DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis
Abstract
:1. Introduction
Related Works
2. Results and Discussion
2.1. The Working DeepHP Dataset
2.2. Transfer Learning and Fine-Tuning Results
2.3. Related Studies and Analysis
3. Material and Methods
3.1. DeepHP Dataset
3.1.1. Images Collection
3.1.2. Image Pre-Processing
Algorithm 1: Image selection algorithm. |
3.1.3. Image Validation
3.2. Convolutional Neural Network
- VGG16: The first work that popularized CNNs in computer vision is VGG-Nets [41], which directly incorporated classic CNN architectures, and won first and second places in the location and ranking tasks in the ImageNet Challenge 2014, respectively. We opted for the VGG network with 16 weight layers (VGG16), namely thirteen convolutional layers and three fully-connected layers with a final softmax classifier. The convolution operations on the thirteen layers were performed using a 3 × 3 pixel dimension kernel, with the W and b parameters being slipped over the × pixels of each image resulting in a y output (Equation (6)). Kernel offset is pass-dependent and can be pixel-by-pixel or can skip multiple pixels. Convolutional layers act as feature extractors from the input images. The deeper the layers, the more specific the details that are extracted, and the earlier the layers, the more general the features that are extracted. The activation function of each convolutional layer is the Linear Rectified Unit (ReLU) for removing the linearity factor. The convolution operations results, also called feature maps, receive a pooling layer to reduce dimensionality, and in this case, max-pooling is applied in a 2 × 2 pixel window, with step 2. Finally, three layers that are Fully-Connected (FC) follow a stack of convolutional layers, two layers have 4096 neurons, and the third performs 1000 classifications and therefore contains 1000 neurons. The final layer receives the soft-max function [42].
- INCEPTION V3: Proposed by Szegedy et al. in 2015, InceptionV3 uses initial blocks based on a typical CNN architecture [41]. This architecture achieved good performance with relatively low computational cost, which was enhanced by the orderly addition of RMSProp, label smoothing, 7 × 7 factoring, and BN auxiliary layers in the InceptionV2 network [43]. The network includes eleven Inception modules of five types, concatenated to obtain maximum resource extraction. Each module is branched and applies different kernel sizes (1 × 1, 3 × 3, 5 × 5, and 7 × 7). These filters extract and concatenate different scales from feature maps. In the following step, 1 × 1 convolutions are applied for dimensionality reduction before computationally more expensive 3 × 3 and 5 × 5 convolutions. The factoring strategy of 5 × 5, and 7 × 7 convolutions into smaller convolutions (3 × 3) or asymmetric convolutions (1 × 7, 7 × 1) is applied to reduce the number of parameters [44]. In summary, InceptionV3 uses symmetrical and asymmetrical components, including convolutions, average clusters, maximum clusters, concatenations, dropouts, and fully connected layers. Batch normalization is used extensively throughout the applied mode to trigger inputs.
- RESNET 50: One of the problems that occur with very deep networks is the well-known vanishing gradient. This problem occurs when the loss function gradients tend to zero after numerous partial derivatives in each training iteration are found. This process prevents the weights from being upgraded, thus, stopping the learning process. A Deep Residual Network (ResNet) uses a two-layer convolutional building block with an identity connection jumping over them [45]. It is similar to networks with convolution, pooling, activation, and fully connected layers stacked on top of each other. What makes it a residual network is the identity connection between the layers. In this way, the input of the model’s first layer then becomes the output of the last layer, the network must be able to predict any function it has previously learned with the input added to it. Gradients can flow directly through jump-back connections from the later layers to initial filters [45]. A specific ResNet network is instantiated by stacking these building blocks at the desired depth. ResNet-50 is a convolutional neural network that has 50 layers. The difference in accuracy between ResNet-18 and ResNet-50 was notable in a performance comparison [46]. For ResNet networks with depths of greater than 50, the increase in performance was moderate.
