Induction of Innate Memory in Human Monocytes Exposed to Mixtures of Bacterial Agents and Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Nanoparticle Characterization
2.2. Primary Response of Human Monocytes to LPS and Nanoparticles
2.3. Memory Response of Human Monocytes to LPS and Nanoparticles
3. Discussion
4. Materials and Methods
4.1. Nanoparticle Synthesis and Characterisation
4.2. Human Monocyte Isolation
4.3. Human Monocyte Activation and Induction of Innate Memory
4.4. Cytotoxicity Evaluation
4.5. Assessment of Endotoxin Contamination
4.6. Evaluation of Cytokine Production
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurtz, J. Specific memory within innate immune systems. Trends Immunol. 2005, 26, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.L.; Hargreaves, D.C.; Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007, 447, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Quintin, J.; van der Meer, J.W. Trained immunity: a memory for innate host defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netea, M.G.; Joosten, L.A.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.; Xavier, R.J. Trained immunity: a program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.C.; Ugolini, S.; Vivier, E. Immunological memory within the innate immune system. EMBO J. 2014, 33, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Milutinovic, B.; Kurtz, J. Immune memory in invertebrates. Semin. Immunol. 2016, 28, 328–342. [Google Scholar] [CrossRef]
- Reimer-Michalski, E.M.; Conrath, U. Innate immune memory in plants. Semin. Immunol. 2016, 28, 319–327. [Google Scholar] [CrossRef]
- Melillo, D.; Marino, R.; Italiani, P.; Boraschi, D. Innate immune memory in invertebrate metazoans: a critical appraisal. Front. Immunol. 2018, 9, 1915. [Google Scholar] [CrossRef] [Green Version]
- Pradeau, T.; Du Pasquier, L. Immunological memory: what’s in a name? Immunol. Rev. 2018, 283, 7–20. [Google Scholar] [CrossRef]
- Beeson, P.B. Development of tolerance to typhoid bacterial pyrogen and its abolition by reticulo-endothelial blockade. Proc. Soc. Exp. Biol. Med. 1946, 61, 248–250. [Google Scholar] [CrossRef]
- Dubos, R.J.; Schaedler, R.W. Reversible changes in the susceptibility of mice to bacterial infections. I. Changes brought about by injection of pertussis vaccine or of bacterial endotoxins. J. Exp. Med. 1956, 104, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Cook, J.A. Molecular mechanisms of endotoxin tolerance. J. Endotoxin Res. 2004, 10, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.-M.; Adib-Conquy, M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care 2006, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.M.; Wang, J.H.; Redmond, H.P. Cellular reprogramming by Gram-positive bacterial components: a review. J. Leukoc. Biol. 2006, 80, 731–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C.; Gilliam, E.A.; Li, L. Innate immune programing by endotoxin and its pathological consequences. Front. Immunol. 2014, 5, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeley, J.J.; Ghosh, S. Molecular mechanisms of innate memory and tolerance to LPS. J. Leukoc. Biol. 2017, 101, 107–119. [Google Scholar] [CrossRef]
