Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders
Abstract
:1. Introduction
2. Study Design
3. Melanocyte Characteristics
4. Plant Extract and Pure Compounds–Biological Properties and Modulatory Effect on Melanocyte
5. The Effect of Plant Extracts or Pure Compounds on Melanin Content in the Danio rerio Model
6. The Effect of Plant Extracts and Pure Compounds on Melanin Content in the Rodent Model
7. The Effect of Plant Extracts or Pure Compounds on Melanin Content in the Human Model
8. In Vitro Studies
9. The Patented Plant-Based Compositions and Their Role in the Therapy of Hyperpigmentation and Hypopigmentation
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postep. Dermatol. Alergol. 2016, 33, 1–5. [Google Scholar] [CrossRef]
- Cichorek, M.; Wachulska, M.; Stasiewicz, A.; Tymińska, A. Skin melanocytes: Biology and development. Postep. Dermatol. Alergol. 2013, 30, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Maranduca, M.A.; Branisteanu, D.; Serban, D.N.; Branisteanu, D.C.; Stoleriu, G.; Manolache, N.; Serban, I.L. Synthesis and physiological implications of melanic pigments (review). Oncol. Lett. 2019, 17, 4183–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaidou, E.; Katsambas, A.D. Pigmentation disorders: Hyperpigmentation and hypopigmentation. Clin. Dermatol. 2014, 32, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Dawid-Pać, R. Medicinal plants used in treatment of inflammatory skin diseases. Postep. Dermatol. Alergol. 2013, 30, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn. Rev. 2014, 8, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, A.R.; El-Anssary, A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In Herbal Medicine; Builders, P.F., Ed.; IntechOpen Limited: London, UK, 2019; pp. 11–30. [Google Scholar]
- Videira, I.F.D.S.; Moura, D.F.L.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [Green Version]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.A.; Naaz, I. Current Challenges in Understanding the Story of Skin Pigmentation—Bridging the Morpho-Anatomical and Functional Aspects of Mammalian Melanocytes. In Muscle Cell and Tissue; Sakuma, K., Ed.; IntechOpen Limited: London, UK, 2015; pp. 261–285. [Google Scholar]
- Tsatmali, M.; Ancans, J.; Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 2002, 50, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Fukunaga-Kalabis, M.; Herlyn, M. Crosstalk in skin: Melanocytes, keratinocytes, stem cells, and melanoma. J. Cell Commun. Signal. 2016, 10, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Viennet, C.; Robin, S.; Berthon, J.Y.; He, L.; Humbert, P. Precise role of dermal fibroblasts on melanocyte pigmentation. J. Dermatol. Sci. 2017, 88, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solano, F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New J. Sci. 2014, 2014, 498276. [Google Scholar] [CrossRef] [Green Version]
- Hearing, V.J. Milestones in Melanocytes/Melanogenesis. J. Invest. Dermatol. 2011, 131, E1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, D.L.; Hou, L.; Pavan, W.J. The genetic regulation of pigment cell development. Adv. Exp. Med. Biol. 2006, 589, 155–169. [Google Scholar]
- Kus, N.J.; Dolinska, M.B.; Young, K.L.; Dimitriadis, E.K.; Wingfield, P.T.; Sergeev, Y.V. Membrane-associated human tyrosinase is an enzymatically active monomeric glycoprotein. PLoS ONE 2018, 13, e0198247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins. Chem. Eur. J. 2018, 24, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Otręba, M.; Rok, J.; Buszman, E.; Wrześniok, D. Regulation of melanogenesis: The role of cAMP and MITF. Postep. Hig. Med. Dosw. 2012, 66, 33–40. [Google Scholar]
- Solano, F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020, 25, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElObeid, A.S.; Kamal-Eldin, A.; Abdelhalim, M.A.K.; Haseeb, A.M. Pharmacological Properties of Melanin and its Function in Health. Basic Clin. Pharmacol. Toxicol. 2017, 120, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Fernie, A.R.; Trethewey, R.N.; Krotzky, A.J.; Willmitzer, L. Metabolite profiling: From diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 2004, 5, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy1[OPEN]. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [PubMed] [Green Version]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Arruda, R.L.; de Sousa Garcia, N.O.; Souza, N.F.; da Silva, F.M.; Arruda, E.L.; da Conceição, E.C. Natural photoprotectors: A literature review. Res. Soc. Dev. 2021, 10, e0810514603. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Merecz-Sadowska, A.; Rijo, P.; Mori, M.; Hatziantoniou, S.; Górski, K.; Szemraj, J.; Piekarski, J.; Śliwiński, T.; Bijak, M.; et al. Hidden in Plants—A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers 2022, 14, 1455. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kucharska, E.; Kowalczyk, T.; Zajdel, K.; Cegliński, T.; Zajdel, R. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants 2021, 10, 726. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Zajdel, K.; Kucharska, E.; Kowalczyk, T.; Zajdel, R. The modulatory influence of plant-derived compounds on human keratinocyte function. Int. J. Mol. Sci. 2021, 22, 12488. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Śliwiński, T.; Zajdel, R. Anti-inflammatory activity of extracts and pure compounds derived from plants via modulation of signaling pathways, especially PI3K/AKT in macrophages. Int. J. Mol. Sci. 2020, 21, 9605. [Google Scholar] [CrossRef] [PubMed]
- Sitarek, P.; Kowalczyk, T.; Wieczfinska, J.; Merecz-Sadowska, A.; Górski, K.; Śliwiński, T.; Skała, E. Plant extracts as a natural source of bioactive compounds and potential remedy for the treatment of certain skin diseases. Curr. Pharm. Des. 2020, 26, 2859–2875. [Google Scholar] [CrossRef]
- Sitarek, P.; Merecz-Sadowska, A.; Kowalczyk, T.; Wieczfinska, J.; Zajdel, R.; Śliwiński, T. Potential synergistic action of bioactive compounds from plant extracts against skin infecting microorganisms. Int. J. Mol. Sci. 2020, 21, 5105. [Google Scholar] [CrossRef] [PubMed]
- Sitarek, P.; Merecz-Sadowska, A.; Śliwiński, T.; Zajdel, R.; Kowalczyk, T. An in vitro evaluation of the molecular mechanisms of action of medical plants from the lamiaceae family as effective sources of active compounds against human cancer cell lines. Cancers 2020, 12, 2957. [Google Scholar] [CrossRef]