3.3. Training Strategy of CNN Models
3.4. Evaluation Methods for CNN Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol. 2020, 18, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Kusters, J.G.; Van Vliet, A.H.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamani, M.; Ebrahimtabar, F.; Zamani, V.; Miller, W.; Alizadeh-Navaei, R.; Shokri-Shirvani, J.; Derakhshan, M. Systematic review with meta-analysis: The worldwide prevalence of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 2018, 47, 868–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Meng, W.; Wang, B.; Qiao, L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014, 345, 196–202. [Google Scholar] [CrossRef]
- Eusebi, L.H.; Telese, A.; Marasco, G.; Bazzoli, F.; Zagari, R.M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol. 2020, 35, 1495–1502. [Google Scholar] [CrossRef]
- Coelho, L.G.V.; Marinho, J.R.; Genta, R.; Ribeiro, L.T.; Passos, M.d.C.F.; Zaterka, S.; Assumpção, P.P.; Barbosa, A.J.A.; Barbuti, R.; Braga, L.L.; et al. IVth brazilian consensus conference on Helicobacter pylori infection. Arq. Gastroenterol. 2018, 55, 97–121. [Google Scholar] [CrossRef]
- Garza-González, E.; Perez-Perez, G.I.; Maldonado-Garza, H.J.; Bosques-Padilla, F.J. A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication. World J. Gastroenterol. WJG 2014, 20, 1438. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, A.; Kamsin, A.; Shamshirband, S.; Gani, A.; Alinejad-Rokny, H.; Chronopoulos, A.T. Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing 2018, 276, 2–22. [Google Scholar] [CrossRef]
- Gonçalves, W.G.; dos Santos, M.H.d.P.; Lobato, F.M.F.; Ribeiro-dos Santos, Â.; de Araújo, G.S. Deep learning in gastric tissue diseases: A systematic review. BMJ Open Gastroenterol. 2020, 7, e000371. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Sengupta, S.; Lakshminarayanan, V. Explainable deep learning models in medical image analysis. J. Imaging 2020, 6, 52. [Google Scholar] [CrossRef]
- Li, Z.; Togo, R.; Ogawa, T.; Haseyama, M. Semi-supervised learning based on tri-training for gastritis classification using gastric X-ray images. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Guimarães, P.; Keller, A.; Fehlmann, T.; Lammert, F.; Casper, M. Deep-learning based detection of gastric precancerous conditions. Gut 2020, 69, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Togo, R.; Yamamichi, N.; Mabe, K.; Takahashi, Y.; Takeuchi, C.; Kato, M.; Sakamoto, N.; Ishihara, K.; Ogawa, T.; Haseyama, M. Detection of gastritis by a deep convolutional neural network from double-contrast upper gastrointestinal barium X-ray radiography. J. Gastroenterol. 2019, 54, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shichijo, S.; Nomura, S.; Aoyama, K.; Nishikawa, Y.; Miura, M.; Shinagawa, T.; Takiyama, H.; Tanimoto, T.; Ishihara, S.; Matsuo, K.; et al. Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images. EBioMedicine 2017, 25, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, H.; Kawahira, H.; Kawachi, H.; Sakaki, N. Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging-bright and linked color imaging: A single-center prospective study. Ann. Gastroenterol. 2018, 31, 462. [Google Scholar] [CrossRef]
- Itoh, T.; Kawahira, H.; Nakashima, H.; Yata, N. Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images. Endosc. Int. Open 2018, 6, E139–E144. [Google Scholar] [CrossRef] [Green Version]
- Shichijo, S.; Endo, Y.; Aoyama, K.; Takeuchi, Y.; Ozawa, T.; Takiyama, H.; Matsuo, K.; Fujishiro, M.; Ishihara, S.; Ishihara, R.; et al. Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images. Scand. J. Gastroenterol. 2019, 54, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, X.; Kim, J.J.; Zhu, X.; Ye, G.; Ye, B.; Wang, J.; Luo, S.; Li, J.; Yu, T.; et al. High Accuracy of Convolutional Neural Network for Evaluation of Helicobacter pylori Infection Based on Endoscopic Images: Preliminary Experience. Clin. Transl. Gastroenterol. 2019, 10, e00109. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Lin, G.S.; Chai, S.K.D. Helicobacter Pylori Classification based on Deep Neural Network. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Nakashima, H.; Kawahira, H.; Kawachi, H.; Sakaki, N. Endoscopic three-categorical diagnosis of Helicobacter pylori infection using linked color imaging and deep learning: A single-center prospective study (with video). Gastric Cancer. 2020, 23, 1033–1040. [Google Scholar] [CrossRef]
- Martin, D.R.; Hanson, J.A.; Gullapalli, R.R.; Schultz, F.A.; Sethi, A.; Clark, D.P. A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology. Arch. Pathol. Lab. Med. 2020, 144, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Yang, L.T.; Zhang, Q.; Armstrong, D.; Deen, M.J. Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives. Neurocomputing 2021, 444, 92–110. [Google Scholar] [CrossRef]
- Cheplygina, V.; de Bruijne, M.; Pluim, J.P. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 2019, 54, 280–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wardhani, N.W.S.; Rochayani, M.Y.; Iriany, A.; Sulistyono, A.D.; Lestantyo, P. Cross-validation metrics for evaluating classification performance on imbalanced data. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and Its Applications (ic3ina), Tangerang, Indonesia, 23–24 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 14–18. [Google Scholar]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Pearson, R.; Goney, G.; Shwaber, J. Imbalanced clustering for microarray time-series. In Proceedings of the ICML, Washington, DC, USA, 21–24 August 2003; Volume 3. [Google Scholar]
- Harrison, C. FDA backs clinician-free AI imaging diagnostic tools. Nat. Biotechnol. 2018, 36, 673. [Google Scholar] [CrossRef] [PubMed]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef]
- Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD); FDA: Silver Spring, MD, USA, 2019.