- Boehme, D.; Dubos, R.J. The effect of bacterial constituents on the resistance of mice to heterologous infection and on the activity of their reticuloendothelial system. J. Exp. Med. 1958, 107, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Bistoni, F.; Vecchiarelli, A.; Cenci, E.; Puccetti, P.; Marconi, P.; Cassone, A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect. Immun. 1986, 51, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Bowdish, D.M.E.; Loffredo, M.S.; Mukhopadhyay, S.; Mantovani, A.; Gordon, S. Macrophage receptors implicated in the “adaptive” form of innate immunity. Microbes Infect. 2007, 9, 1680–1687. [Google Scholar] [CrossRef]
- Sun, J.C.; Beilke, J.N.; Lanier, L.L. Immune memory redefined: characterizing the longevity of natural killer cells. Immunol. Rev. 2010, 236, 83–94. [Google Scholar] [CrossRef]
- O’Sullivan, T.E.; Sun, J.C.; Lanier, L.L. Natural killer cell memory. Immunity 2015, 43, 634–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Gonzalez, I.; Math, L.; Steer, C.A.; Takei, F. Immunological memory of group 2 innate lymphoid cells. Trends Immunol. 2017, 38, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Serafini, N.; Jarade, A.; Surace, L.; Goncalves, P.; Sismeiro, O.; Varet, H.; Legendre, R.; Coppee, J.Y.; Disson, O.; Durum, S.K.; et al. Trained ILC3 responses promote intestinal defense. Science 2022, 375, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Larsen, S.B.; Gomez, N.C.; Alaverdyan, K.; Sendoel, A.; Yuan, S.; Polak, L.; Kulukian, A.; Chai, S.; Fuchs, E. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 2017, 550, 475–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Medzhitov, R. Inflammation: memory beyond immunity. Nature 2017, 550, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahi, S.; Walter, C.; Loza, A.J.; Schimizzi, G.V.; Longmore, G.D.; Pathak, A. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 2017, 146, 146–155. [Google Scholar] [CrossRef]
- Cassone, A. The case of an expanded concept of trained immunity. mBio 2018, 9, e00570-18. [Google Scholar] [CrossRef] [Green Version]
- Bigot, J.; Guillot, L.; Guitard, J.; Ruffin, M.; Corvol, H.; Chignard, M.; Hennequin, C.; Balloy, V. Respiratory epithelial cells can remember infection: a proof-of-concept study. J. Infect. Dis. 2020, 221, 1000–1005. [Google Scholar] [CrossRef]
- Madej, M.; Töpfer, E.; Boraschi, D.; Italiani, P. Different regulation of interleukin-1 production and activity in monocytes and macrophages: innate memory as an endogenous mechanism of IL-1 inhibition. Front. Pharmacol. 2017, 8, 335. [Google Scholar] [CrossRef]
- Feuerstein, R.; Forde, A.J.; Lohrmann, F.; Kolter, J.; Ramirez, N.J.; Zimmermann, J.; de Agüero, M.G.; Henneke, P. Resident macrophages acquire innate immune memory in staphylococcal skin infection. eLife 2020, 9, e55602. [Google Scholar] [CrossRef]
- Boraschi, D.; Duschl, A. Nanoparticles and the Immune System: Safety and Effects; Academic Press: Oxford, UK, 2013. [Google Scholar]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials 2019, 12, 3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolkova, B.; El Yamani, N.; Collins, A.R.; Gutleb, A.C.; Dusinska, M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem. Toxicol. 2015, 77, 64–73. [Google Scholar] [CrossRef] [PubMed]
- SCCS. Opinion on Titanium Dioxide (Nano Form) as UV-Filter in Sprays, Preliminary Version of 7 March 2017, Final Version of 19 January 2018; SCCS/1583/17; SCCS: Brussels, Belgium, 2018. [Google Scholar]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [Green Version]
- ESFA. Titanium Dioxide: E171 No Longer Considered Safe when Used as a Food Additive. 2021. Available online: https://www.efsa.europa.eu/en/news/titanium-dioxide-e171-no-longer-considered-safe-when-used-food-additive (accessed on 3 September 2022).
