Replacing the Burden of the Gluten Free Diet: Then, Now, and the Future
Abstract
:1. Introduction
2. Genetics and Genes in CD
3. Mechanisms Involved in CD Occurrence: Gluten Peptides, Cytokines, and Immune-Mediated Responses
4. Out with the Old Gluten-Free Diet?
5. Less Aging More Healing: Is There a Role for Probiotics and Polyphenols in CD?
6. New Insight on CD Treatment
7. Microbial Therapeutic Enzymes: A Promising Area of Biopharmaceuticals
8. The Leaky Gut: More Than Meets the Intestinal Barrier
9. Vaccines and CD
10. Blocking Tissue Transglutaminase, HLA DQ2/DQ8 Molecules, and IL-15
11. Role of Anti-TNF, Anti-IFN γ, and Inhibition of Integrin α4β7
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dias, R.; Bessa, C.; Rosa Pérez-Gregorio Mateus, N.; Freitas, V. Recent advances on dietary polyphenol’s potential roles in Celiac Disease. Trends Food Sci. Technol. 2021, 107, 213–225. [Google Scholar] [CrossRef]
- Ryan, D.; Barquera, S.; Barata Cavalcanti, O.; Ralston, J. The Global Pandemic of Overweight and Obesity. In Handbook of Global Health; Kickbusch, I., Ganten, D., Moeti, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Jullian-Desayes, I.; Trzepizur, W.; Boursier, J.; Joyeux-Faure, M.; Bailly, S.; Benmerad, M.; Le Vaillant, M.; Jaffre, S.; Pigeanne, T.; Bizieux-Thaminy, A.; et al. Obstructive sleep apnea, chronic obstructive pulmonary disease and NAFLD: An individual participant data meta-analysis. Sleep Med. 2020, 77, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildman, R.E.; Bruno, R.S. Handbook of Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Martins, N.; Morales, P.; Barros, L.; Ferreira, I.C. The Increasing Demand for Functional Foods. Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sharma, N.; Bhatia, S.; Chunduri, V.; Kaur, S.; Sharma, S.; Kapoor, P.; Kumari, A.; Garg, M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front. Nutr. 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac disease. Nat. Rev. Dis. Primers 2019, 5, 3–9. [Google Scholar] [CrossRef]
- Popp, A.; Mäki, M. Changing Pattern of Childhood Celiac Disease Epidemiology: Contributing Factors. Front. Pediatr. 2019, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Jeong, J.; Underwood, F.E.; Quan, J.; Panaccione, N.; Windsor, J.W.; Coward, S.; Debruyn, J.; Ronksley, P.E.; Shaheen, A.-A.; et al. Incidence of Celiac Disease Is Increasing Over Time: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2020, 115, 507–525. [Google Scholar] [CrossRef]
- Aboulaghras, S.; Piancatelli, D.; Oumhani, K.; Balahbib, A.; Bouyahya, A.; Taghzouti, K. Pathophysiology and immunogenetics of celiac disease. Clin. Chim. Acta 2022, 528, 74–83. [Google Scholar] [CrossRef]
- Kulkarni, A.; Patel, S.; Khanna, D.; Parmar, M.S. Current pharmacological approaches and potential future therapies for Celiac disease. Eur. J. Pharmacol. 2021, 909, 174434. [Google Scholar] [CrossRef]
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Levescot, A.; Malamut, G.; Cerf-Bensussan, N. Immunopathogenesis and environmental triggers in coeliac disease. Gut 2022, 71, 2337–2349. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; De Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59–66. [Google Scholar] [CrossRef]
- Lettre, G.; Rioux, J.D. Autoimmune diseases: Insights from genome-wide association studies. Hum. Mol. Genet. 2008, 17, R116–R121. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Gillespie, K.M.; Rodriguez, S. Unravelling the Roles of Susceptibility Loci for Autoimmune Diseases in the Post-GWAS Era. Genes 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, J.X.; Saavalainen, P.; Kurppa, K.; Laurikka, P.; Huhtala, H.; Nykter, M.; LEKoskinen, L.; Yohannes, D.A.; Kilpeläinen, E.; Shcherban, A.; et al. Independent and cumulative coeliac dis-ease-susceptibility loci are associated with distinct disease phenotypes. J. Hum. Genet. 2021, 66, 613–623. [Google Scholar] [CrossRef]
