Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging
Abstract
:1. Introduction
2. Results
2.1. The 2DE Analysis of the Neuroproteome Changes by Comparison between the Cortical and Hippocampal Regions in SAMP8 and SAMR1
2.2. Identification of Hippocampus-Specific Proteins in SAMR1 and SAMP8 Mice
2.3. Effect of Aging on the Neuroproteome
2.4. Bioinformatics Analysis of Neuroproteome Differences in Aging-Related Expression
2.5. Cytokines and Cholinergic Marker Expressions in Brain
2.6. Cytokines and Cholinergic Marker Expressions in Hippocampus
2.7. Differential Expression of Cytokines and Cholinergic Markers in Hippocampus and Brain
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. 2-DE Analysis
4.3. Protein Digestion and MALDI TOF-TOF MS Analysis
4.4. RNA Extraction, Reverse Transcription, and Real-Time PCR
4.5. Bioinformatic Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Kim, H.-J. Normal Aging Induces Changes in the Brain and Neurodegeneration Progress: Review of the Structural, Biochemical, Metabolic, Cellular, and Molecular Changes. Front. Aging Neurosci. 2022, 14, 931536. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, T.; Matsuda, H.; Tabira, T.; Asada, T.; Uno, M. Changes in brain morphology in Alzheimer disease and normal aging: Is Alzheimer disease an exaggerated aging process? AJNR Am. J. Neuroradiol. 2001, 22, 1680–1685. [Google Scholar] [PubMed]
- Simen, A.A.; Bordner, K.A.; Martin, M.P.; Moy, L.A.; Barry, L.C. Cognitive dysfunction with aging and the role of inflammation. Adv. Chronic Dis. 2011, 2, 175–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikelenboom, P.; Veerhuis, R.; Scheper, W.; Rozemuller, A.J.; van Gool, W.A.; Hoozeman, J.J.M. The significance of neuroinflammation in understanding Alzheimer’s disease. J. Neural Transm. 2006, 113, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Tha, K.K.; Okuma, Y.; Miyazaki, H.; Murayama, T.; Uehara, T.; Hatakeyama, R.; Hayashi, Y.; Nomura, Y. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 2000, 885, 25–31. [Google Scholar] [CrossRef]
- Campuzano, O.; Castillo-Ruiz, M.M.; Acarin, L.; Castellano, B.; Gonzalez, B. Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 2009, 87, 2484–2497. [Google Scholar] [CrossRef]
- Tan, Z.S.; Beiser, A.S.; Vasan, R.S.; Roubenoff, R.; Dinarello, C.A.; Harris, T.B.; Benjamin, E.J.; Au, R.; Kiel, D.P.; Wolf, P.A.; et al. Inflammatory markers and the risk of Alzheimer disease: The Framingham Study. Neurology 2007, 68, 1902–1908. [Google Scholar] [CrossRef]
- Cortese, G.P.; Burger, C. Neuroinflammatory challenges compromise neuronal function in the aging brain: Postoperative cognitive delirium and Alzheimer’s disease. Behav. Brain Res. 2017, 322, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Bonow, R.H.; Aid, S.; Zhang, Y.; Becker, K.G.; Bosetti, F. The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics 2009, 9, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Motoki, K.; Kishi, H.; Hori, E.; Tajiri, K.; Nishijo, H.; Muraguchi, A. The direct excitatory effect of IL-1beta on cerebellar Purkinje cell. Biochem. Biophys. Res. Commun. 2009, 379, 665–668. [Google Scholar] [CrossRef]
