA | 44 (14.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Martín, E.; Agúndez, J.A.G.; Gómez-Tabales, J.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Turpín-Fenoll, L.; Alonso-Navarro, H.; García-Albea, E.; et al. Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 15244. https://doi.org/10.3390/ijms232315244
García-Martín E, Agúndez JAG, Gómez-Tabales J, Benito-León J, Millán-Pascual J, Díaz-Sánchez M, Calleja P, Turpín-Fenoll L, Alonso-Navarro H, García-Albea E, et al. Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis. International Journal of Molecular Sciences. 2022; 23(23):15244. https://doi.org/10.3390/ijms232315244
Chicago/Turabian StyleGarcía-Martín, Elena, José A. G. Agúndez, Javier Gómez-Tabales, Julián Benito-León, Jorge Millán-Pascual, María Díaz-Sánchez, Patricia Calleja, Laura Turpín-Fenoll, Hortensia Alonso-Navarro, Esteban García-Albea, and et al. 2022. "Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis" International Journal of Molecular Sciences 23, no. 23: 15244. https://doi.org/10.3390/ijms232315244
APA StyleGarcía-Martín, E., Agúndez, J. A. G., Gómez-Tabales, J., Benito-León, J., Millán-Pascual, J., Díaz-Sánchez, M., Calleja, P., Turpín-Fenoll, L., Alonso-Navarro, H., García-Albea, E., Plaza-Nieto, J. F., & Jiménez-Jiménez, F. J. (2022). Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis. International Journal of Molecular Sciences, 23(23), 15244. https://doi.org/10.3390/ijms232315244