A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins
Abstract
:1. Introduction
2. Results
2.1. Long-Term Maintanance of Mouse Meibomian Gland Organotypic Slice Culture Viability
2.2. Long-Term Maintenance of Lipid Secretion in Mouse Meibomian Gland Organotypic Slice Culture
2.3. Long-Term Preservation of Mouse Meibomian Gland Organotypic Slice Culture Morphology
2.4. Influence of Melanocortins and Their Receptors on Lipid Production
2.5. Influence of Melanocortins and Their Receptors on Gene Expresssion Levels
3. Discussion
3.1. The Ex Vivo 3D Organotypic Culture of Mouse Meibomian Glands Is Suitable to Study (Patho-) Physiological Properties in Meibomian Glands
3.2. Melanocortins and Their Receptors Induce Lipid Production in Meibomian Glands
4. Conclusions
5. Materials and Methods
5.1. Mice
5.2. Vibratom Slicing and Culture Conditions
5.3. Viability Assay
5.4. Live-Dead Assay
5.5. Lipid Quantification
5.6. Histological and Immunohistological Staining
5.7. Transmission Electron Microscopy
5.8. RNA Extraction, cDNA Synthesis and Reverse-Transcription PCR
5.9. Quantitative Real-Time PCR (qPCR)
5.10. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jester, J.V.; Nicolaides, N.; Smith, R.E. Meibomian gland studies: Histologic and ultrastructural investigations. Investig. Ophthalmol. Vis. Sci. 1981, 20, 537–547. [Google Scholar]
- Kozak, I.; Bron, A.J.; Kucharova, K.; Kluchova, D.; Marsala, M.; Heichel, C.W.; Tiffany, J.M. Morphologic and volumetric studies of the meibomian glands in elderly human eyelids. Cornea 2007, 26, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Glonek, T.; Korb, D.R.; Whalen, A.C.; Hebert, E.; Hearn, S.L.; Esway, J.E.; Leahy, C.D. Volume of the human and rabbit meibomian gland system. Adv. Exp. Med. Biol. 1998, 438, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Knop, E.; Knop, N.; Millar, T.; Obata, H.; Sullivan, D.A. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1938–1978. [Google Scholar] [CrossRef] [Green Version]
- Olami, Y.; Zajicek, G.; Cogan, M.; Gnessin, H.; Pe’er, J. Turnover and migration of meibomian gland cells in rats’ eyelids. Ophthalmic Res. 2001, 33, 170–175. [Google Scholar] [CrossRef]
- Mains, R.E.; Eipper, B.A. Biosynthesis of adrenocorticotropic hormone in mouse pituitary tumor cells. J. Biol. Chem. 1976, 251, 4115–4120. [Google Scholar] [CrossRef]
- Eipper, B.A.; Mains, R.E. Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocr. Rev. 1980, 1, 1–27. [Google Scholar] [CrossRef]
- Bertagna, X. Proopiomelanocortin-derived peptides. Endocrinol. Metab. Clin. N. Am. 1994, 23, 467–485. [Google Scholar] [CrossRef]
- Voisey, J.; Carroll, L.; van Daal, A. Melanocortins and their receptors and antagonists. Curr. Drug Targets 2003, 4, 586–597. [Google Scholar] [CrossRef]
- Böhm, M.; Schiller, M.; Ständer, S.; Seltmann, H.; Li, Z.; Brzoska, T.; Metze, D.; Schiöth, H.B.; Skottner, A.; Seiffert, K.; et al. Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J. Investig. Dermatol. 2002, 118, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, W.-H.; Anthonavage, M.; Eisinger, M. Melanocortin-5 receptor: A marker of human sebocyte differentiation. Peptides 2006, 27, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kelly, M.A.; Ximena, O.-A.; Thomas, R.E.; Low, M.; Cone, R. Exocrine Gland Dysfunction in MC5-R-Deficient Mice: Evidence for Coordinated Regulation of Exocrine Gland Function by Melanocortin Peptides. Cell 1997, 91, 789–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thody, A.J.; Shuster, S. Control of sebaceous gland function in the rat by alpha-melanocyte-stimulating hormone. J. Endocrinol. 1975, 64, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Anthonavage, M.; Huang, Q.; Li, W.-H.; Eisinger, M. Proopiomelanocortin peptides and sebogenesis. Ann. N. Y. Acad. Sci. 2003, 994, 154–161. [Google Scholar] [CrossRef]
- Whang, S.W.; Lee, S.E.; Kim, J.M.; Kim, H.J.; Jeong, S.K.; Zouboulis, C.C.; Seo, J.T.; Lee, S.H. Effects of α-melanocyte-stimulating hormone on calcium concentration in SZ95 sebocytes. Exp. Dermatol. 2011, 20, 19–23. [Google Scholar] [CrossRef]