- Zielinska-Blizniewska, H.; Sitarek, P.; Merecz-Sadowska, A.; Malinowska, K.; Zajdel, K.; Jablonska, M.; Sliwinski, T.; Zajdel, R. Plant extracts and reactive oxygen species as two counteracting agents with anti- and pro-obesity properties. Int. J. Mol. Sci. 2019, 20, 4556. [Google Scholar] [CrossRef] [Green Version]
- Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J.M. Quercetin and rutin as potential sunscreen agents: Determination of efficacy by an in vitro method. J. Nat. Prod. 2008, 71, 1117–1118. [Google Scholar] [CrossRef]
- Kazumy De Lima Yamaguchi, K.; Dos, L.; Santarém, S.; Lamarão, C.V.; Lima, E.S.; Florêncio Da Veiga-Junior, V. Avaliação in vitro da Atividade Fotoprotetora de Resíduos de Frutas Amazônicas. Sci. Amaz. 2016, 5, 109–116. [Google Scholar]
- Velasco, M.V.R.; Balogh, T.S.; Pedriali, C.A.; Sarruf, F.D.; Pinto, C.A.S.O.; Kaneko, T.M.; Baby, A.R. Rutin association with ethylhexyl methoxycinnamate and benzophenone-3: In vitro evaluation of the photoprotection effectiveness by reflectance spectrophotometry. Lat. Am. J. Pharm. 2008, 27, 23–27. [Google Scholar]
- Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J.M. Flavonoids and polyphenols, molecular families with sunscreen potential: Determining effectiveness with an in vitro method. Nat. Prod. Commun. 2009, 4, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Stevanato, R.; Bertelle, M.; Fabris, S. Photoprotective characteristics of natural antioxidant polyphenols. Regul. Toxicol. Pharmacol. 2014, 69, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, V.; Garg, A.; Lomore, K.; Korla, K.; Bhat, S.S.; Rao, R.P.; Rafiq, M.; Kumawath, R.; Uddagiri, B.V.; Kareenhalli, V.V. Immunomodulatory effects of a concoction of natural bioactive compounds—Mechanistic insights. Biomedicines 2021, 9, 1522. [Google Scholar] [CrossRef] [PubMed]
- Jalali, A.; Zarshenas, M.M. AKT/GSK-3 Pathway Targeting; Botanicals and Bioactive Compounds with Anticancer Activities. Curr. Pharm. Des. 2021, 27, 3091–3104. [Google Scholar] [CrossRef]
- Bang, J.; Zippin, J.H. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res. 2021, 34, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Mosca, S.; Cardinali, G.; Flori, E.; Briganti, S.; Bottillo, I.; Mileo, A.M.; Maresca, V. The PI3K pathway induced by αMSH exerts a negative feedback on melanogenesis and contributes to the release of pigment. Pigment Cell Melanoma Res. 2021, 34, 72–88. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Su, Q.; Fan, X.; Wang, Y.; Gao, S.; Wang, H.; Chen, H.; Chan, C.B.; Liu, Z. Phosphorylation of MITF by AKT affects its downstream targets and causes TP53-dependent cell senescence. Int. J. Biochem. Cell Biol. 2016, 80, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, S.; Martin, K.J.; Arthur, J.S.C. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem. J. 2014, 458, 469–479. [Google Scholar] [CrossRef]
- Zhang, J.; Bui, T.N.; Xiang, J.; Lin, A. Cyclic AMP Inhibits p38 Activation via CREB-Induced Dynein Light Chain. Mol. Cell. Biol. 2006, 26, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Li, P.H.; Chiu, Y.P.; Shih, C.C.; Wen, Z.H.; Ibeto, L.K.; Huang, S.H.; Chiu, C.C.; Ma, D.L.; Leung, C.H.; Chang, Y.N.; et al. Biofunctional Activities of Equisetum ramosissimum Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis. Oxid. Med. Cell. Longev. 2016, 2016, 2853543. [Google Scholar] [CrossRef] [Green Version]
- Terazawa, S.; Imokawa, G. Signaling Cascades Activated by UVB in Human Melanocytes Lead to the Increased Expression of Melanocyte Receptors, Endothelin B Receptor and c-KIT. Photochem. Photobiol. 2018, 94, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Fan, Y.; Ma, J.; Lu, W.; Liu, N.; Chen, Y.; Pan, W.; Tao, X. The pi3k/akt pathway: Emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells 2021, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, G.S.; Madhunapantula, S.R.V.; Robertson, G.P. Targeting the MAPK pathway in melanoma: Why some approaches succeed and other fail. Biochem. Pharmacol. 2010, 80, 624–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phung, B.; Sun, J.; Schepsky, A.; Steingrimsson, E.; Rönnstrand, L. C-KIT signaling depends on microphthalmia-associated transcription factor for effects on cell proliferation. PLoS ONE 2011, 6, e24064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexeev, V.; Yoon, K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J. Investig. Dermatol. 2006, 126, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Rabbani, P.; Takeo, M.; Lee, S.H.; Lim, C.H.; Noel, E.N.S.; Taketo, M.M.; Myung, P.; Millar, S.; Ito, M. Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing. J. Investig. Dermatol. 2018, 138, 1591–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepsky, A.; Bruser, K.; Gunnarsson, G.J.; Goodall, J.; Hallsson, J.H.; Goding, C.R.; Steingrimsson, E.; Hecht, A. The Microphthalmia-Associated Transcription Factor Mitf Interacts with β-Catenin To Determine Target Gene Expression. Mol. Cell. Biol. 2006, 26, 8914–8927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swope, V.B.; Abdel-Malek, Z.A. Significance of the melanocortin 1 and endothelin B receptors in melanocyte homeostasis and prevention of sun-induced genotoxicity. Front. Genet. 2016, 7, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Kucharska, E.; Zajdel, R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022, 27, 4360. [Google Scholar] [CrossRef] [PubMed]
- Plensdorf, S.; Livieratos, M.; Dada, N. Pigmentation Disorders: Diagnosis and Management. Am. Fam. Physician 2017, 96, 797–804. [Google Scholar] [PubMed]
- Rathee, P.; Kumar, S.; Kumar, D.; Kumari, B.; Yadav, S.S. Skin hyperpigmentation and its treatment with herbs: An alternative method. Future J. Pharm. Sci. 2021, 7, 132. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Plants and Natural Products for the Treatment of Skin Hyperpigmentation—A Review. Planta Med. 2018, 84, 988–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Y.; Wu, S.; He, Y.; Nian, Q.; Lei, J.; Yao, Y.; Guo, J.; Zeng, J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front. Pharmacol. 2021, 12, 685116. [Google Scholar] [CrossRef]
- Hussain, I. The safety of medicinal plants used in the treatment of vitiligo and hypermelanosis: A systematic review of use and reports of harm. Clin. Cosmet. Investig. Dermatol. 2021, 14, 261–284. [Google Scholar] [CrossRef]
- Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; et al. The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 2019, 9, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Cline, A.; Feldman, S.R. Zebrafish for modeling skin disorders. Dermatol. Online J. 2016, 22, 13030. [Google Scholar] [CrossRef]