- Gnodi, E.; Meneveri, R.; Barisani, D. Celiac disease: From genetics to epigenetics. World J. Gastroenterol. 2022, 28, 449–463. [Google Scholar] [CrossRef]
- Hearn, N.L.; Chiu, C.L.; Lind, J.M. Comparison of DNA methylation profiles from saliva in Coeliac disease and non-coeliac disease individuals. BMC Med. Genom. 2020, 13, 16. [Google Scholar] [CrossRef]
- Megiorni, F.; Pizzuti, A. HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: Practical implications of the HLA molecular typing. J. Biomed. Sci. 2012, 19, 88. [Google Scholar] [CrossRef] [Green Version]
- Coleman, C.; Quinn, E.M.; Ryan, A.; Conroy, J.; Trimble, V.; Mahmud, N.; Kennedy, N.; Corvin, A.; Morris, D.W.; Donohoe, G.; et al. Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. Eur. J. Hum. Genet. 2015, 24, 291–297. [Google Scholar] [CrossRef]
- Sallese, M.; Lopetuso, L.R.; Efthymakis, K.; Neri, M. Beyond the HLA Genes in Gluten-Related Disorders. Front. Nutr. 2020, 7, 575844. [Google Scholar] [CrossRef] [PubMed]
- Geisslitz, S.; Longin, C.F.H.; Scherf, K.A.; Koehler, P. Comparative Study on Gluten Protein Composition of Ancient (Einkorn, Emmer and Spelt) and Modern Wheat Species (Durum and Common Wheat). Foods 2019, 8, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakireva, A.V.; Zamyatnin, A.A. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities. Nutrients 2016, 8, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso-Silva, D.; Delbue, D.; Itzlinger, A.; Moerkens, R.; Withoff, S.; Branchi, F.; Schumann, M. Intestinal Barrier Function in Glu-ten-Related Disorders. Nutrients 2019, 11, 2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G.; Chiran, D.A. Celiac Disease and Targeting the Molecular Mechanisms of Autoimmunity in COVID Pandemic. Int. J. Mol. Sci. 2022, 23, 7719. [Google Scholar] [CrossRef]
- Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef] [Green Version]
- Paolella, G.; Sposito, S.; Romanelli, A.M.; Caputo, I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int. J. Mol. Sci. 2022, 23, 7513. [Google Scholar] [CrossRef]
- Voisine, J.; Abadie, V. Interplay between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front. Immunol. 2021, 12, 674313. [Google Scholar] [CrossRef]
- Herrera, M.G.; Dodero, V.I. Gliadin proteolytical resistant peptides: The interplay between structure and self-assembly in glu-ten-related disorders. Biophys. Rev. 2021, 13, 1147–1154. [Google Scholar] [CrossRef]
- Dieterich, W.; Ehnis, T.; Bauer, M.; Donner, P.; Volta, U.; Riecken, E.O.; Schuppan, D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 1997, 3, 797–801. [Google Scholar] [CrossRef]
- Lindstad, C.B.; Dewan, A.E.; Stamnaes, J.; Sollid, L.M.; du Pré, M.F. TG2-gluten complexes as antigens for gluten-specific and transglutaminase-2 specific B cells in celiac disease. PLoS ONE 2021, 16, e0259082. [Google Scholar] [CrossRef]
- Lexhaller, B.; Ludwig, C.; Scherf, K.A. Identification of Isopeptides between Human Tissue Transglutaminase and Wheat, Rye, and Barley Gluten Peptides. Sci. Rep. 2020, 10, 7426. [Google Scholar] [CrossRef]
- Gandini, A.; Gededzha, M.P.; De Maayer, T.; Barrow, P.; Mayne, E. Diagnosing coeliac disease: A literature review. Hum. Immunol. 2021, 82, 930–936. [Google Scholar] [CrossRef]
- Ting, Y.T.; Dahal-Koirala, S.; Kim, H.S.K.; Qiao, S.-W.; Neumann, R.S.; Lundin, K.E.A.; Petersen, J.; Reid, H.H.; Sollid, L.M.; Rossjohn, J. A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proc. Natl. Acad. Sci. USA 2020, 117, 3063–3073. [Google Scholar] [CrossRef]
- Jabri, B.; Sollid, L.M. T Cells in Celiac Disease. J. Immunol. 2017, 198, 3005–3014. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, G. Effector and suppressor T cells in celiac disease. World J. Gastroenterol. 2015, 21, 7349–7356. [Google Scholar] [CrossRef]