- Bachstetter, A.D.; Morganti, J.M.; Jernberg, J.; Schlunk, A.; Mitchell, S.H.; Brewster, K.W.; Hudson, C.E.; Cole, M.J.; Harrison, J.K.; Bickford, P.C.; et al. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol. Aging 2011, 32, 2030–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, W.; Stoll, L.; Schubert, T.; Gelbmann, C. Central cholinergic functioning and aging. Acta Psychiatr. Scand. 1991, 83, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Gamage, R.; Wagnon, I.; Rossetti, I.; Childs, R.; Niedermayer, G.; Chesworth, R.; Gyengesi, E. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front. Cell. Neurosci. 2020, 14, 577912. [Google Scholar] [CrossRef] [PubMed]
- Strong, R.; Reddy, V.; Morley, J.E. Cholinergic deficits in the septal-hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Res. 2003, 966, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gómez, F.J.; Muñoz-Delgado, E.; Montenegro, M.F.; Campoy, F.J.; Vidal, C.J.; Jordán, J. The level of butyrylcholinesterase activity increases and the content of the mRNA remains unaffected in brain of senescence-accelerated mouse SAMP8. Chem. Biol. Interact. 2008, 175, 332–335. [Google Scholar] [CrossRef]
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Mobley, W.C. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Front. Neurosci. 2019, 13, 446. [Google Scholar] [CrossRef] [Green Version]
- Geula, C.; Dunlop, S.R.; Ayala, I.; Kawles, A.S.; Flanagan, M.E.; Gefen, T.; Mesulam, M.M. Basal forebrain cholinergic system in the dementias: Vulnerability, resilience, and resistance. J. Neurochem. 2021, 158, 1394–1411. [Google Scholar] [CrossRef]
- Das, U.N. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med. Sci. Monit. 2007, 13, RA214–RA221. [Google Scholar]
- Nizri, E.; Hamra-Amitay, Y.; Sicsic, C.; Lavon, I.; Brenner, T. Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors. Neuropharmacology 2006, 50, 540–547. [Google Scholar] [CrossRef]
- Lampón, N.; Hermida-Cadahia, E.F.; Riveiro, A.; Tutor, J.C. Association between butyrylcholinesterase activity and lowgrade systemic inflammation. Annu. Hepatol. 2012, 11, 356–363. [Google Scholar] [CrossRef]
- Wessler, I.; Kirkpatrick, C.J. Cholinergic signaling controls immune functions and promotes homeostasis. Int. Immunopharmacol. 2020, 83, 106345. [Google Scholar] [CrossRef] [PubMed]
- Reale, M.; De Angelis, F.; Di Nicola, M.; Capello, E.; Di Ioia, M.; De Luca, G.; Lugaresi, A.; Tata, A.M. Relation between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis patients. Int. J. Mol. Sci. 2012, 13, 12656–12664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halder, N.; Lal, G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front. Immunol. 2021, 12, 660342. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003, 4, 131–138. [Google Scholar] [CrossRef]
- Shytle, R.D.; Mori, T.; Townsend, K.; Vendrame, M.; Sun, N.; Zeng, J.; Ehrhart, J.; Silver, A.A.; Sanberg, P.R.; Tan, J. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J. Neurochem. 2004, 89, 337–343. [Google Scholar] [CrossRef]
- Lu, T.; Pan, Y.; Kao, S.Y.; Li, C.; Kohane, I.; Chan, J.; Yankner, B.A. Gene regulation and DNA damage in the ageing human brain. Nature 2004, 429, 883–891. [Google Scholar] [CrossRef]
- Bressler, S.L.; Menon, V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 2010, 14, 277–290. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 2006, 52, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Issa, A.M.; Rowe, W.; Gauthier, S.; Meaney, M.J. Hypothalamic–pituitary–adrenal activity in aged and cognitively unimpaired rats. J. Neurosci. 1990, 10, 3247–3254. [Google Scholar] [CrossRef]