- Naomi, R.; Bahari, H.; Yazid, M.D.; Embong, H.; Othman, F. Zebrafish as a model system to study the mechanism of cutaneous wound healing and drug discovery: Advantages and challenges. Pharmaceuticals 2021, 14, 1058. [Google Scholar] [CrossRef] [PubMed]
- Russo, I.; Sartor, E.; Fagotto, L.; Colombo, A.; Tiso, N.; Alaibac, M. The Zebrafish model in dermatology: An update for clinicians. Discov. Oncol. 2022, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Neuffer, S.J.; Cooper, C.D. Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers 2022, 14, 1752. [Google Scholar] [CrossRef] [PubMed]
- Kalaivani, D.; Arun, V. Anti-melanogenic Potential of Acalypha indica Ethyl Acetate Fraction on Zebra fish Embryos. Curr. Trends Biotechnol. Pharm. 2022, 16, 23–34. [Google Scholar]
- Dej-adisai, S.; Parndaeng, K.; Wattanapiromsakul, C.; Nuankaew, W.; Kang, T. Effects of selected moraceae plants on tyrosinase enzyme and melanin content. Pharmacogn. Mag. 2019, 15, 708. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Li, S.; Wu, Y.; Wang, Z.; Chen, S.; Chen, H. Discovery and identification of potential anti-melanogenic active constituents of Bletilla striata by zebrafish model and molecular docking. BMC Complement. Med. Ther. 2022, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Thach, B.Đ.; Vu, Q.; Dao, T.; Thi, L.; Giang, L.; Nguyen, T.; Linh, T.; Thi, B.; Pham, N.; Uyen, A.; et al. Inhibitor effect of flavonoid from blumea balsamifera (l.) dc. leaves extract on melanin synthesis in cultured B16F10 cell line and zebrafish. Eur. J. Res. Med. Sci. 2017, 5, 31–36. [Google Scholar]
- Ding, H.Y.; Lin, P.W.; Wang, H.W.; Chang, T.S. Methanol partition fraction of ethanol extract of discorea nipponica makino inhibits melanogenesis. Trop. J. Pharm. Res. 2014, 13, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Y.; Liu, I.H.; Huang, X.Z.; Chen, H.J.; Chang, S.T.; Chang, M.L.; Ho, Y.T.; Chang, H.T. Antimelanogenesis effects of leaf extract and phytochemicals from ceylon olive (Elaeocarpus serratus) in zebrafish model. Pharmaceutics 2021, 13, 1059. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, Y.; Choi, S.J.; Kim, S.H.; Ha, C.W.; Jang, S.; Chae, D.; Sung, S.; Ham, J.; Sohn, E.H.; et al. Hosta longipes inhibits melanogenesis by reducing expression of the melanocortin 1 receptor. Mol. Cell. Toxicol. 2021, 17, 503–512. [Google Scholar] [CrossRef]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.L.; Aligiannis, N.; Ferreira, I.C.F.R. Anti-melanogenic properties of Greek plants. A novel depigmenting agent from morus alba wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.L.; Yang, D.; Song, L.H.; Yang, H.M.; Yu, J.B.; Zheng, F.; Yue, H.; Chen, C.B.; Wang, E.P. Low Molecular Weight Oligosaccharide from Panax ginseng C.A. Meyer against UV-Mediated Apoptosis and Inhibits Tyrosinase Activity in Vitro and in Vivo. Evid.-Based Complement. Altern. Med. 2021, 2021, 8879836. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; D’Angelo, V.; Denaro, M.; Trombetta, D.; Germanò, M.P. The Hull of Ripe Pistachio Nuts (Pistacia vera L.) as a Source of New Promising Melanogenesis Inhibitors. Plant Foods Hum. Nutr. 2021, 76, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Thanh, D.T.H.; Thanh, N.L.; Thang, N.D. Toxicological and melanin synthesis effects of Polygonum multiflorum root extracts on zebrafish embryos and human melanocytes. Biomed. Res. Ther. 2016, 3, 808–818. [Google Scholar] [CrossRef]
- Chelly, S.; Chelly, M.; Occhiuto, C.; Cimino, F.; Cristani, M.; Saija, A.; Molonia, M.S.; Ruberto, G.; D’Angelo, V.; Germanò, M.P.; et al. Evaluation of Antioxidant, Anti-Inflammatory and Antityrosinase Potential of Extracts from Different Aerial Parts of Rhanterium suaveolens from Tunisia. Chem. Biodivers. 2021, 18, e2100316. [Google Scholar] [CrossRef] [PubMed]
- Lelina, F.M.U.; Fuentes, R.G. Cassia alata leaf methanolic extracts decreased melanin pigmentation in Zebrafish. Philipp. J. Nat. Sci. 2020, 47, 41–47. [Google Scholar]
- Grisola, M.A.C.; Fuentes, R.G. Phenotype-based screening of selected mangrove methanolic crude extracts with anti-melanogenic activity using zebrafish (Danio rerio) as a model. ScienceAsia 2017, 43, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.H.; Park, S.; Yoo, G.; Jang, C.; Kim, M.H.; Kim, S.H.; Kim, S.Y. Demethyleugenol β-Glucopyranoside Isolated from Agastache rugosa Decreases Melanin Synthesis via Down-regulation of MITF and SOX9. J. Agric. Food Chem. 2016, 64, 7733–7742. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Song, K.H.; Jung, P.M.; Kim, J.E.; Ro, H.; Kim, M.Y.; Ma, J.Y. Inhibitory effect of arctigenin from fructus arctii extract on melanin synthesis via repression of tyrosinase expression. Evid.-Based Complement. Altern. Med. 2013, 2013, 965312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabassum, N.; Lee, J.H.; Yim, S.H.; Batkhuu, G.J.; Jung, D.W.; Williams, D.R. Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo. Evid.-Based Complement. Altern. Med. 2016, 2016, 7823541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, S.H.; Tabassum, N.; Kim, W.H.; Cho, H.; Lee, J.H.; Batkhuu, G.J.; Kim, H.J.; Oh, W.K.; Jung, D.W.; Williams, D.R. Isolation and Characterization of Isofraxidin 7-O-(6′-O-p-Coumaroyl)-β-glucopyranoside from Artemisia capillaris Thunberg: A Novel, Nontoxic Hyperpigmentation Agent That Is Effective In Vivo. Evid.-Based Complement. Altern. Med. 2017, 2017, 1401279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.C.; Lee, T.H.; Chu, Y.T.; Syu, L.L.; Hsu, S.J.; Cheng, C.H.; Wu, J.; Lee, C.K. Melanogenesis inhibitors from the rhizoma of ligusticum sinense in B16-f10 melanoma cells in vitro and zebrafish in vivo. Int. J. Mol. Sci. 2018, 19, 3994. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, S.C.; Hwang, J.S.; Lee, E.S.; Lee, S.M. Modulation of melanin synthesis by rengyolone isolated from the root of eurya emarginata in melan-a cells. Phyther. Res. 2014, 28, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.K.; Jung, S.H.; Jeong, J.H.; Yoo, H.M.; Lee, I.S.; Shin, H.S. The Antimelanogenic Effect of Inularin Isolated from Flowers of Inula britannica on B16F10 Melanoma Cells and Zebrafish Embryos. J. Microbiol. Biotechnol. 2020, 30, 749–752. [Google Scholar] [CrossRef]