- Dunne, M.; Byrne, G.; Chirdo, F.G.; Feighery, C. Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder. Front. Immunol. 2020, 11, 1374. [Google Scholar] [CrossRef]
- Turner, S.M.; Moorghen, M.; Probert, C.S. Refractory coeliac disease: Remission with infliximab and immunomodulators. Eur. J. Gastroenterol. Hepatol. 2005, 17, 667–669. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Ciccocioppo, R.; Cupelli, F.; Cinque, B.; Millimaggi, D.; Clarkson, M.M.; Paulli, M.; Cifone, M.G.; Corazza, G.R. Epithelium derived interleukin 15 regulates in-traepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006, 55, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Freeman, H.J. Emerging drugs for celiac disease. Expert Opin. Emerg. Drugs 2014, 20, 129–135. [Google Scholar] [CrossRef]
- Silvester, J.A.; Comino, I.; Kelly, C.P.; Sousa, C.; Duerksen, D.R.; Bernstein, C.N.; Cebolla, A.; Dominguez, M.R.; Graff, L.A.; Green, K.H.; et al. Most Patients With Celiac Disease on Gluten-Free Diets Consume Measurable Amounts of Gluten. Gastroenterology 2020, 158, 1497–1499.e1. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.L.; Rodríguez-Herrera, A.; Sousa, C.; Comino, I. Biomarkers to Monitor Gluten-Free Diet Compliance in Celiac Pa-tients. Nutrients 2017, 6, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Carnicer, Á.; Garzón-Benavides, M.; Fombuena, B.; Segura, V.; García-Fernández, F.; Sobrino-Rodríguez, S.; Gómez-Izquierdo, L.; A Montes-Cano, M.; Rodríguez-Herrera, A.; Millán, R.; et al. Negative predictive value of the repeated absence of gluten immunogenic peptides in the urine of treated celiac patients in predicting mucosal healing: New proposals for follow-up in celiac disease. Am. J. Clin. Nutr. 2020, 112, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Silvester, J.A.; Comino, I.; Rigaux, L.N.; Segura, V.; Green, K.H.; Cebolla, A.; Weiten, D.; Dominguez, R.; Leffler, D.A.; Leon, F.; et al. Exposure sources, amounts and time course of gluten ingestion and excretion in patients with coeliac disease on a gluten-free diet. Aliment. Pharmacol. Ther. 2020, 52, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, R.; Piccolo, M.; Francavilla, A.; Polimeno, L.; Semeraro, F. Clinical and Microbiological Effect of a Multispecies Pro-biotic Supplementation in Celiac Patients With Persistent IBS-type Symptoms: A Randomized, Double-Blind, Place-bo-controlled, Multicenter Trial. J. Clin. Gastroenterol. 2019, 53, e117–e125. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Khan, A.R. Efficacy of Probiotics in Management of Celiac Disease. Cureus 2022, 14, e22031. [Google Scholar] [CrossRef]
- Seiler, C.L.; Kiflen, M.; Stefanolo, J.P.; Bai, J.C.; Bercik, P.; Kelly, C.P.; Verdu, E.F.; Moayyedi, P.; Pinto-Sanchez, M.I. Probiotics for Celiac Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Gastroenterol. 2020, 115, 1584–1595, Erratum in Am. J. Gastroenterol. 2021, 116, 1968. [Google Scholar] [CrossRef]
- Moorman, C.D.; Sohn, S.J.; Phee, H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Castenmiller, C.; Keumatio-Doungtsop, B.C.; van Ree, R.; de Jong, E.C.; van Kooyk, Y. Tolerogenic Immunotherapy: Targeting DC Surface Receptors to Induce Antigen-Specific Tolerance. Front. Immunol. 2021, 12, 643240. [Google Scholar] [CrossRef]
- Kelly, C.P.; Murray, J.A.; Leffler, D.A.; Getts, D.R.; Bledsoe, A.C.; Smithson, G.; First, M.R.; Morris, A.; Boyne, M.; Elhofy, A.; et al. TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology 2021, 161, 66–80.e8. [Google Scholar] [CrossRef]
- Wei, G.; Helmerhorst, E.; Darwish, G.; Blumenkranz, G.; Schuppan, D. Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients 2020, 12, 2095. [Google Scholar] [CrossRef]
- Britannica, The Editors of Encyclopaedia. "Proteolytic Enzyme". Encyclopedia Britannica, 18 May. 2020. Available online: https://www.britannica.com/science/proteolytic-enzyme (accessed on 16 October 2022).