- Geinisman, Y.; deToledo-Morrell, L.; Morrell, F.; Heller, R.E. Hippocampal markers of age-related memory dysfunction: Behavioral, electrophysiological and morphological perspectives. Prog. Neurobiol. 1995, 45, 223–252. [Google Scholar] [CrossRef] [PubMed]
- Raz, N. Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In Handbook of Aging and Cognition—II; Craik, F.I.M., Salthouse, T.A., Eds.; Erlbaum: Mahwah, NJ, USA, 1999; pp. 1–90. [Google Scholar]
- Ypsilanti, A.R.; da Cruz, M.T.G.; Burgess, A.; Aubert, I. The length of hippocampal cholinergic fibers is reduced in the aging brain. Neurobiol. Aging 2008, 29, 1666–1679. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, R.; Kitt, M.; Watkins, L.; Maier, S. Neuroinflammation in the normal aging hippocampus. Neuroscience 2015, 309, 84–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217, 408–414. [Google Scholar] [CrossRef]
- Abbas, M.; Rahman, S. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice. Eur. J. Pharm. 2016, 783, 85–91. [Google Scholar] [CrossRef]
- Dumas, J.A.; Newhouse, P.A. The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharm. Biochem. Behav. 2011, 99, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, T.; Wulff, P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience 2015, 309, 1–16. [Google Scholar] [CrossRef]
- Porcher, L.; Bruckmeier, S.; Burbano, S.D.; Finnell, J.E.; Gorny, N.; Klett, J.; Wood, S.K.; Kelly, M.P. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J. Neuroinflamm. 2021, 18, 219. [Google Scholar] [CrossRef]
- Pallas, M.; Camins, A.; Smith, M.A.; Perry, G.; Lee, H.G.; Casadesus, G. From aging to Alzheimer’s disease: Unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J. Alzheimers Dis. 2008, 15, 615–624. [Google Scholar] [CrossRef]
- Takeda, T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem. Res. 2009, 34, 639–659. [Google Scholar] [CrossRef]
- Griñan-Ferré, C.; Palomera-Ávalos, V.; Puigoriol-Illamola, D.; Camins, A.; Porquet, D.; Plá, V.; Aguado, F.; Pallàs, M. Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence. Exp. Gerontol. 2016, 80, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Hosokawa, M.; Higuchi, K. Senescence-accelerated mouse (SAM): A novel murine model of accelerated senescence. J. Am. Geriatr. Soc. 1991, 39, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, I.; Sutherland, R.J. The aging hippocampus: Navigating between rat and human experiments. Rev. Neurosci. 2005, 16, 87–121. [Google Scholar] [CrossRef] [PubMed]
- Stark, S.M.; Stark, C.E.L. Aging hippocampus: Linking animal and human research. In Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging, 2nd ed.; Cabeza, R., Nyberg, L., Park, D.C., Eds.; Oxford Academic Press: Oxford, UK, 2009; Chapter 11; pp. 273–300. [Google Scholar]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Khachaturian, A.S.; Vergallo, A.; Farlow, M.R.; Snyder, P.J.; Giacobini, E.; Khachaturian, Z.S. Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis. 2019, 6, 2–15. [Google Scholar] [CrossRef]
- Benfante, R.; Di Lascio, S.; Cardani, S.; Fornasari, D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: A new therapeutic perspective in aging-related disorders. Aging Clin. Exp. Res. 2021, 33, 823–834. [Google Scholar] [CrossRef]
- Toricelli, M.; Pereira, A.A.R.; Souza Abrao, G.; Malerba, H.N.; Maia, J.; Buck, H.S.; Viel, T.A. Mechanisms of neuroplasticity and brain degeneration: Strategies for protection during the aging process. Neural Regen. Res. 2021, 16, 58–67. [Google Scholar] [CrossRef]