- Jang, D.K.; Pham, C.H.; Lee, I.S.; Jung, S.H.; Jeong, J.H.; Shin, H.S.; Yoo, H.M. Anti-melanogenesis activity of 6-O-isobutyrylbritannilactone from inula britannica on B16F10 melanocytes and in vivo zebrafish models. Molecules 2020, 25, 3887. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.J.; Jegal, J.; Chung, K.W.; Noh, S.G.; Chung, H.Y.; Nam, Y.H.; Kang, T.H.; Kim, S.N.; Yang, M.H. Hypolaetin-7-O-β-D-xyloside from Juniperus communis fruits inhibits melanogenesis on zebrafish pigmentation. Nat. Prod. Commun. 2017, 12, 1687–1690. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.T.; Jeong, S.C.; Hwang, J.S.; Kim, J.H. Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis. Chem. Biol. Interact. 2015, 238, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, J.; Jeong, Y.T.; Byun, G.H.; Kim, J.H. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry. J. Ginseng Res. 2017, 41, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Jeong, S.C.; Jeong, Y.T.; Lee, M.K.; Seo, K.H.; Lee, J.W.; Kim, G.S.; Lee, S.E.; Baek, N.I.; Kim, J.H. Antimelanogenic effects of picrionoside a isolated from the leaves of Korean ginseng. Biol. Pharm. Bull. 2015, 38, 1663–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M. Antimelanogenic effect of isomaltol glycoside from red ginseng extract. J. Soc. Cosmet. Sci. Korea 2019, 45, 255–263. [Google Scholar]
- Lee, D.Y.; Kim, H.G.; Lee, Y.G.; Kim, J.H.; Lee, J.W.; Choi, B.R.; Jang, I.B.; Kim, G.S.; Baek, N.I. Isolation and quantification of ginsenoside rh23, a new anti-melanogenic compound from the leaves of panax ginseng. Molecules 2018, 23, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Cha, B.J.; Lee, Y.S.; Kim, G.S.; Noh, H.J.; Kim, S.Y.; Kang, H.C.; Kim, J.H.; Baek, N.I. The potential of minor ginsenosides isolated from the leaves of Panax ginseng as inhibitors of melanogenesis. Int. J. Mol. Sci. 2015, 16, 1677–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.K.; Hwang, B.S.; Hwang, Y.; Lee, S.Y.; Oh, Y.T.; Kim, C.H.; Nam, H.J.; Jeong, Y.T. Melanogenesis inhibitory activity of epicatechin-3-O-gallate isolated from Polygonum amphibium L. Microbiol. Biotechnol. Lett. 2021, 49, 24–31. [Google Scholar] [CrossRef]
- Jung, S.H.; Kim, J.; Eum, J.; Choe, J.W.; Kim, H.H.; Kee, Y.; Lee, K. Velutin, an aglycone extracted from Korean mistletoe, with improved inhibitory activity against melanin biosynthesis. Molecules 2019, 24, 2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molagoda, I.M.N.; Lee, K.T.; Athapaththu, A.M.G.K.; Choi, Y.H.; Hwang, J.; Sim, S.J.; Kang, S.; Kim, G.Y. Flavonoid glycosides from ziziphus jujuba var. Inermis (bunge) rehder seeds inhibit α-melanocyte-stimulating hormone-mediated melanogenesis. Int. J. Mol. Sci. 2021, 22, 7701. [Google Scholar] [CrossRef] [PubMed]
- Dellambra, E.; Odorisio, T.; D’Arcangelo, D.; Failla, C.M.; Facchiano, A. Non-animal models in dermatological research. ALTEX 2019, 36, 177–202. [Google Scholar] [CrossRef]
- Han, E.B.; Chang, B.Y.; Kim, D.S.; Cho, H.K.; Kim, S.Y. Melanogenesis inhibitory effect of aerial part of Pueraria thunbergiana in vitro and in vivo. Arch. Dermatol. Res. 2014, 307, 57–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jegal, J.; Chung, K.W.; Chung, H.Y.; Jeong, E.J.; Yang, M.H. The standardißed extract of juniperus communis alleviates hyperpigmentation in vivo HRM-2 hairless mice and in vitro murine B16 melanoma cells. Biol. Pharm. Bull. 2017, 40, 1381–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, P.-J.; Kao, E.-S.; Chen, S.-R.; Huang, Y.-T.; Wang, C.-J.; Huang, H.-P. Nelumbo nucifera Leaf Extracts Inhibit Melanogenesis in B16 Melanoma Cells and Guinea Pigs through Downregulation of CREB/MITF Activation. J. Food Nutr. Res. 2020, 8, 459–465. [Google Scholar] [CrossRef]
- Alam, M.B.; Ahmed, A.; Motin, M.A.; Kim, S.; Lee, S.H. Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci. Rep. 2018, 8, 13928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubaydee, A.H.N.; Issa, R.; Hajleh, M.N.A.; Ghanim, B.Y.; Al-Akayleh, F.; Qinna, A. The effect of Medicago sativa extract and light on skin hypopigmentation disorders in C57/BL6 mice. J. Cosmet. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y. Inhibitory effects of Cyrtomium fortunei J. Smith root extract on melanogenesis. Pharmacogn. Mag. 2013, 9, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.Y.; Lin, H.H.; Li, T.S.; Tseng, C.Y.; Wong, Y.; Chen, J.H. Anti-Melanogenesis Effects of Lotus Seedpod In Vitro and In Vivo. Nutrients. 2020, 12, 3535. [Google Scholar] [CrossRef]
- Moreira, C.G.; Carrenho, L.Z.; Pawloski, P.L.; Soley, B.S.; Cabrini, D.A.; Otuki, M.F. Pre-clinical evidences of Pyrostegia venusta in the treatment of vitiligo. J. Ethnopharmacol. 2015, 168, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.Y.; Jung, J.Y.; Kang, H.Y.; Kim, T.-H.; Yang, J.-K. Tyrosinase activity and melanogenic effects of Lespedeza bicolor extract in vitro and in vivo. BioResources 2020, 15, 6244–6261. [Google Scholar] [CrossRef]
- Ha, S.Y.; Jung, J.Y.; Kang, H.Y.; Kim, T.H.; Yang, J.K. Tyrosinase activity and melanogenic effects of rhododendron schlippenbachii extract in vivo and in vitro. J. Korean Wood Sci. Technol. 2020, 48, 166–180. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, S.; Li, C.; Wang, J.; Liu, Z.; Kang, W. Effective Compounds From Caesalpinia sappan L. on the Tyrosinase In Vitro and In Vivo. Nat. Prod. Commun. 2020, 15, 1934578X20920055. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, A.; Isogai, R.; Maeda, M.; Hayazaki, M.; Horiyama, E.; Takashima, S.; Koketsu, M.; Takemori, H. The high content of ent-11α-hydroxy-15-oxo-kaur- 16-en-19-oic Acid in Adenostemma lavenia (L.) O. kuntze leaf extract: With preliminary in vivo assays. Foods 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saba, E.; Kim, S.H.; Lee, Y.Y.; Park, C.K.; Oh, J.W.; Kim, T.H.; Kim, H.K.; Roh, S.S.; Rhee, M.H. Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B–irradiated hairless mice. J. Ginseng Res. 2020, 44, 496–505. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, M.; Yun, J.M.; Kim, D.; Lee, J.; Lee, Y.H. Zingiber mioga extract improves moisturization and depigmentation of skin and reduces wrinkle formation in uvb-irradiated hrm-2 hairless mice. Appl. Sci. 2021, 11, 976. [Google Scholar] [CrossRef]
- Zang, D.; Maimaiti, Z.; Mamat, N.; Li, H.; Lu, X.; Turak, A.; Luo, Y. Pigmentation Effects of Kaliziri Standard Extracts on Melanocytes, C57BL/6 mice of Hydroquinone-Induced and Guinea Pigs of Hydrogen Peroxide- Induced Hyperpigmentation Model. Res. Sq 2021, 1–17. Available online: https://assets.researchsquare.com/files/rs-870219/v1/7bc25720-ca6a-41d6-af29-9db58fd3a40c.pdf?c=1648628066 (accessed on 30 October 2022).