- Moreno Amador, M.L.; Arévalo-Rodríguez, M.; Durán, E.M.; Martínez Reyes, J.C.; Sousa Martín, C. A new microbial glu-ten-degrading prolyl endopeptidase: Potential application in celiac disease to reduce gluten immunogenic peptides. PLoS ONE 2019, 14, e0218346. [Google Scholar] [CrossRef] [Green Version]
- Caio, G.; Ciccocioppo, R.; Zoli, G.; De Giorgio, R.; Volta, U. Therapeutic options for coeliac disease: What else beyond gluten-free diet? Dig. Liver Dis. 2020, 52, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Dieckman, T.; Koning, F.; Bouma, G. Celiac disease: New therapies on the horizon. Curr. Opin. Pharmacol. 2022, 66. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, C.; Song, X.; Wu, M.; Mao, J.; Yu, R.; Zheng, Y. Rationally engineered prolyl endopeptidases from Sphingomonas capsulata with improved hydrolytic activity towards pathogenic peptides of celiac diseases. Eur. J. Med. Chem. 2020, 202, 112499. [Google Scholar] [CrossRef]
- Tack, G.J.; Van de Water, J.M.; Bruins, M.J.; Kooy-Winkelaar, E.M.; van Bergen, J.; Bonnet, P.; Vreugdenhil, A.C.; Korponay-Szabo, I.; Edens, L.; von Blomberg, B.M.E.; et al. Consumption of gluten with glutendegrading enzyme by celiac patients: A pi-lot-study. World J. Gastroenterol. 2013, 19, 5837–5847. [Google Scholar] [CrossRef] [Green Version]
- Krishnareddy, S.; Stier, K.; Recanati, M.; Lebwohl, B.; Green, P.H. Commercially available glutenases: A potential hazard in coeliac disease. Ther. Adv. Gastroenterol. 2017, 10, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Salden, B.N.; Monserrat, V.; Troost, F.J.; Bruins, M.J.; Edens, L.; Bartholomé, R.; Haenen, G.R.; Winkens, B.; Koning, F.; Masclee, A.A. Ran-domised clinical study: Aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers. Aliment. Pharmacol. Ther. 2015, 42, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Segura, V.; Ruiz-Carnicer, A.; Sousa, C.; Moreno, M. New Insights into Non-Dietary Treatment in Celiac Disease: Emerging Therapeutic Options. Nutrients 2021, 13, 2146. [Google Scholar] [CrossRef]
- Benoit-Gelber, I.; Gruntjes, T.; Vinck, A.; van Veluw, J.G.; Wösten, H.A.B.; Boeren, S.; Vervoort, J.J.M.; de Vries, R.P. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran. Fungal Genet. Biol. 2017, 102, 31–37. [Google Scholar] [CrossRef]
- Ehren, J.; Morón, B.; Martin, E.; Bethune, M.T.; Gray, G.M.; Khosla, C. A Food-Grade Enzyme Preparation with Modest Gluten Detoxification Properties. PLoS ONE 2009, 4, e6313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pultz, I.S.; Hill, M.; Vitanza, J.M.; Wolf, C.; Saaby, L.; Liu, T.; Winkle, P.; Leffler, D.A. Gluten Degradation, Pharmacokinetics, Safety, and Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease. Gastroenterology 2021, 161, 81–93.e3. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoilat, G.J.; Altowairqi, A.K.; Ayas, M.F.; Alhaddab, N.T.; Alnujaidi, R.A. Larazotide acetate for treatment of celiac disease: A sys-tematic review and meta-analysis of randomized controlled trials. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101782. [Google Scholar] [CrossRef] [PubMed]
- A Leffler, D.; Kelly, C.P.; Abdallah, H.Z.; Colatrella, A.M.; A Harris, L.; Leon, F.; A Arterburn, L.; Paterson, B.M.; Lan, Z.H.; Murray, J. A Randomized, Double-Blind Study of Larazotide Acetate to Prevent the Activation of Celiac Disease During Gluten Challenge. Am. J. Gastroenterol. 2012, 107, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Di Sabatino, A.; Lenti, M.V.; Corazza, G.R.; Gianfrani, C. Vaccine Immunotherapy for Celiac Disease. Front. Med. 2018, 5, 187. [Google Scholar] [CrossRef]