- Corma, A.; Atienzar, P.; Garcia, H.; Chane-Ching, J.-Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397. [Google Scholar] [CrossRef]
- Reed, K.; Cormack, A.; Kulkarni, A.; Mayton, M.; Sayle, D.; Klaessig, F.; Stadler, B. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ. Sci. Nano 2014, 1, 390–405. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.K.; Shcherbakov, A.; Usatenko, A. Structure-sensitive properties and biomedical applications of nanodisperse cerium dioxide. Russ. Chem. Rev. 2009, 78, 855–871. [Google Scholar] [CrossRef]
- Jung, H.; Kittelson, D.B.; Zachariah, M.R. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust. Flame 2005, 142, 276–288. [Google Scholar] [CrossRef]
- Campbell, C.T. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714. [Google Scholar] [CrossRef]
- Charbgoo, F.; Ramezani, M.; Darroudi, M. Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosens. Bioelectron. 2017, 96, 33–43. [Google Scholar] [CrossRef]
- Chen, J.P.; Patil, S.; Seal, S.; McGinnis, J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 2006, 1, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Hirst, S.; Karakoti, A.; Tyler, R.; Sriranganathan, N.; Seal, S.; Reilly, C. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856. [Google Scholar] [CrossRef] [PubMed]
- Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D.W.; Baker, C.H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 2010, 6, 698–705. [Google Scholar] [CrossRef] [PubMed]
- DeCoteau, W.; Heckman, K.; Estevez, A.; Reed, K.; Costanzo, W.; Sandford, D.; Studlack, P.; Clauss, J.; Nichols, E.; Lipps, J.; et al. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine 2016, 12, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, G.; Mazaleuskaya, L.; Hsu, J.C.; Rosario-Berrios, D.N.; Grosser, T.; Cho-Park, P.F.; Cormode, D.P. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation. ACS Appl. Mater. Interfaces 2021, 13, 60852–60864. [Google Scholar] [CrossRef] [PubMed]
- Casals, G.; Perramón, M.; Casals, E.; Portolés, I.; Fernández-Varo, G.; Morales-Ruiz, M.; Puntes, V.; Jiménez, W. Cerium oxide nanoparticles: a new therapeutic tool in liver diseases. Antioxidants 2021, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Pelclova, D.; Navratil, T.; Kacerova, T.; Zamostna, B.; Fenclova, Z.; Vlckova, S.; Kacer, P. NanoTiO2 sunscreen does not prevent systemic oxidative stress caused by UV radiation and a minor amount of nanoTiO2 is absorbed in humans. Nanomaterials 2019, 9, 888. [Google Scholar] [CrossRef] [Green Version]
- Baroli, B.; Ennas, M.G.; Loffredo, F.; Isola, M.; Pinna, R.; Lopez-Quintela, M.A. Penetration of metallic nanoparticles in human full-thickness skin. J. Investig. Dermatol. 2007, 127, 1701–1712. [Google Scholar] [CrossRef]
- Brun, E.; Barreau, F.; Veronesi, G.; Fayard, B.; Sorieul, S.; Chaneac, C.; Carapito, C.; Rabilloud, T.; Mabondzo, A.; Herlin-Boime, N.; et al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part. Fibre Toxicol. 2014, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Cronin, J.G.; Jones, N.; Thornton, C.A.; Jenkins, G.J.S.; Doak, S.H.; Clift, M.J.D. Nanomaterials and innate immunity: a perspective of the current status in nanosafety. Chem. Res. Toxicol. 2020, 33, 1061–1073. [Google Scholar] [CrossRef]