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Matsugu, M.; Mori, K.; Mitari, Y.; Kaneda, Y. Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 2003, 16, 555–559. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Rangarajan, A.K.; Purushothaman, R. Disease classification in eggplant using pre-trained VGG16 and MSVM. Sci. Rep. 2020, 10, 2322. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ji, Q.; Huang, J.; He, W.; Sun, Y. Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images. Algorithms 2019, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016, arXiv:1605.07678. [Google Scholar]
- Agrusa, A.S.; Gharibans, A.A.; Allegra, A.A.; Kunkel, D.C.; Coleman, T.P. A deep convolutional neural network approach to classify normal and abnormal gastric slow wave initiation from the high resolution electrogastrogram. IEEE Trans. Biomed. Eng. 2019, 67, 854–867. [Google Scholar] [CrossRef]
- Kumar, B.S.; Ravi, V. A survey of the applications of text mining in financial domain. Knowl.-Based Syst. 2016, 114, 128–147. [Google Scholar] [CrossRef]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
Model | Accuracy | Precision | Recall | Specificity | F1 Score | MCC |
---|---|---|---|---|---|---|
VGG16 | 0.95 | 0.93 | 0.90 | 0.97 | 0.91 | 0.88 |
InceptionV3 | 0.94 | 0.90 | 0.86 | 0.96 | 0.87 | 0.84 |
ResNet50 | 0.95 | 0.85 | 0.98 | 0.93 | 0.91 | 0.87 |
Model | Accuracy | Precision | Recall | Specificity | F1 Score | MCC |
---|---|---|---|---|---|---|
VGG16 | 0.98 | 0.94 | 0.99 | 0.98 | 0.96 | 0.95 |
InceptionV3 | 0.96 | 0.88 | 0.98 | 0.95 | 0.92 | 0.90 |
ResNet50 | 0.94 | 0.82 | 0.99 | 0.91 | 0.89 | 0.86 |
Slide | Rater X Threshold | Rater Y Threshold | Average Threshold |
---|---|---|---|
1 | 196 | 210 | 203 |
2 | 186 | 200 | 193 |
3 | 199 | 215 | 207 |
4 | 176 | 193 | 184.5 |
5 | 186 | 195 | 190.5 |
6 | 161 | 195 | 178 |
7 | 217 | 235 | 226 |
8 | 204 | 230 | 217 |
9 | 196 | 220 | 208 |
10 | 194 | 205 | 199.5 |
11 | 217 | 240 | 228.5 |
12 | 204 | 235 | 219.5 |
13 | 178 | 205 | 191.5 |
14 | 178 | 195 | 186.5 |
15 | 204 | 235 | 219.5 |
16 | 153 | 190 | 171.5 |
17 | 178 | 205 | 191.5 |
18 | 191 | 200 | 195.5 |
19 | 196 | 220 | 208 |
Value of Kappa | Level of Agreement |
---|---|
<0.00 | Poor |
0.00–0.20 | Slight |
0.21–0.40 | Fair |
0.41–0.60 | Moderate |
0.61–0.80 | Substantial |
0.81–1.00 | Almost Perfect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, W.G.e.; Santos, M.H.P.d.; Brito, L.M.; Palheta, H.G.A.; Lobato, F.M.F.; Demachki, S.; Ribeiro-dos-Santos, Â.; Araújo, G.S.d. DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis. Int. J. Mol. Sci. 2022, 23, 14581. https://doi.org/10.3390/ijms232314581
Gonçalves WGe, Santos MHPd, Brito LM, Palheta HGA, Lobato FMF, Demachki S, Ribeiro-dos-Santos Â, Araújo GSd. DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis. International Journal of Molecular Sciences. 2022; 23(23):14581. https://doi.org/10.3390/ijms232314581
Chicago/Turabian StyleGonçalves, Wanderson Gonçalves e, Marcelo Henrique Paula dos Santos, Leonardo Miranda Brito, Helber Gonzales Almeida Palheta, Fábio Manoel França Lobato, Samia Demachki, Ândrea Ribeiro-dos-Santos, and Gilderlanio Santana de Araújo. 2022. "DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis" International Journal of Molecular Sciences 23, no. 23: 14581. https://doi.org/10.3390/ijms232314581
APA StyleGonçalves, W. G. e., Santos, M. H. P. d., Brito, L. M., Palheta, H. G. A., Lobato, F. M. F., Demachki, S., Ribeiro-dos-Santos, Â., & Araújo, G. S. d. (2022). DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis. International Journal of Molecular Sciences, 23(23), 14581. https://doi.org/10.3390/ijms232314581