- Truitt, K.E.; Daveson, A.J.M.; Ee, H.C.; Goel, G.; MacDougall, J.; Neff, K.; Anderson, R.P. Randomised clinical trial: A placebo-controlled study of subcutaneous or intradermal NEXVAX2, an investigational immunomodulatory peptide therapy for coeliac disease. Aliment. Pharmacol. Ther. 2019, 50, 547–555. [Google Scholar] [CrossRef]
- Vaquero, L.; Rodríguez-Martín, L.; León, F.; Jorquera, F.; Vivas, S. New coeliac disease treatments and their complications. Gastroenterol. Hepatol. 2018, 41, 191–204. [Google Scholar] [CrossRef]
- Ventura, M.A.E.; Sajko, K.; Hils, M.; Pasternack, R.; Greinwald, R.; Tewes, B.; Schuppan, D. Su1161-the oral transglutaminase 2 (TG2) inhibitor Zed1227 blocks TG2 activity in a mouse model of intestinal inflammation. Gastroenterology 2018, 154, S-490. [Google Scholar] [CrossRef]
- Kapoerchan, V.V.; Wiesner, M.; Hillaert, U.; Drijfhout, J.W.; Overhand, M.; Alard, P.; van der Marel, G.A.; Overkleeft, H.S.; Koning, F. Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule. Mol. Immunol. 2010, 47, 1091–1097. [Google Scholar] [CrossRef]
- Vicari, A.P.; Schoepfer, A.M.; Meresse, B.; Goffin, L.; Léger, O.; Josserand, S.; Guégan, N.; Yousefi, S.; Straumann, A.; Cerf-Bensussan, N.; et al. Discovery and characterization of a novel humanized anti-IL-15 antibody and its relevance for the treatment of refractory celiac disease and eosinophilic esophagitis. mAbs 2017, 9, 927–944. [Google Scholar] [CrossRef] [Green Version]
- Lähdeaho, M.-L.; Scheinin, M.; Vuotikka, P.; Taavela, J.; Popp, A.; Laukkarinen, J.; Koffert, J.; Koivurova, O.-P.; Pesu, M.; Kivelä, L.; et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: A phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol. Hepatol. 2019, 4, 948–959. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Seiler, C.L.; Santesso, N.; Alaedini, A.; Semrad, C.; Lee, A.R.; Bercik, P.; Lebwohl, B.; Leffler, D.A.; Kelly, C.P.; et al. Association between Inflammatory Bowel Diseases and Celiac Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 159, 884–903.e31. [Google Scholar] [CrossRef]
- Manceñido Marcos, N.; Pajares Villarroya, R.; Salinas Moreno, S.; Arribas López, M.R.; Comas Redondo, C. The association between de novo inflammatory bowel disease and celiac disease. Rev. Esp. Enferm. Dig. 2020, 112, 7–11. [Google Scholar] [CrossRef]
- Crooks, B.; Barnes, T.; Limdi, J.K. Vedolizumab in the treatment of inflammatory bowel disease: Evolving paradigms. Drugs Context 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Park, S.C.; Jeen, Y.T. Anti-integrin therapy for inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 1868–1880. [Google Scholar] [CrossRef] [Green Version]
- Gillett, H.R.; Arnott, I.D.; McIntyre, M.; Campbell, S.; Dahele, A.; Priest, M.; Jackson, R.; Ghosh, S. Successful infliximab treatment for steroid-refractory celiac disease: A case report. Gastroenterology 2002, 122, 800–805. [Google Scholar] [CrossRef]
- Loganathan, S.; Athalye, S.N.; Joshi, S.R. Itolizumab, an anti-CD6 monoclonal antibody, as a potential treatment for COVID-19 complications. Expert Opin. Biol. Ther. 2020, 20, 1025–1031. [Google Scholar] [CrossRef]
Cereal Type | Gluten-Derived Peptides | Epitopes | |
---|---|---|---|
WHEAT | prolamins | α-gliadins γ-gliadins ω-1,2,5-gliadins | DQ2.5, DQ8, DQ8.5, DQ2.2 DQ2.5, DQ8, DQ8.5, DQ2.2 DQ2.5 |