- Eisinger, M.; Li, W.-H.; Anthonavage, M.; Pappas, A.; Zhang, L.; Rossetti, D.; Huang, Q.; Seiberg, M. A melanocortin receptor 1 and 5 antagonist inhibits sebaceous gland differentiation and the production of sebum-specific lipids. J. Dermatol. Sci. 2011, 63, 23–32. [Google Scholar] [CrossRef]
- Paulsen, F.; Garreis, F.; Schicht, M.; Bräuer, L.; Ali, M.J.; Sel, S. Anatomie und Physiologie der ableitenden Tränenwege. HNO 2016, 64, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Picardo, M.; Ju, Q.; Kurokawa, I.; Törőcsik, D.; Bíró, T.; Schneider, M.R. Beyond acne: Current aspects of sebaceous gland biology and function. Rev. Endocr. Metab. Disord. 2016, 17, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Tomlinson, A. Importance of the lipid layer in human tear film stability and evaporation. Optom. Vis. Sci. 1997, 74, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V. Tfos dews II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [PubMed]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K. TFOS DEWS II definition and classification report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Nichols, K.K.; Foulks, G.N.; Bron, A.J.; Glasgow, B.J.; Dogru, M.; Tsubota, K.; Lemp, M.A.; Sullivan, D.A. The international workshop on meibomian gland dysfunction: Executive summary. Invest. Ophthalmol. Vis. Sci. 2011, 52, 1922–1929. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, J.; Garreis, F.; Paulsen, F. Pathophysiology of Meibomian Glands—An Overview. Ocul. Immunol. Inflamm. 2021, 29, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Hampel, U.; Garreis, F. The human meibomian gland epithelial cell line as a model to study meibomian gland dysfunction. Exp. Eye Res. 2017, 163, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.A.; Rocha, E.M.; Aragona, P.; Clayton, J.A.; Ding, J.; Golebiowski, B.; Hampel, U.; McDermott, A.M.; Schaumberg, D.A.; Srinivasan, S. TFOS DEWS II sex, gender, and hormones report. Ocul. Surf. 2017, 15, 284–333. [Google Scholar] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J. Tfos dews II epidemiology report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef]
- Ziemanski, J.F.; Wilson, L.; Barnes, S.; Nichols, K.K. Saturation of cholesteryl esters produced by human meibomian gland epithelial cells after treatment with rosiglitazone. Ocul. Surf. 2020, 20, 39–47. [Google Scholar] [CrossRef]
- Rötzer, V.; Melega, F.; Garreis, F.; Paulsen, F.; Waschke, J. E-Cadherin is important for meibomian gland function as revealed by a new human ex vivo slice culture model. Am. J. Pathol. 2019, 189, 1559–1568. [Google Scholar] [CrossRef] [Green Version]
- Tatenaka, Y.; Kato, H.; Ishiyama, M.; Sasamoto, K.; Shiga, M.; Nishitoh, H.; Ueno, Y. Monitoring Lipid Droplet Dynamics in Living Cells by Using Fluorescent Probes. Biochemistry 2019, 58, 499–503. [Google Scholar] [CrossRef]
- Xu, K.-K.; Huang, Y.-K.; Liu, X.; Zhang, M.-C.; Xie, H.-T. Organotypic Culture of Mouse Meibomian Gland: A Novel Model to Study Meibomian Gland Dysfunction In vitro. Invest. Ophthalmol. Vis. Sci. 2020, 61, 30. [Google Scholar] [CrossRef] [Green Version]
- Tektaş, O.Y.; Yadav, A.; Garreis, F.; Schlötzer-Schrehardt, U.; Schicht, M.; Hampel, U.; Bräuer, L.; Paulsen, F. Characterization of the mucocutaneous junction of the human eyelid margin and meibomian glands with different biomarkers. Ann. Anat. 2012, 194, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Takeichi, M. Chapter 2 Remodeling of the Adherens Junctions During Morphogenesis. In Current Topics in Developmental Biology; Academic Press: Cambridge, MA, USA, 2009; pp. 33–54. ISBN 0070-2153. [Google Scholar]
- Liu, S.; Hatton, M.P.; Khandelwal, P.; Sullivan, D.A. Culture, immortalization, and characterization of human meibomian gland epithelial cells. Invest. Ophthalmol. Vis. Sci. 2010, 51, 3993–4005. [Google Scholar] [CrossRef] [Green Version]