- Hwang, I.K.; Kim, D.W.; Jung, J.Y.; Yoo, K.Y.; Cho, J.H.; Kwon, O.S.; Kang, T.C.; Choi, S.Y.; Kim, Y.S.; Won, M.H. Age-dependent changes of pyridoxal phosphate synthesizing enzymes immunoreactivities and activities in the gerbil hippocampal CA1 region. Mech. Ageing Dev. 2005, 126, 1322–1330. [Google Scholar] [CrossRef]
- Uchida, S.; Martel, G.; Pavlowsky, A.; Takizawa, S.; Hevi, C.; Watanabe, Y.; Kandel, E.R.; Alarcon, J.M.; Shumyatsky, G. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing. Nat. Commun. 2014, 5, 4389. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Hu, Y.; Wang, B.; Wang, S.; Zhang, X. Metabolic Dysregulation Contributes to the Progression of Alzheimer’s Disease. Front. Neurosci. 2020, 14, 530219. [Google Scholar] [CrossRef]
- Murray, C.A.; Lynch, M.A. Evidence that increased hippocampal expression of the cytokine interleukin-1b is a common trigger for age- and stress-induced impairments in long-term potentiation. J. Neurosci. 1998, 18, 2974–2981. [Google Scholar] [CrossRef] [Green Version]
- Habbas, S.; Santello, M.; Becker, D.; Stubbe, H.; Zappia, G.; Liaudet, N.; Klaus, F.R.; Kollias, G.; Fontana, A.; Pryce, C.R.; et al. Neuroinflammatory TNF-α impairs memory via astrocyte signaling. Cell 2005, 163, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Xiang, J.; Dong, Y.T.; Xu, Y.; Guan, Z.Z. Activation of α7 Nicotinic Acetylcholine Receptor by its Selective Agonist Improved Learning and Memory of Amyloid Precursor Protein/Presenilin 1 (APP/PS1) Mice via the Nrf2/HO-1 Pathway. Med. Sci. Monit. 2022, 28, e933978. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, C.; Costantini, E.; Salvador, N.; Marchioni, M.; Di Nicola, M.; Greig, N.H.; Reale, M. nAChRs gene expression and neuroinflammation in APPswe/PS1dE9 transgenic mouse. Sci. Rep. 2021, 11, 9711. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowski, C.C.; Sametsky, E.; Shah, S.; Vassar, R.; Disterhoft, J.F. Mechanisms underlying basal and learning-related intrinsic excitability in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2011, 32, 1452–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dani, J.A.; Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharm. Toxicol. 2007, 47, 699–729. [Google Scholar] [CrossRef]
- Yakel, J.L. Nicotinic ACh receptors in the hippocampus: Role in excitability and plasticity. Nicotine Tob. Res. 2012, 14, 1249–1257. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Zoli, M. Nicotinic receptors in aging and dementia. J. Neurobiol. 2002, 53, 641–655. [Google Scholar] [CrossRef]
- Nop, O.; Senft Miller, A.; Culver, H.; Makarewicz, J.; Dumas, J.A. Nicotine and cognition in cognitively normal older adults. Front. Aging Neurosci. 2021, 13, 640674. [Google Scholar] [CrossRef]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef]
- Nees, F. The nicotinic cholinergic system function in the human brain. Neuropharmacology 2015, 96, 289–301. [Google Scholar] [CrossRef]