glutamines | HMW-glutenins LMW-glutenins | DQ8, DQ8.5 DQ2.5, DQ2.2 | |
RYE | prolamins | γ-secalins ω-secalins | DQ2.5 |
glutamines | HMW-secalins | DQ2.5 | |
BARLEY | prolamins | C-hordeins γ/B-hordeins | DQ2.5 |
glutamines | D-hordeins B/γ-hordeins | DQ2.5 |
Treatment Class | Name of Agent | Structure | Role | The Current Stage of Clinical Trials and Expected Therapeutic Outcome |
---|---|---|---|---|
Pretreated flower | Pre-treated flowers with probiotics | Lactobacillus Bifidobacterium infantis Bifidobacterium natrum | Lactobacillus strains have enzymatic abilities for hydrolyzing gluten peptides. Protects enterocytes from gliadin-induced damage. | No guideline recommendations for role in symptom management. |
Genetic modification of grains | Wheat deletion lines - ω-, γ-gliadins, and LMW-glutenins on short arm of chromosome 1D - α-gliadins on short arm of chromosome 6D | wheat variants with decreased immunogenicity via genetic engineering | Confer less immunogenicity and also have lower proportions of αβγω gliadins. | Preclinical phase, no data is available. |
Co-polymeric binders | BL 7010 | a synthetic, nonabsorbable copolymer of styrene sulfate with hydroxyethyl methacrylate | Has a high affinity to α-gliadin peptides. It retains intraluminal gliadin and prevents splitting into immunogenic peptides. | The result is to be published; concerns about safety profile and binding with other medications. |
Enzymatic gluten hydrolysis via endopeptidase | Latiglutenase (formerly ALV003) IMGX-003 | a combination of 2 enzymes ALV001 and ALV002 | ALV001 degrades gluten proteins and reduces the immunotoxic potential. ALV002 catalyzes the post-proline hydrolysis. | Latiglutenase inhibits gluten from crossing the intestinal barrier. It may be effective in reducing CD symptoms but does not induce mucosal healing. |
STAN1 | a combination of microbial enzymes | Degradation of gluten before absorption in the GI tract, expected to decrease persistently elevated TTG levels. | Randomized, placebo-controlled, double-blinded clinical trial; disappointing results, therapeutic role unclear. | |
AN-PEP | a second PEP derived from the fungus Aspergillus niger | Degradation of gluten. | Randomized, placebo-controlled study of adult patients with CD on a GFD. It did not prevent mucosal injury. | |
TAK-101 | an immune-modifying nanoparticle | It contains gliadin protein encapsulated in negatively charged poly designed to induce gluten-specific tolerance. | Randomized, double-blind, placebo-controlled. Promotes T-cell suppression by binding to inflammatory cells. Reduces the immune response to antigens. | |
TAK-062 | a highly potent, computationally designed, third-generation enzyme derived from Kuma030, the bacterial enzyme kumamolisin-As, from Alicyclobacillus sendaiensis | Increased proteolytic activity, and resistance to the gastric and intestinal pepsin and trypsin. The high substrate specificity of TAK-062 is expected to result in a high level of gliadin degradation in the stomach, irrespective of meal composition. | TAK-062 is well tolerated and has demonstrated high specificity and potency in the human stomach. TAK-062 offers potential as an oral therapeutic for the treatment of CD. | |
Tight junction blockade via zonulin inhibition | Larazotid acetat (AT 1001) | synthetic octapeptide similar in structure to the zonula occludens toxin | Improves TJ integrity and reduces mucosal inflammation. | Larazotide acetate was able to reduce gluten-induced immune reactivity and gastrointestinal symptoms. Good clinical profile. |