- Preedalikit, W.; Pintha, K.; Tantipaiboonwong, P.; Aunsri, N.; Vivattanaseth, P.; Mungmai, L. Inhibitory effect of perilla frutescens l. Leaves extract on melanogenesis and skin whitening efficacy in the underarm whitening product application. Key Eng. Mater. 2020, 859, 166–171. [Google Scholar] [CrossRef]
- Tilaar, A.; Ranti, A.; Mun’im, A. The efficacy study of snake fruit (Salacca edulis Reinw Var. Bongkok) extract as skin lightening agent. Pharmacogn. J. 2017, 9, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Whangsomnuek, N.; Mungmai, L.; Amornlerdpison, D.; Mengamphan, K. Efficiency of skin whitening cream containing etlingera elatior flower and leaf extracts in volunteers. Cosmetics 2019, 6, 39. [Google Scholar] [CrossRef]
- Omar, S.S.S.; Hadi, H.; Mohd Hanif, N.; Ahmad, H.M.A.; Ng, S.F. Lightening effect of skin lightening cream containing piper betle l. Extract in human volunteers. Cosmetics 2021, 8, 32. [Google Scholar] [CrossRef]
- Mungmai, L.; Preedalikit, W.; Pintha, K.; Tantipaiboonwong, P.; Aunsri, N. Collagenase and Melanogenesis Inhibitory Effects of Perilla Frutescens Pomace Extract and Its Efficacy in Topical Cosmetic Formulations. Cosmetics 2020, 7, 69. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Chongnativisit, W.; Chaikul, P.; Lourith, N. Phenolic-rich Pomegranate Peel Extract: In Vitro, Cellular, and in Vivo Activities for Skin Hyperpigmentation Treatment. Planta Med. 2020, 86, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Ayuningtyas, I.N.; Mun’Im, A.; Sutriyo, S. The study of safety and skin whitening efficacy of melinjo (Gnetum gnemon L.) seed extract-loaded lipid particle gel. Pharmacogn. Res. 2018, 10, 432–436. [Google Scholar]
- Song, Y.R.; Lim, W.C.; Han, A.; Lee, M.H.; Shin, E.J.; Lee, K.M.; Nam, T.G.; Lim, T.G. Rose Petal Extract (Rosa gallica) Exerts Skin Whitening and Anti-Skin Wrinkle Effects. J. Med. Food 2020, 23, 870–878. [Google Scholar] [CrossRef]
- Choi, K.T.; Kim, J.H.; Cho, H.T.; Lim, S.S.; Kwak, S.S.; Kim, Y.J. Dermatologic evaluation of cosmetic formulations containing Chrysanthemum indicum extract. J. Cosmet. Dermatol. 2016, 15, 162–168. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Formulation and clinical evaluation of the standardized Litchi chinensis extract for skin hyperpigmentation and aging treatments. Ann. Pharm. Fr. 2020, 78, 142–149. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, H.M.S.; Ashraf, S.; Mohammad, I.S.; Ali, A. Skin depigmentation activity of crocus sativus extract cream. Trop. J. Pharm. Res. 2014, 13, 1803–1808. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.I.; Seo, J.H.; Ko, E.S.; Cho, S.M.; Kang, J.R.; Jeong, J.H.; Jeong, Y.J.; Kim, C.Y.; Cha, J.D.; Kim, W.S.; et al. Inhibition of melanogenesis by aster yomena callus pellet extract in melanoma cells and patients with skin pigmentation. Int. J. Med. Sci. 2021, 18, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Majeed, S.; Jain, R.; Mundkur, L.; Rajalakshmi, H.R.; Lad, P.S.; Neupane, P. An open-label single-arm, monocentric study assessing the efficacy and safety of natural pterostilbene (Pterocarpus marsupium) for skin brightening and antiaging effects. Clin. Cosmet. Investig. Dermatol. 2020, 13, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Akhtar, N.; Khan, M.S. In vivo evaluation: The effects of a cream containing Acacia bark extract on skin melanin and erythema content. Postep. Dermatol. Alergol. 2012, 29, 369–372. [Google Scholar] [CrossRef]
- Khan, B.A.; Akhtar, N.; Hussain, I.; Abbas, K.A.; Rasul, A. Whitening efficacy of plant extracts including Hippophae rhamnoides and Cassia fistula extracts on the skin of Asian patients with melasma. Postep. Dermatol. Alergol. 2013, 30, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Mihăilă, B.; Dinică, R.M.; Tatu, A.L.; Buzia, O.D. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp. Ther. Med. 2019, 17, 1039–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, I.; Hussain, N.; Manan, A.; Rashid, A.; Khan, B.; Bakhsh, S. Fabrication of anti-vitiligo ointment containing Psoralea corylifolia: In vitro and in vivo characterization. Drug Des. Devel. Ther. 2016, 10, 3805–3816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aafi, E.; Shams Ardakani, M.R.; Ahmad Nasrollahi, S.; Mirabzadeh Ardakani, M.; Samadi, A.; Hajimahmoodi, M.; Naeimifar, A.; Pourjabbar, Z.; Amiri, F.; Firooz, A. Brightening effect of Ziziphus jujuba (jujube) fruit extract on facial skin: A randomized, double-blind, clinical study. Dermatol. Ther. 2022, 35, e15535. [Google Scholar] [CrossRef]
- Colucci, R.; Dragoni, F.; Conti, R.; Pisaneschi, L.; Lazzeri, L.; Moretti, S. Evaluation of an oral supplement containing Phyllanthus emblica fruit extracts, vitamin E, and carotenoids in vitiligo treatment. Derm. Ther. 2015, 28, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Resende, J.H.C.; de Aquino, G.S.T.; do Nascimento, F.R.F.; Aguiar, M.M.; Fiorelli, R.K.A. Oral Use of an Infusion of Leaves of Solanum paniculatum L., Jacaranda brasiliensis and Sonchus oleraceus for Treatment of Vitiligo. J. Cosmet. Dermatol. Sci. Appl. 2015, 5, 317–331. [Google Scholar]