- Maskin, S.L.; Tseng, S.C. Culture of rabbit meibomian gland using collagen gel. Invest. Ophthalmol. Vis. Sci. 1991, 32, 214–223. [Google Scholar] [PubMed]
- Richards, S.M.; Schirra, F.; Sullivan, D.A. Development of A Defined, Serum-Free Culture System for The Maintenance of Epithelial Cells from the Mouse Meibomian Gland. Invest. Ophthalmol. Vis. Sci. 2002, 43, 3150. [Google Scholar]
- Jester, J.V.; Potma, E.; Brown, D.J. PPARγ Regulates Mouse Meibocyte Differentiation and Lipid Synthesis. Ocul. Surf. 2016, 14, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Asano, N.; Hampel, U.; Garreis, F.; Schröder, A.; Schicht, M.; Hammer, C.M.; Paulsen, F. Differentiation Patterns of Immortalized Human Meibomian Gland Epithelial Cells in Three-Dimensional Culture. Invest. Ophthalmol. Vis. Sci. 2018, 59, 1343–1353. [Google Scholar] [CrossRef]
- Ikeda, K.; Dogru, M.; Kawashima, M.; Kojima, T.; Higa, K.; Igarashi, A.; Yamaguchi, T.; Den-Shimazaki, S.; Tsubota, K.; Shimazaki, J. The effect of 3% diquafosol sodium eye drops on the meibomian gland alterations of the superoxide dismutase-1 knockout mice. Invest. Ophthalmol. Vis. Sci. 2016, 57, 2869. [Google Scholar]
- Kuramoto, T.; Yokoe, M.; Hashimoto, R.; Hiai, H.; Serikawa, T. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene. BMC Genet. 2011, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- Rho, C.R.; Kim, S.W.; Lane, S.; Gao, F.; Kim, J.; Xie, Y.; Brown, D.J.; Skowronska-Krawczyk, D.; Jester, J.V. Expression of Acyl-CoA wax-alcohol acyltransferase 2 (AWAT2) by human and rabbit meibomian glands and meibocytes. Ocul. Surf. 2022, 23, 60–70. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Li, S.; Chen, X.; Ma, B.; He, H.; Liu, T.; Yu, J.; Zhang, L.; Chen, Y.; Liu, Z.; et al. Meibomian Gland Absence Related Dry Eye in Ectodysplasin A Mutant Mice. Am. J. Pathol. 2016, 186, 32–42. [Google Scholar] [CrossRef]
- Lin, M.-H.; Hsu, F.-F.; Miner, J.H. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J. Biol. Chem. 2013, 288, 3964–3976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascallana, J.L.; Bravo, A.; Donet, E.; Leis, H.; Lara, M.F.; Paramio, J.M.; Jorcano, J.L.; Pérez, P. Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia. Endocrinology 2005, 146, 2629–2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.-Y.; Smith, J.A.; Schlessinger, D.; Chan, C.-C. X-Linked Anhidrotic Ectodermal Dysplasia Disruption Yields a Mouse Model for Ocular Surface Disease and Resultant Blindness. Am. J. Pathol. 2005, 167, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Miyake, H.; Oda, T.; Katsuta, O.; Seno, M.; Nakamura, M. Meibomian Gland Dysfunction Model in Hairless Mice Fed a Special Diet with Limited Lipid Content. Invest. Ophthalmol. Vis. Sci. 2016, 57, 3268–3275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondino, B.J.; Caster, A.I.; Dethlefs, B. A rabbit model of staphylococcal blepharitis. Arch. Ophthalmol. 1987, 105, 409–412. [Google Scholar] [CrossRef]
- Tong, L.; Gupta, P.K. Need for Animal Models of Meibomian Gland Dysfunction. Ophthalmol. Ther. 2016, 5, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Griffith, L.G.; Swartz, M.A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7, 211–224. [Google Scholar] [CrossRef]
- Hampel, U.; Schröder, A.; Mitchell, T.; Brown, S.; Snikeris, P.; Garreis, F.; Kunnen, C.; Willcox, M.; Paulsen, F. Serum-induced keratinization processes in an immortalized human meibomian gland epithelial cell line. PLoS ONE 2015, 10, e0128096. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, D.A.; Liu, Y.; Kam, W.R.; Ding, J.; Green, K.M.; Shaffer, S.A.; Hatton, M.P.; Liu, S. Serum-induced differentiation of human meibomian gland epithelial cells. Invest. Ophthalmol. Vis. Sci. 2014, 55, 3866–3877. [Google Scholar] [CrossRef] [Green Version]
- Rötzer, V.; Egu, D.; Waschke, J. Meibomian gland cells display a differentiation-dependent composition of desmosomes. Histochem. Cell Biol. 2016, 146, 685–694. [Google Scholar] [CrossRef]