Gluten vaccine | Immunsan T Nexvax 2 | delivery of 16-mer peptides derived from α-gliadin, ω-gliadin, and hordein | Suppress T-cell-mediated inflammation and promote gluten tolerance. | Only suitable for HLA DQ2 genotype. Concerns with a higher risk of autoimmune system activation, causing potential progression of the disease to refractory forms or the development of other autoimmune diseases. |
Transglutaminase inhibitors | Competitive, reversible, and irreversible TTG2 inhibitors ZED1098, ZED1219, and ZED1227 Synthetic polymer poly (hydroxymethyl methacrylate-costyrene sulfonate) Anti-gliadin IgY Dihydroisoxazo-les Cinnamoytriazo-le Aryl β-aminoethyl ketones | cystamine is a competitive TTG2 inhibitor that has been evaluated in cultures of duodenal tissue from patients with CD, where it has been found to block the proliferative capacity of T-cells; dihydroisoxazole derivative is an irreversible TTG22 inhibitor which has been studied in rodents | Inhibition of gliadin peptide deamination using TTG2 inhibitors reduces the peptides’ binding affinity for APC. | A new generation of selective inhibitors, this novel therapy is in the early stages of research. ZED1227 completed phase 1 studies and is under phase 2 of clinical trials. |
Inhibition of integrin α4β7 | Vedolizumab | a humanized monoclonal antibody, which acts against α4β7 integrin heterodimer and blocks the interaction of α4β7 integrin with MAdCAM-1 | It prevents leukocyte binding to the endothelial surface and its extravasation into the affected tissue. | The efficacy and safety of vedolizumab have been established in many clinical studies. It has shown promising results in various clinical studies. |
Anti-IFN-γ- and anti-TNF-therapies | Adalimumab Infliximab Certolizumab Fontolizumab Itolizumab | anti-TNF monoclonal antibodies anti-IFN γ monoclonal antibody | The pro-inflammatory cytokines IFN- and TNF- are important molecules involved in CD pathogenesis secreted by T-cells in response to gluten. | No data available. |
The antagonist of IL 15 | Anti-IL15 antibodies AMG714 | anti-IL 15 monoclonal antibodies | Neutralization of IL 15 could reduce the intestinal injury. | Results from clinical trials involving CD and AMG714 are still to be published. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemteanu, R.; Ciortescu, I.; Hincu, C.E.; Clim, A.; Gheorghe, L.; Trifan, A.; Plesa, A. Replacing the Burden of the Gluten Free Diet: Then, Now, and the Future. Int. J. Mol. Sci. 2022, 23, 15108. https://doi.org/10.3390/ijms232315108
Nemteanu R, Ciortescu I, Hincu CE, Clim A, Gheorghe L, Trifan A, Plesa A. Replacing the Burden of the Gluten Free Diet: Then, Now, and the Future. International Journal of Molecular Sciences. 2022; 23(23):15108. https://doi.org/10.3390/ijms232315108
Chicago/Turabian StyleNemteanu, Roxana, Irina Ciortescu, Corina Elena Hincu, Andreea Clim, Liliana Gheorghe, Anca Trifan, and Alina Plesa. 2022. "Replacing the Burden of the Gluten Free Diet: Then, Now, and the Future" International Journal of Molecular Sciences 23, no. 23: 15108. https://doi.org/10.3390/ijms232315108
APA StyleNemteanu, R., Ciortescu, I., Hincu, C. E., Clim, A., Gheorghe, L., Trifan, A., & Plesa, A. (2022). Replacing the Burden of the Gluten Free Diet: Then, Now, and the Future. International Journal of Molecular Sciences, 23(23), 15108. https://doi.org/10.3390/ijms232315108