Name of the Species/ Family | Part of the Plant | Type of Solvent | Compounds Identified in Extract | Concentration | Incubation Time | Effect | Ref. |
---|---|---|---|---|---|---|---|
Acalypha indica L./Euphorbiaceae | whole plant | methanol–ethyl acetate fraction | dioctyl phthalate, (-)-erythromycin, rhamnetin, berberine, keracyanin, spectinomycin, andrographolide, methyl caffeate | 10–100 µg/mL | 48 hpf | antimelanogenic activity | [71] |
Artocarpus chama Buch.-Ham./Moraceae | stem | methanol, water | - | 200 μg/mL | 9–72 hpf | antimelanogenic activity | [72] |
Bletilla striata (Thunb.) Rchb.f./Orchidaceae | roots, tuber | ethanol | 39 chemical compositions, including 24 stilbenoids | 10 and 30 mg/mL | 6–72 hpf | antimelanogenic activity | [73] |
Blumea balsamifera (L.) DC./Asteraceae | leaves | ethanol–ethyl acetate fraction | - | 10–300 μg/mL | 9–57 hpf | antimelanogenic activity | [74] |
Dioscorea nipponica Makino/Dioscoreaceae | bark | ethanol–methanol fraction | - | 6.25–25 μg/mL | 9–72 hpf | antimelanogenic activity | [75] |
Elaeocarpus serratus L./Elaeocarpaceae | leaf | ethanol | gallic acid, myricetin, mearnsetin | 50 µg/mL | 9–57 hpf | antimelanogenic activity | [76] |
Hosta longipes (Franch. and Sav.) Matsum./Asparagaceae | whole plant | ethanol–hexane fraction | linolenic acid and linoleic acid | 1 μg/mL | 9–81 hpf | antimelanogenic activity | [77] |
Morus alba L./Moraceae | wood | methanol | oxyresveratrol, kuwanon C, mulberroside A, resorcinol, dihydrooxyresveratol, trans-dihydromorin, 2,4,3′-trihydroxydihydrostilbene, kuwanon H, 2,4-dihydroxybenzaldehyde, morusin, moracin M and kuwanon G | 70 μg/mL | 24–48 hpf | antimelanogenic activity | [78] |
Panax ginseng C.A.Mey./Araliaceae | whole plant | methanol–water fraction | - | 12.5–50 μg/mL | 7–72 hpf | antimelanogenic activity | [79] |
Pistacia vera L./Anacardiaceae | hulls | methanol:water:acetic acid | cyanidin-3-O-galactoside, cyanidin-3-O-glucoside | 2.5–10 μg/mL | 24–72 hpf | antimelanogenic activity | [80] |
Reynoutria multiflora (Thunb.) Moldenke/Polygonaceae | root | water | - | 87.5 mg/L | 3–4 hpf–4 dpf | antimelanogenic activity | [81] |
Rhanterium suaveolens Desf./Asteraceae | flowers | methanol | flavonoids and hydroxycinnamic acids | 0.5 and 1 mg/mL | 24–47 hpf | antimelanogenic activity | [82] |
Senna alata (L.) Roxb./Fabaceae | leaf | methanol | - | 50 μg/mL and 100 μg/mL | 9–55 hpf | antimelanogenic activity | [83] |
Sonneratia alba Sm./Lythraceae | bark | methanol | - | 50 µg/mL and 100 µg/ml | 9–55 hpf | antimelanogenic activity | [84] |
Streblus taxoides (B.Heyne ex Roth) Kurz/Moraceae | wood | ethyl acetate, methanol | - | 50 μg/mL | 9–72 hpf | antimelanogenic activity | [72] |
Name of the Species/Family | Part of the Plant | Identified Compounds | Chemical Class of the Compounds | Concentration | Incubation Time | Effect | Ref. |
---|---|---|---|---|---|---|---|
Agastache rugosa (Fisch. and C.A.Mey.) Kuntze/Lamiaceae | leaves | demethyleugenol β-D-glucopyranoside | glucopyranoside | 5–30 μM | 9–72 hpf | antimelanogenic activity | [85] |
Arctium lappa L./Asteraceae | seed | arctigenin | lignan | 10 μM | 15–40 hpf | antimelanogenic activity | [86] |
Artemisia capillaris Thunb./Asteraceae | leaves and stems | 4,5-O-dicaffeoylquinic acid | polyphenol | 25 μg/mL | 9–72 hpf | antimelanogenic activity | [87] |
Artemisia capillaris Thunb./Asteraceae | - | isofraxidin 7-O-(6′-O-p-coumaroyl)-β-glucopyranoside | glucopyranoside | 12.5 and 25 μg/mL | 9–72 hpf | melanogenic enhancer | [88] |
Conioselinum anthriscoides (H.Boissieu) Pimenov and Kljuykov/Apiaceae | rhizoma | neocnidilide | gamma-lactone | 10–20 μM | 7–72 hpf | antimelanogenic activity | [89] |
Elaeocarpus serratus L./Elaeocarpaceae | leaves | gallic acid, myricetin, mearnsetin | phenolic acid, flavone, O-methylated flavonol | 50 μM | 9–57 hpf | antimelanogenic activity | [76] |
Eurya emarginata (Thunb.) Makino/Pentaphylacaceae | root | rengyolone | cyclohexylethanoid | 16.2 and 32.5 μM | 9–48 hpf | antimelanogenic activity | [90] |
Hosta longipes (Franch. and Sav.) Matsum./Asparagaceae | whole plant | linolenic acid and linoleic acid | fatty acids | 1 μg/mL | 9–81 hpf | antimelanogenic activity | [77] |
Inula japonica Thunb./Asteraceae | flowers | inularin | sesquiterpene | 10–100 μM | 10–48 hpf | antimelanogenic activity | [91] |
Inula japonica Thunb./Asteraceae | flowers | 6-O-Isobutyrylbritannilactone | lactone | 10–100 μM | 10–48 hpf | antimelanogenic activity | [92] |
Juniperus communis L./Cupressaceae | fruits | hypolaetin-7-O-β-D-xyloside | flavonoid | 1–400 μg/mL | 9–72 hpf | antimelanogenic activity | [93] |
Lonicera japonica Thunb./Caprifoliaceae | whole plant | sweroside | iridoid glycoside | 150 and 300 μM | 9–72 hpf | antimelanogenic activity | [94] |