- Himly, M.; Geppert, M.; Hofer, S.; Hofstaetter, N.; Horejs-Hoeck, J.; Duschl, A. When would immunologists consider a nanomaterial to be safe? Recommendations for planning studies on nanosafety. Small 2020, 16, e1907483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boraschi, D.; Italiani, P.; Palomba, R.; Decuzzi, P.; Duschl, A.; Fadeel, B.; Moghimi, S.M. Nanoparticles and innate immunity: new perspectives on host defence. Semin. Immunol. 2017, 34, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Alijagic, A.; Auguste, M.; Barbero, F.; Ferrari, E.; Hernadi, S.; Mayall, C.; Michelini, S.; Navarro Pacheco, N.I.; Prinelli, A.; et al. Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small 2020, 16, e2000598. [Google Scholar] [CrossRef] [PubMed]
- Italiani, P.; Boraschi, D. Induction of innate immune memory by engineered nanoparticles, a hypothesis that may become true. Front. Immunol. 2017, 8, 734. [Google Scholar] [CrossRef] [Green Version]
- Italiani, P.; Della Camera, G.; Boraschi, D. Induction of innate immune memory by engineered nanoparticles in monocytes/macrophages: from hypothesis to reality. Front. Immunol. 2020, 11, 566309. [Google Scholar] [CrossRef]
- Lebre, F.; Boland, J.B.; Gouveia, P.; Gorman, A.L.; Lundahl, M.L.E.; Lynch, R.I.; O’Brien, F.J.; Coleman, J.; Lavelle, E.C. Pristine graphene induces innate immune training. Nanoscale 2020, 12, 11192–11200. [Google Scholar] [CrossRef]
- Swartzwelter, B.J.; Barbero, F.; Verde, A.; Mangini, M.; Pirozzi, M.; De Luca, A.C.; Puntes, V.F.; Leite, L.C.; Italiani, P.; Boraschi, D. Gold nanoparticles modulate BCG-induced innate immune memory in human monocytes by shifting the memory response towards tolerance. Cells 2020, 9, 284. [Google Scholar] [CrossRef] [Green Version]
- Swartzwelter, B.J.; Michelini, S.; Frauenlob, T.; Barbero, F.; Verde, A.; De Luca, A.C.; Puntes, V.; Duschl, A.; Horejs-Hoeck, J.; Italiani, P.; et al. Innate memory reprogramming by gold nanoparticles depends on the microbial agents that induce memory. Front. Immunol. 2021, 12, 751683. [Google Scholar] [CrossRef]
- Barbosa, M.M.F.; Kanno, A.I.; Paiva Farias, L.; Madej, M.; Sipos, G.; Sbrana, S.; Romani, L.; Boraschi, D.; Leite, L.C.; Italiani, P. Primary and memory response of human monocytes to vaccines: role of nanoparticulate antigens in inducing innate memory. Nanomaterials 2021, 11, 931. [Google Scholar] [CrossRef]
- Della Camera, G.; Madej, M.; Ferretti, A.M.; La Spina, R.; Li, Y.; Corteggio, A.; Heinzl, T.; Swartzwelter, B.J.; Sipos, G.; Gioria, S.; et al. Personalised profiling of innate immune memory induced by nano-imaging particles in human monocytes. Front. Immunol. 2021, 12, 692165. [Google Scholar] [CrossRef]
- Hussain, S.; Al-Nsour, F.; Rice, A.B.; Marshburn, J.; Ji, Z.; Zink, J.I.; Yingling, B.; Walker, N.J.; Garantziotis, S. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes. Int. J. Nanomed. 2012, 7, 1387–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, C.; Salvioli, S.; Garagnani, P.; de Eguileor, M.; Monti, D.; Capri, M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front. Immunol. 2017, 8, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Li, J.; Xia, X.; Wang, J.; Jiang, Q.; Yang, J.; Dou, H.; Liang, H.; Li, K.; Hou, Y. β-glucan-coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis. Theranostics 2022, 12, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Huebner, W.; Anderson, H.U. Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2. Appl. Phys. Lett. 2002, 80, 3814–3816. [Google Scholar] [CrossRef]
- Chen, H.I.; Chang, H.Y. Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation. Solid State Commun. 2005, 133, 593–598. [Google Scholar] [CrossRef]