- Jinno, S.; Feischer, F.; Eckel, S.; Schmidt, V.; Kosaka, T. Spatial arrangement of microglia in the mouse hippocampus: A stereological study in comparison with astrocytes. Glia 2007, 55, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Vaknine, S.; Soreq, H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020, 168, 108020. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, P.H.; Ahn, Y.W.; Choi, Y.J.; Lee, G.; Lee, D.Y.; Chung, E.S.; Jin, B.K. Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur. J. Neurosci. 2007, 26, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, D.; De Simone, R.; Minghetti, L. Microglia- neuron interaction in inflammatory and degenerative diseases: Role of cholinergic and noradrenergic systems. CNS Neurol. Disord. Drug Targets 2007, 6, 388–397. [Google Scholar] [CrossRef]
- Neuner, S.M.; Wilmott, L.A.; Hoffmann, B.R.; Mozhui, K.; Kaczorowski, C.C. Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer’s disease mouse models. Behav. Brain Res. 2017, 322, 288–298. [Google Scholar] [CrossRef]
- Tohgi, H.; Utsugisawa, K.; Yoshimura, M.; Nagane, Y.; Mihara, M. Age-related changes in nicotinic acetylcholine receptor subunits alpha4 and beta2 messenger RNA expression in postmortem human frontal cortex and hippocampus. Neurosci. Lett. 1998, 245, 139–142. [Google Scholar] [CrossRef]
- Counts, S.E.; He, B.; Che, S.; Ikonomovic, M.D.; DeKosky, S.T.; Ginsberg, S.D.; Mufson, E.J. Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease. Arch. Neurol. 2007, 64, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Parri, H.R.; Hernandez, C.M.; Dineley, K.T. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem. Pharmacol. 2011, 82, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.X.; Yakel, J.L. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol. Sin. 2009, 30, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Dajas-Bailador, F.A.; Lima, P.A.; Wonnacott, S. The α7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharmacology 2000, 39, 2799–2807. [Google Scholar] [CrossRef]
- Jonnala, R.R.; Buccafusco, J.J. Relationship between the increased cell surface α7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J. Neurosci. Res. 2001, 66, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, E.; Agrawal, R.; Nath, C.; Shukla, R. Inhibitory role of cholinergic system mediated via α7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation. Innate Immun. 2010, 16, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahring, L.C.; Days, E.L.; Kaasch, T.; González de Mendoza, M.; Owen, L.; Persiyanov, K.; Rogers, S.W. Pro-inflammatory cytokines modify neuronal nicotinic acetylcholine receptor assembly. J. Neuroimmunol. 2005, 166, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, S.; Shumiya, S.; Kawamura, H. Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM). Behav. Brain Res. 1992, 51, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, N.; Tooyama, I.; Kimura, H.; Yamamoto, T.; Tsugu, Y.; Oomura, Y.; Ojika, K. Increased expression of hippocampal cholinergic neurostimulating peptide-related components and their messenger RNAs in the hippocampus of aged senescence-accelerated mice. Neuroscience 1999, 88, 79–92. [Google Scholar] [CrossRef]
- Zhao, X.H.; Kitamura, Y.; Nomura, Y. Age-related changes in NMDA-induced [3H]acetylcholine release from brain slices of senescence-accelerated mouse. Int. J. Dev. Neurosci. 1992, 10, 121–129. [Google Scholar] [CrossRef]
- Greig, N.H.; Utsuki, T.; Yu, Q.; Zhu, X.; Holloway, H.W.; Perry, T.; Lee, B.; Ingram, D.K.; Lahiri, D.K. A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001, 17, 159–165. [Google Scholar] [CrossRef]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef] [Green Version]