- Chhajlani, V.; Muceniece, R.; Wikberg, J.E. Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 1993, 195, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Catania, A.; Gatti, S.; Colombo, G.; Lipton, J.M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev. 2004, 56, 1–29. [Google Scholar] [CrossRef]
- Gantz, I.; Fong, T.M. The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E468–E474. [Google Scholar] [CrossRef] [PubMed]
- Hadley, M.E.; Haskell-Luevano, C. The proopiomelanocortin system. Ann. N. Y. Acad. Sci. 1999, 885, 1–21. [Google Scholar] [CrossRef]
- Norman, R.A.; Permana, P.; Tanizawa, Y.; Ravussin, E. Absence of genetic variation in some obesity candidate genes (GLP1R, ASIP, MC4R, MC5R) among Pima indians. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 163–165. [Google Scholar] [CrossRef] [Green Version]
- Wikberg, J.E.; Muceniece, R.; Mandrika, I.; Prusis, P.; Lindblom, J.; Post, C.; Skottner, A. New aspects on the melanocortins and their receptors. Pharmacol. Res. 2000, 42, 393–420. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guan, X.; Zhou, R.; Gong, R. Melanocortin 5 receptor signaling pathway in health and disease. Cell. Mol. Life Sci. 2020, 77, 3831–3840. [Google Scholar] [CrossRef]
- van der Kraan, M.; Adan, R.A.; Entwistle, M.L.; Gispen, W.H.; Burbach, J.P.; Tatro, J.B. Expression of melanocortin-5 receptor in secretory epithelia supports a functional role in exocrine and endocrine glands. Endocrinology 1998, 139, 2348–2355. [Google Scholar] [CrossRef]
- Datta, P.C.; King, M.G. α-Melanocyte-stimulating hormone and behavior. Neurosci. Biobehav. Rev. 1982, 6, 297–310. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
Antibody | Conjugation | Solution | Product No. | Manufacturer |
---|---|---|---|---|
Cytokeratin 14 | - | 1:200 | NCL-LL002 | Novocastra Laboratories, Newcastle upon Tyne, UK |
Goat Anti-Mouse IgG | Biotin | 1:200 | E0433 | Agilent Technologies, Santa Clara, CA, USA |
E-cadherin (24E10) | - | 1:200 | 3195S | Cell Signaling Technology, Danvers, MA, USA |
Goat Anti-Rabbit IgG | Biotin | 1:200 | E0432 | Agilent Technologies, Santa Clara, CA, USA |
Primer | Forward | Reverse | Amplicon |
---|---|---|---|
FABP4 | TGA AAT CAC CGC AGA CGA CA | ACA CAT TCC ACC ACC AGC TT | 141 bp |
MC1R | CGC TTC CTA CTT CCT GAC AAG | TCA CAA CCA GCA CAT TCT CC | 199 bp |
MC1R | TGA AGT GAA TCA GAA GCT GGG | AAG GTG AGA GGT GGC ATT G | 146 bp |
MC3R | CCA CAA GAG AAG CAC CTA GAA G | AGC ATC GGA GAA ACA GAA GAC | 133 bp |
MC4R | GAC CCT CTC ATT TAT GCC CTC | AGC TGT TGG GAA GTA CAC TG | 191 bp |
MC5R | AGA TTC AAC TCC CAG AAA CCG | AGA TTC AAT ACA GTC AGG GTG G | 149 bp |
RPS6 | CTT TTT CGT GAC GCC TCC CA | GGG AAG GAG ATG TTC AGC TTC A | 62 bp |
SCD | CTG ACC TGA AAG CCG AGA AG | AGA AGG TGC TAA CGA ACA GG | 147 bp |
β-actin | GAT CCT CAC CGA GCG CGG CTA CA | GCG GAT GTC CAC GTC ACA CTT CA | 298 bp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahn, I.; Garreis, F.; Schicht, M.; Rötzer, V.; Waschke, J.; Liu, Y.; Altersberger, V.L.; Paulsen, F.; Dietrich, J. A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins. Int. J. Mol. Sci. 2022, 23, 14947. https://doi.org/10.3390/ijms232314947
Zahn I, Garreis F, Schicht M, Rötzer V, Waschke J, Liu Y, Altersberger VL, Paulsen F, Dietrich J. A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins. International Journal of Molecular Sciences. 2022; 23(23):14947. https://doi.org/10.3390/ijms232314947
Chicago/Turabian StyleZahn, Ingrid, Fabian Garreis, Martin Schicht, Vera Rötzer, Jens Waschke, Yuqiuhe Liu, Valerian L. Altersberger, Friedrich Paulsen, and Jana Dietrich. 2022. "A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins" International Journal of Molecular Sciences 23, no. 23: 14947. https://doi.org/10.3390/ijms232314947
APA StyleZahn, I., Garreis, F., Schicht, M., Rötzer, V., Waschke, J., Liu, Y., Altersberger, V. L., Paulsen, F., & Dietrich, J. (2022). A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins. International Journal of Molecular Sciences, 23(23), 14947. https://doi.org/10.3390/ijms232314947