- García, A.; Delgado, L.; Torà, J.A.; Caslas, E.; González, E.; Puntes, V.; Font, X.; Carrera, J.; Sánchez, A. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard Mater. 2012, 199–200, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottier, A.; Cassaignon, S.; Chanéac, C.; Villain, F.; Tronca, E.; Jolivet, J.-P. Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 2003, 13, 877–882. [Google Scholar] [CrossRef]
- Li, Y.; Italiani, P.; Casals, E.; Tran, N.; Puntes, V.F.; Boraschi, D. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology 2015, 9, 462–473. [Google Scholar] [CrossRef]
Parameter | CeO2 SPH | CeO2 STA a | TiO2 SEE |
---|---|---|---|
<d> (nm) | 3.5 | 19.1, 2.7 | 19.6 |
σd (nm) | 0.4 | 1.5, 0.4 | 0.8 |
σd/<d> | 9% | 13%, 6% | 23% |
Shape | quasi-sphere | stamp | seed |
Stokes diameter (nm) b | 2.52 | 38.74 | 20.52 |
Parameter | CeO2 SPH | CeO2 STA | TiO2 SEE |
---|---|---|---|
Dha in buffer (nm) b | 4.2 (37.8) (142) c | 91.3 | 68.1 |
Dh in H2O (nm) d | 4.2 (28.2) (122) | 106 | 58.8 (5560) |
Dh in PBS 1x (nm) | 4.2 (28.2) (122) | 91.3 | 58.8 (5560) |
Dh in medium (nm) e | 1480 | 1110 | 1480 |
Dh in medium plus HS (nm) f | 10.1 (58.8) (459) | 190 (5560) | 164 (5560) |
ζ potential (mV) g | −23.60 | −40.20 | −35.40 |
Endotoxin activity (EU/mg) h | 25.0 | 9.8 | 4.4 |
Priming | NPs | Memory TNFα Production | Memory IL-6 Production | Memory IL-10 Production | Memory IL-1Ra Production | N | ||||
---|---|---|---|---|---|---|---|---|---|---|
Variation vs. No NPs (%) | p | Variation vs. No NPs (%) | p | Variation vs. No NPs (%) | p | Variation vs. No NPs (%) | p | |||
LPS + NPs | Au 50 nm | −26 | ns | nt | nt | nt | nt | nt | nt | 4 |
Au 12 nm | +35 | ns | 0 | ns | +31 | ns | +37 | ns | 3 | |
Au ROD | +63 | ns | −4 | ns | +15 | ns | +2 | ns | 3 | |
FeOx17 | −10 | ns | +27 | ns | +22 | ns | +20 | ns | 3 | |
FeOx22 | −25 | ns | +8 | ns | +43 | ns | −4 | ns | 3 | |
CeO2 SPH | +1 | ns | +2 | ns | +1 | ns | +33 | ns | 3 | |
CeO2 STA | −17 | ns | −9 | ns | +5 | ns | +52 | ns | 3 | |
TiO2 SEE | −19 | ns | +25 | ns | −8 | ns | +24 | ns | 3 | |
MDP + NPs | Au 50 nm | −39 | <0.05 | nt | nt | nt | nt | nt | nt | 4 |
β-glucan + NPs | Au 50 nm | +30 | ns | nt | nt | nt | nt | nt | nt | 4 |
H. pylori + NPs | Au 50 nm | 0 | ns | 0 | ns | −30 | <0.05 | +3 | ns | 12 |
S. aureus + NPs | Au 50 nm | −4 | ns | nt | nt | nt | nt | nt | nt | 8 |
C. albicans + NPs | Au 50 nm | +9 | ns | +8 | ns | +12 | ns | +4 | ns | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Camera, G.; Liu, T.; Yang, W.; Li, Y.; Puntes, V.F.; Gioria, S.; Italiani, P.; Boraschi, D. Induction of Innate Memory in Human Monocytes Exposed to Mixtures of Bacterial Agents and Nanoparticles. Int. J. Mol. Sci. 2022, 23, 14655. https://doi.org/10.3390/ijms232314655
Della Camera G, Liu T, Yang W, Li Y, Puntes VF, Gioria S, Italiani P, Boraschi D. Induction of Innate Memory in Human Monocytes Exposed to Mixtures of Bacterial Agents and Nanoparticles. International Journal of Molecular Sciences. 2022; 23(23):14655. https://doi.org/10.3390/ijms232314655
Chicago/Turabian StyleDella Camera, Giacomo, Tinghao Liu, Wenjie Yang, Yang Li, Victor F. Puntes, Sabrina Gioria, Paola Italiani, and Diana Boraschi. 2022. "Induction of Innate Memory in Human Monocytes Exposed to Mixtures of Bacterial Agents and Nanoparticles" International Journal of Molecular Sciences 23, no. 23: 14655. https://doi.org/10.3390/ijms232314655
APA StyleDella Camera, G., Liu, T., Yang, W., Li, Y., Puntes, V. F., Gioria, S., Italiani, P., & Boraschi, D. (2022). Induction of Innate Memory in Human Monocytes Exposed to Mixtures of Bacterial Agents and Nanoparticles. International Journal of Molecular Sciences, 23(23), 14655. https://doi.org/10.3390/ijms232314655