Morus alba L./Moraceae | wood | oxyresveratrol | stilbenoid | 50 μg/mL | 24–48 hpf | antimelanogenic activity | [78] |
Panax ginseng C.A.Mey./Araliaceae | berry | floralginsenoside A | ginsenoside | 40–160 μg/mL | 9–72 hpf | antimelanogenic activity | [95] |
Panax ginseng C.A.Mey./Araliaceae | leaves | picrionoside A | glucoside | 40 and 80 μg/mL | 9–72 hpf | antimelanogenic activity | [96] |
Panax ginseng C.A.Mey./Araliaceae | roots | isomaltol glycoside | glycoside | 50 and 100 μg/mL | 9–72 hpf | antimelanogenic activity | [97] |
Panax ginseng C.A.Mey./Araliaceae | leaves | Rh23 | ginsenoside | 40 and 80 μM | 9–72 hpf | antimelanogenic activity | [98] |
Panax ginseng C.A.Mey./Araliaceae | aerial parts | Rh6, R4, R13 | ginsenosides | 80 μM | 9–72 hpf | antimelanogenic activity | [99] |
Persicaria amphibia (L.) Delarbre/Polygonaceae | epicatechin-3-gallate | catechin | 50–200 μM | 24–48 hpf | antimelanogenic activity | [100] | |
Viscum album L./Santalaceae | whole plant | velutin | flavonoid | 30 and 300 μg/mL | 5–30 hpf | antimelanogenic activity | [101] |
Ziziphus jujuba Mill./Rhamnaceae | seeds | jujuboside B, epiceanothic acid, 6‴-feruloylspinosin | flavonoid glycosides | 20 μM | 48–72 hpf | antimelanogenic activity | [102] |
Name of the Species | Type of Cell | Tested Concentration | Biological Properties | Ref. |
---|---|---|---|---|
Artocarpus chama Buch.-Ham./Moraceae | B16 melanoma cells | 100 μg/mL | TYR and mela-nin biosynthe-sis inhibitory effect | [72] |
Aster yomena (Kitam.) Honda/Asteraceae | B16 melanoma cells | 15–120 µg/mL | Melanin biosynthesis inhibitory effect, modulation of CREB, MITF, TYRP1, and TYRP2 expression | [130] |
Cyrtomium fortunei J.Sm./Polypodiaceae | Melan-a cells | 100 μg/mL | TYR and melanin biosynthesis inhibitory effect | [109] |
Lespedeza bicolor Turcz./Fabaceae | B16 melanoma cells | 5–20 µg/mL | TYR and melanin biosynthesis activatory effect | [112] |
Nelumbo nucifera Gaertn./Nelumbonaceae | B16 melanoma cells | 10–20 µg/mL | TYR and melanin biosynthesis inhibitory effect, modulation of TYRP1 expression | [110] |
Nelumbo nucifera Gaertn./Nelumbonaceae | B16 melanoma cells | 0.3–0.5 mg/mL | TYR and mela-nin biosynthe-sis inhibitory effect, modulation of TYRP1 and MITF expression | [106] |
Nymphaea nouchali Burm.f./Nymphaeaceae | Melan-a cells | 3–30 µg/mL | TYR and melanin biosynthesis inhibitory effect, modulation of TYRP1, TYRP-2 and MITF expression | [107] |
Panax ginseng C.A.Mey./Araliaceae | B16 melanoma cells | 500 μg/mL and 1 mg/mL | TYR and melanin biosynthesis inhibitory effect | [116] |
Pueraria montana var. lobata (Willd.) Maesen and S.M.Almeida ex Sanjappa and Predeep/Fabaceae | B16 melanoma cells | 10–100 µg/mL | modulation of TYR and TYRP1 expression | [104] |
Punica granatum L./Lythraceae | B16 melanoma cells | 0.02 mg/mL | TYR and melanin biosynthesis inhibitory effect | [124] |
Rhododendron schlippenbachii Maxim./Ericaceae | B16 melanoma cells | 5–20 µg/mL | TYR and melanin biosynthesis activatory effect | [113] |
Rosa gallica L./Rosaceae | B16 melanoma cells | 50–200 µg/mL | TYR and melanin biosynthesis inhibitory effect, modulation of ERK, JNK, p38 and MITF expression | [126] |
Baccharoides anthelmintica (L.) Moench/Asteraceae | B16 melanoma cells | 1–5 µg/mL | TYR and melanin biosynthesis activatory effect, modulation of MITF expression | [118] |
Name of the Pure Compounds | Type of Cell | Tested Concentration | Biological Properties | Ref. |
---|---|---|---|---|
arctigenin | B16 melanoma cells | TYR and mela-nin biosynthe-sis inhibitory effect | [86] | |
demethyleugenol β-D-glucopyranoside | Melan-a cells | 5–10 µg/mL | TYR and melanin biosynthesis inhibitory effect, modulation of TYRP1 and MITF expression | [85] |
epicatechin-3-gallate | B16 melanoma cells | 25–200 µM | TYR and melanin biosynthesis inhibitory effect, modulation of TYRP1, TYRP2 and MITF expression | [100] |
isomaltol glycoside | B16 melanoma cela | 25–100 µg/mL | TYR and mela-nin biosynthe-sis inhibitory effect, modulation of TYRP1 and TYRP2 and MITF expres-sion | [97] |
jujuboside B, epiceanothic acid and 6‴-feruloylspinosin | B16 melanoma cells | 20 µM | TYR and melanin biosynthesis inhibitory effect, modulation of MITF expression | [102] |
linolenic acid and linoleic acid | B16 melanoma cells | 10–100 nM | TYR and mela-nin biosynthe-sis inhibitory effect | [77] |
sweroside | Melan-a cells | 300 μM | TYR and mela-nin biosynthe-sis inhibitory effect, modulation of TYRP1 and TYRP2 expres-sion | [94] |
Name of the Species/Part of the Plants | Number of Patents |
---|---|
Alpinia officinarum–rhizome, Physalis angulate–leaves, stems and roots, Bidens pilosa–leaves, stems and roots, Achyrocline satureioides–flowers | US20170100326A1 |
Amorphophallus konjac–tuber | US20160184218A1 |
Aspalathus Linearis, Matricaria, Saxifraga, Astragalus, Taraxacum officinale/mongolicum, Ferula varia/foetida, Carthamus tinctorius, Sophora flavescentis, or Chrysanthemum morifolium | US9801809B2 |