- Koussounadis, A.; Langdon, S.P.; Um, I.H.; Harrison, D.J.; Smith, V.A. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci. Rep. 2015, 5, 10775. [Google Scholar] [CrossRef] [Green Version]
- Maier, T.; Güell, M.; Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009, 583, 3966–3973. [Google Scholar] [CrossRef] [Green Version]
- Perl, K.; Ushakov, K.; Pozniak, Y.; Yizhar-Barnea, O.; Bhonker, Y.; Shivatzki, S.; Geiger, T.; Avraham, B.; Shamir, R. Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genom. 2017, 18, 305. [Google Scholar] [CrossRef]
- Zhao, B.S.; Roundtree, I.A.; He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 2017, 18, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.; Radic, Z. The cholinesterases: From genes to proteins. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 281–320. [Google Scholar] [CrossRef] [PubMed]
- Grisaru, D.; Sternfeld, M.; Eldor, A.; Glick, D.; Soreq, H. Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 1999, 264, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Zhang, H.; Cruz, Y.; Pakhlevaniants, S.; Hadley, S.H.; Amin, J.; Wecker, L.; Reed, C.; Cuevas, J. The alpha7 nicotinic acetylcholine receptor subunit exists in two isoforms that contribute to functional ligand-gated ion channels. Mol. Pharm. 2004, 66, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Villiger, Y.; Szanto, I.; Jaconi, S.; Blanchet, C.; Buisson, B.; Krause, K.H.; Bertrand, D.; Romand, J.A. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. J. Neuroimmunol. 2002, 126, 86–98. [Google Scholar] [CrossRef]
- Angelucci, S.; Marchisio, M.; Di Giuseppe, F.; Pierdomenico, L.; Sulpizio, M.; Eleuterio, E.; Lanuti, P.; Sabatino, G.; Miscia, S.; Di Ilio, C. Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Sci. 2010, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Gharahdaghi, F.; Weinberg, C.R.; Meagher, D.A.; Imai, B.S.; Mische, S.M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 1999, 20, 601–605. [Google Scholar] [CrossRef]
- Reale, M.; D’Angelo, C.; Costantini, E.; Di Nicola, M.; Yarla, N.S.; Kamal, M.A.; Salvador, N.; Perry, G. Expression Profiling of Cytokine, Cholinergic Markers, and Amyloid-β Deposition in the APPSWE/PS1dE9 Mouse Model of Alzheimer’s Disease Pathology. J. Alzheimers Dis. 2018, 62, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [Google Scholar] [CrossRef]
Murine Model (4 to 8 Months) | 2D Gel CODE | Total Spot Number |
---|---|---|
T4 a | ||
SAMR1 | RH | 1394 ± 7 |
RB | 1321 ± 17 | |
SAMP8 | PH | 1351 ± 6 |
PB | 1190 ± 8 | |
T8 b | ||
SAMR1 | SRH | 1223 ± 29 |
SAMP8 | SPH | 1274 ± 7 |
Protein Name | Abbreviation | AC | Theoretical Mr_pI | Experimental Mr_pI | p | PMF/ MS2 | FV | |
---|---|---|---|---|---|---|---|---|
Down-regulated | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial | NDUS3 | Q9DCT2 | 30302_6.67 | 23351_5.6 | 8.9 × 10−4 | 12/3 | 0.7 ± 0.3 |
Cytochrome c oxidase subunit 5B, mitochondrial | COX5B | P19536 | 14089_8.69 | 14686_5.8 | 0.002 | 10/1 | 1.2 ± 0.1 | |
Cytochrome b5 | CYB5 | P56395 | 15232_4.96 | 16409_4.8 | 0.010 | 7/1 | 0.2 ± 0.05 | |
Integral membrane protein 2B | ITM2B | O89051 | 30754_5.14 | 26241_5.05 | 1.8 × 10−4 | 9/- | 1.3 ± 0.09 | |
Ubiquitin-60S L40 | RL40 | P62984 | 8033_6.89 | 12845_5.8 | 0.008 | 7/3 | 1.3 ± 0.01 |
Protein | T8 (SAMR1) | FV |
---|---|---|
STMN1 1 | up-regulated | 1.7 ± 0.01 |
FABPH 1 | up-regulated | 0.8 ± 0.18 |
IPYR 2 | up-regulated | 2.01 ± 0.2 |