Atractylodis macrocephalae rhizoma, Glycyrrhizae radix et rhizoma, Angelicae sinensis radix, Paconiae radix alba and Poria | US9511013B2 |
banyan tree, lotus, and clover serum fractions | WO2012115949A3 |
Bellis perennis–flowers | EP1737538B1 |
Bellis perennis–whole plant or flower heads | EP1737538B1 |
Butea monosperma (Identified compound: butrin) | US9775797B2 |
Caesalpinia spinosa–root, stem, leaf, flower, fruit and fruit pod | US20130302265A1 |
Caragana sinica–roots | WO2017003190A1 |
Coffea arabica–roasted beans | CN103517699A |
Cortex Mori, Radix Angelicae Dahuricae, Cortex Lycii, Aloe, Flos Rosae Rugosae, Semen Coicis, Herba Artemisiae Scopariae, Folium Eriobotryae, Mel | CN103655388A |
Dipterocarpus intricatus–leaves | WO2017086692A1 |
Fabiana imbricata–whole plant, or its portion, including stems, leaves, nectar and/or flower petals | US20150342853A1 |
Ficus serum fraction derived from fresh Ficus cell juice of fresh Ficus leaves | US20120201768A1 |
Glycyrrhiza glabra, Rubia cordifolia, Symplocos racemosa, Terminalia arjuna, Myristica fragrans–barks, roots, tubers, stigma, kernels, exudates, stolons, rhizome, leaves, seeds, nuts, berries, fruits, stems and flowers | WO2017072668A1 |
Greyia radlkoferi–leaves (Identified compounds: 5,7-dihidroxyflavone[(2S)-pinocembrin]; 2′, 6′-dihydroxy-4′-methoxydihydrochalcone; 2′,4′,6′-trihydroxyhydrochalcone; 3,5,7-trihydroxyflavone and 4′,5′7-thhydroxyisoflavone) | US20150118337A1 |
Lilium candidum–bulb | US8481093B2 |
Morus plant leaves | US8980343B2 |
Phaseolus vulgaris–dried navy (haricot)-beans | US9138401B2 |
Phaseolus vulgaris–navy bean | US8747926B2 |
Phyllanthus embilica–fruits, Bellis perrenis–flowers, Glycyrrhiza glabra–roots | US20160074316A1 |
Piper longum–roots | WO2014014515A2 |
Quassia undulata–leaves | US20160074314A1 |
Rhododendron moulmainense–whole plant | US9333167B2 |
Salvia hispanica–seeds | US8916212B2 |
Name of the Species/Part of the Plants | Number of Patents |
---|---|
Coreopsis tinctoria | CN104523796A |
Cortex Dictamni, Rhizoma Gastrodiae, Flos Carthami, Fructus Psoraleae, Radix Salviae Miltiorrhizae, Radix Angelicae Dahuricae, Flos Lonicerae, Fructus Mume, Radix Astragali, Borneolum Syntheticum, Scorpio, Fructus Lycii, Radix Saposhnikoviae | CN104474298A |
Folium Fici, Herba Spirodelae and Pericarpium Citri junoris | CN102274359B |
Folium Ginkgo, Herba Spirodelae, Pericarpium Citri junoris | CN102846500A |
Fructus Mume, Fructus Psoraleae, Rhizoma Zingiberis Recens, | CN104338104A |
Fructus Mume, Fructus Psoraleae, Rhizoma Zingiberis Recens, | CN104338104A |
Fructus Tribuli, Herba speranskiae tuberculatae, hair Rhizoma Zingiberis Recens, Cortex Cinnamomi, Fructus Psoraleae, Radix Polygoni Multiflori Preparata, Radix Salviae Miltiorrhizae, Radix Arnebiae (Radix Lithospermi) | CN105535128A |
Gynostemma pentaphyllum (Isolated compounds: saponins) | US20150209376A1 |
Herba Schizonepetae, Radix Saposhnikoviae, Herba Menthae, Scorpio, Periostracum Cicadae, Radix Ginseng, Radix Astragali, Semen Persicae, Radix Angelicae Sinensis, Rhizoma Chuanxiong, Radix Paeoniae Alba, Radix Rehmanniae Preparata, Radix Notoginseng, Fructus Ligustri Lucidi, Herba Ecliptae, Fructus Psoraleae, Radix Angelicae Dahuricae, Stigma Croci, Fructus Fici, Radix Arnebiae (Radix Lithospermi), Semen Astragali Complanati, Fructus Cnidii, Radix Polygoni Multiflori, Fructus Mume, Borneolum Syntheticum, Flos Caryophylli | CN103385986A |
Herba Taraxaci, Radix Rehmanniae, Flos Primulae Vittatae, Radix Salviae Miltiorrhizae, Stigma Croci | CN104274628A |
Pueraria genus–roots (Identified ingredient: puerarin) | US20120329739A1 |
Radix Rehmanniae, Radix Angelicae Sinensis, Ramulus Cinnamomi, Rhizoma Chuanxiong, Flos Carthami, Cortex Moutan, Cortex Dictamni, Radix Polygoni Multiflori, Fructus Tribuli, Herba Ephedrae, Radix Euphorbiae Fischerianae (Radix Euphorbiae Ebracteolatae), Radix Cyathulae, Fructus Cnidii, Periostracum Cicadae, Flos Lonicerae, Spina Gleditsiae, Radix Saposhnikoviae, Radix Sophorae Flavescentis, Rhizoma Atractylodis, Semen Astragali Complanati, Fructus Ligustri Lucidi, sub-lotus grass, Radix Notoginseng | CN104257857A |
Sophora japonica | US8673371B2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merecz-Sadowska, A.; Sitarek, P.; Stelmach, J.; Zajdel, K.; Kucharska, E.; Zajdel, R. Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int. J. Mol. Sci. 2022, 23, 14787. https://doi.org/10.3390/ijms232314787
Merecz-Sadowska A, Sitarek P, Stelmach J, Zajdel K, Kucharska E, Zajdel R. Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. International Journal of Molecular Sciences. 2022; 23(23):14787. https://doi.org/10.3390/ijms232314787
Chicago/Turabian StyleMerecz-Sadowska, Anna, Przemysław Sitarek, Joanna Stelmach, Karolina Zajdel, Ewa Kucharska, and Radosław Zajdel. 2022. "Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders" International Journal of Molecular Sciences 23, no. 23: 14787. https://doi.org/10.3390/ijms232314787