EFHD2 2 | up-regulated | 1.3 ± 0.05 |
CALB1 2 | up-regulated | 0.7 ± 0.4 |
PP1R7 (MW: 33,971 Da) 2 | up-regulated | 0.9 ± 0.1 |
PP1R7 (MW: 34,021 Da) 2 | up-regulated | 0.4 ± 0.2 |
MDHC 2 | up-regulated | 2.1 ± 0.21 |
DOPD 2 | up-regulated | 0.8 ± 0.03 |
MFA3L 5 | up-regulated | 1.1 ± 0.16 |
ANXA5 6 | up-regulated | 0.26 ± 0.8 |
SODC 6 | up-regulated | 0.8 ± 0.14 |
RSSA 4 | up-regulated | 1.9 ±0.02 |
SNAA 5−7 | up-regulated | 0.95 ± 0.1 |
Protein | T8 (SAMP8) | FV |
---|---|---|
CRYM 3 | down-regulated | 0.4 ± 0.2 |
PDXK 3 | up-regulated | 1.05 ± 0.01 |
MDHC 2 | up-regulated | 1.2 ± 0.05 |
PGAM1 2 | down-regulated | 0.13 ± 0.8 |
VATB2 7 | down-regulated | 1.7 ± 0.05 |
DUSP3 2,3 | unchanged | --- |
STMN1 1 | up-regulated | 0.85 ± 0.11 |
SODC 6 | down-regulated | 0.8 ± 0.03 |
4-Month-Aged SAMP8 | 8-Month-Aged SAMP8 | |
---|---|---|
IL-1β | 2.66 ± 0.38 | 2.39 ± 0.15 ** |
TNFα | 1.18 ± 0.03 *** | 1.40 ± 0.13 *** |
BuChE | 1.66 ± 0.15 | 0.70 ± 0.09 |
AChE | 1.61 ± 0.15 | 0.72 ± 0.09 |
nAChRα7 | 1.18 ± 0.03 | 0.41 ± 0.07 |
nAChRα4 | 1.78 ± 0.20 | 1.06 ± 0.07 |
nAChRβ2 | 0.74 ± 0.07 | 0.97± 0.14 |
4-Month-Aged SAMP8 | 8-Month-Aged SAMP8 | |
---|---|---|
IL-1β | 8.58 ± 0.92 *** | 8.90 ± 1.04 *** |
TNFα | 1.46 ± 0.21 * | 1.64 ± 0.13 *** |
BuChE | 15.54 ± 0.59 *** | 17.35 ± 0.59 *** |
AChE | 1.16 ± 0.12 | 1.62 ± 0.17 |
nAChRα7 | 4.39 ± 0.41 *** | 4.96 ± 0.34 * |
nAChRα4 | 1.96 ± 0.28 | 4.03 ± 0.41 ** |
nAChRβ2 | 1.13 ± 0.16 | 1.34 ± 0.20 |
4-Month-Aged SAMP8 | 8-Month-Aged SAMP8 | |
---|---|---|
IL-1β | 3.03 ± 4.23 * | 2.48 ± 2.74 *** |
TNFα | 2.70 ± 2.96 *** | 2.27 ± 2.35 *** |
BuChE | 1.58 ± 1.71 * | 2.38 ± 2.66 *** |
AChE | 1.08 ± 1.14 | 1.84 ± 1.98 ** |
nAChRα7 | 4.11 ± 4.80 *** | 8.01 ± 1.49 |
nAChRα4 | 0.72 ± 0.77 | 0.98 ± 1.04 |
nAChRβ2 | 1.16 ± 1.33 | 2.12 ± 2.44 ** |
Gene | Mouse PCR Primer Pairs [5′-3′] | |
---|---|---|
Forward | Revers | |
HPRT | TTGGATACAGGCCAGACTTTG | TGGCAACATCAACAGGACTC |
BuChE | TAGCACAATGTGGCCTGTCT | ATTGCTCCAGCGATGAAATC |
AChE | ATTTTGCCCGCACAGGGGAC | CGCCTCGTCCAGAGTATCGGT |
nAChRα7 | TGATTCCGTGCCCTTGATAG | GAATGATCCTGGTCCACTTAGG |
nAChRα4 | GTAGAAGGCGTCCAGTACATTG | AGATCATACCAGCCAACCATG |
nAChRβ2 | GCTTCATTGCGGACCATATG | CCAAAGACACAGACAAAGACAAAG |
IL-1β | TTGACGGACCCCAAAAGATG | AGAAGGTGCTCATGTCCTCA |
TNFα | TGGAGTCATTGCTCTGTGAAG | CCTGAGCCATAATCCCCTTTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reale, M.; Costantini, E.; Aielli, L.; Di Giuseppe, F.; Angelucci, S.; Kamal, M.A.; Greig, N.H. Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. Int. J. Mol. Sci. 2022, 23, 15097. https://doi.org/10.3390/ijms232315097
Reale M, Costantini E, Aielli L, Di Giuseppe F, Angelucci S, Kamal MA, Greig NH. Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. International Journal of Molecular Sciences. 2022; 23(23):15097. https://doi.org/10.3390/ijms232315097
Chicago/Turabian StyleReale, Marcella, Erica Costantini, Lisa Aielli, Fabrizio Di Giuseppe, Stefania Angelucci, Mohammad A. Kamal, and Nigel H. Greig. 2022. "Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging" International Journal of Molecular Sciences 23, no. 23: 15097. https://doi.org/10.3390/ijms232315097
APA StyleReale, M., Costantini, E., Aielli, L., Di Giuseppe, F., Angelucci, S., Kamal, M. A., & Greig, N. H. (2022). Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. International Journal of Molecular Sciences, 23(23), 15097. https://doi.org/10.3390/ijms232315097