Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF3-Ynones with NaN3: DFT Study of the Reaction Mechanism
Abstract
1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 2015, 115, 826–870. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of fluorinated molecules by transition metal mediated C−F bond activation to access fluorinated building blocks. Chem. Rev. 2015, 115, 931–972. [Google Scholar] [CrossRef] [PubMed]
- Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chem. Eur. J. 2017, 23, 14676–14701. [Google Scholar] [CrossRef]
- Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Uneyama, K. Organofluorine Chemistry; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Theodoridis, G. Fluorine-containing agrochemicals: An overview of recent developments. In Advances in Fluorine Science; Tressaud, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 121–175. [Google Scholar]
- Bégué, J.P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine John; Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Tressaud, A.; Haufe, G. (Eds.) Fluorine and Health. Molecular Imaging, Biomedical Materials and Pharmaceuticals; Elsevier: Amsterdam, The Netherlands, 2008; pp. 553–778. [Google Scholar]
- Soloshonok, V.A.; Mikami, K.; Yamazaki, T.; Welch, J.T.; Honek, J.F. (Eds.) Current Fluoroorganic Chemistry. New Synthetic Directions, Technologies, Materials, and Biological Applications; ACS Symposium Series 949; American Chemical Society: Washington, DC, USA, 2006. [Google Scholar]
- Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluorine Chem. 2014, 167, 37–54. [Google Scholar] [CrossRef]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef]
- Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359–4369. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem 2004, 5, 570–589. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manage. Sci. 2010, 66, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem. 2014, 167, 16–29. [Google Scholar] [CrossRef]
- Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manag. Sci. 2017, 73, 1053–1056. [Google Scholar] [CrossRef]
- Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016, 14, 6611–6637. [Google Scholar] [CrossRef]
- Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. [Google Scholar] [CrossRef]
- Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 2013, 9, 2265–2319. [Google Scholar] [CrossRef]
- Gribble, G.W.; Joule, J.A. (Eds.) Progress in Heterocyclic Chemistry; Academic Press, Elsevier: Amsterdam, The Netherlands, 2012; Volume 24. [Google Scholar]
- Joule, J.A.; Mills, K. Heterocyclic Chemistry at a Glance; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Rulev, A.Y.; Romanov, A.R. Unsaturated polyfluoroalkyl ketones in the synthesis of nitrogen-bearing heterocycles. RSC Adv. 2016, 6, 1984–1998. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- Nenajdenko, V.G. (Ed.) Fluorine in Heterocyclic Chemistry; Springer: Heidelberg, Germany, 2014; Volume 1, p. 681. [Google Scholar]
- Petrov, V.A. (Ed.) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Gakh, A.; Kirk, K.L. (Eds.) Fluorinated Heterocycles; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Serafini, M.; Pirali, T.; Tron, G.C. Chapter Three—Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic? in Applications of Heterocycles in the Design of Drugs and Agricultural Products Edited. In Advances in Heterocyclic Chemistry; Meanwell, N.A., Lolli, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 134, pp. 101–148. [Google Scholar]
- Kalavadiyaa, P.L.; Kapuparaa, V.H.; Gojiyaa, D.G.; Bhatta, T.D.; Hadiyala, S.D.; Joshia, H.S. Ultrasonic-assisted synthesis of pyrazolo[3,4-d]pyrimidin-4-ol tethered with 1,2,3-triazoles and their anticancer activity. Russ. J. Bioorg. Chem. 2020, 46, 803–813. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Q.; Lin, Q.; Li, M.; Petersen, J.L.; Shi, X. N-2-Aryl-1,2,3-triazoles: A novel class of UV/Blue-Light-Emitting fluorophores with tunable optical properties. Chem. Eur. J. 2011, 17, 5011–5018. [Google Scholar] [CrossRef] [PubMed]
- Tsyrenova, B.; Nenajdenko, V. Synthesis and spectral study of a new family of 2,5-diaryltriazoles having restricted rotation of the 5-aryl substituent. Molecules 2020, 25, 480. [Google Scholar] [CrossRef]
- Tsyrenova, B.; Khrustalev, V.; Nenajdenko, V. 2H-bis-1,2,3-triazolo-isoquinoline: Design, synthesis, and photophysical study. J. Org. Chem. 2020, 85, 7024–7035. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Guo, H.-Y.; Chen, Z.-A.; Shen, Q.-K.; Quan, Z.-S. Application of triazoles in the structural modification of natural products. J. Enzim. Inhib. Med. Chem. 2021, 36, 1115–1144. [Google Scholar] [CrossRef]
- Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review. RSC Adv. 2020, 10, 5610–5635. [Google Scholar] [CrossRef]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzim. Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef]
- Gin, A.; Dilay, L.; Karlowsky, J.A.; Walkty, A.; Rubinstein, E.; Zhanel, G.G. Piperacillin-tazobactam: A beta-lactam/beta-lactamase inhibitor combination. Expert. Rev. Anti Infect. Ther. 2007, 5, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, S. Rufinamide. Neurotherapeutics 2007, 4, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Palasz, A.; Lapray, D.; Peyron, C.; Rojczyk-Golebiewska, E.; Skowronek, R.; Markowski, G.; Czajkowska, B.; Krzystanek, M.; Wiaderkiewicz, R. Dual orexin receptor antagonists—promising agents in the treatment of sleep disorders. Int. J. Neuropsychoph. 2014, 17, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Latha, M.S.; Martis, J.; Shobha, V.; Sham Shinde, R.; Bangera, S.; Krishnankutty, B.; Bellary, S.; Varughese, S.; Rao, P.; Naveen Kumar, B.R. Sunscreening agents: A review. J. Clin. Aesthet Dermatol. 2013, 6, 16–26. [Google Scholar] [PubMed]
- Gonzalez, S.; Fernandez-Lorente, M.; Gilaberte-Calzada, Y. The latest on skin photoprotection. Clin. Dermatol. 2008, 26, 614–626. [Google Scholar] [CrossRef]
- Roch, C.; Bergamini, G.; Steiner, M.A.; Clozel, M. Nonclinical pharmacology of daridorexant: A new dual orexin receptor antagonist for the treatment of insomnia. Psychopharmacology 2021, 238, 2693–2708. [Google Scholar] [CrossRef]
- Druzhinin, S.V.; Balenkova, E.S.; Nenajdenko, V.G. Recent advances in the chemistry of alpha,beta-unsaturated trifluoromethylketones. Tetrahedron 2007, 63, 7753–7808. [Google Scholar] [CrossRef]
- Zhang, C. Synthesis of trifluoromethyl or trifluoroacetyl substituted heterocyclic compounds from trifluoromethyl-α,β-ynones. J. Chin. Chem. Soc. Taip. 2022, 69, 594–603. [Google Scholar] [CrossRef]
- Romanov, A.R.; Rulev, A.Y.; Ushakov, I.A.; Muzalevskiy, V.M.; Nenajdenko, V.G. Synthesis of trifluoromethylated [1,4]diazepines from 1,1,1-trifluoroalk-3-yn-2-jnes. Mendeleev Commun. 2014, 24, 269–271. [Google Scholar] [CrossRef]
- Romanov, A.R.; Rulev, A.Y.; Ushakov, I.A.; Muzalevskiy, V.M.; Nenajdenko, V.G. One-pot, atom and step economy (PASE) assembly of trifluoromethylated pyrimidines from CF3 –ynones. Eur. J. Org. Chem. 2017, 4121–4129. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Iskandarov, A.A.; Nenajdenko, V.G. Reaction of CF3-ynones with methyl thioglycolate. Regioselective synthesis of 3-CF3-thiophene derivatives. J. Fluorine Chem. 2018, 214, 13–16. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Mamedzade, M.N.; Chertkov, V.A.; Bakulev, V.A.; Nenajdenko, V.G. Reaction of CF3 -ynones with azides. An efficient regioselective and metal-free route to 4-trifluoroacetyl-1,2,3-triazoles. Mendeleev Commun. 2018, 28, 17–19. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Iskandarov, A.A.; Nenajdenko, V.G. Synthesis of dibromo substituted CF3-enones and their reactions with N-nucleophiles. Mendeleev Commun. 2014, 24, 342–344. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Rulev, A.Y.; Romanov, A.R.; Kondrashov, E.V.; Ushakov, I.A.; Chertkov, V.A.; Nenajdenko, V.G. Selective, metal-free approach to 3- or 5-CF3-pyrazoles: Solvent switchable reaction of CF3-ynones with hydrazines. J. Org. Chem. 2017, 82, 7200–7214. [Google Scholar] [CrossRef] [PubMed]
- Topchiy, M.A.; Zharkova, D.A.; Asachenko, A.F.; Muzalevskiy, V.M.; Chertkov, V.A.; Nenajdenko, V.G.; Nechaev, M.S. Mild and regioselective synthesis of 3-CF3-pyrazoles by the AgOTf-catalysed reaction of CF3-ynones with hydrazines. Eur. J. Org. Chem. 2018, 2018, 3750–3755. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Belyaeva, K.V.; Nikitina, L.P.; Afonin, A.V.; Vashchenko, A.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Metal-free stereoselective annulation of quinolines with trifluoroacetylacetylenes and water: An access to fluorinated oxazinoquinolines. Chem. Commun. 2018, 54, 2268–2271. [Google Scholar] [CrossRef] [PubMed]
- Muzalevskiy, V.M.; Belyaeva, K.V.; Trofimov, B.A.; Nenajdenko, V.G. Diastereoselective synthesis of CF3-oxazinoquinolines in water. Green Chem. 2019, 21, 6353–6360. [Google Scholar] [CrossRef]
- Belyaeva, K.V.; Nikitina, L.P.; Afonin, A.V.; Vashchenko, A.V.; Muzalevskiy, V.M.; Nenajdenko, V.G.; Trofimov, B.A. Catalyst-free 1:2 annulation of quinolines with trifluoroacetylacetylenes: An access to functionalized oxazinoquinolines. Org. Biomol. Chem. 2018, 16, 8038–8041. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Sizova, Z.A.; Belyaeva, K.V.; Trofimov, B.A.; Nenajdenko, V.G. One-pot metal-free synthesis of 3-CF3-1,3-oxazinopyridines by reaction of pyridines with CF3CO-acetylenes. Molecules 2019, 24, 3594. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Belyaeva, K.V.; Trofimov, B.A.; Nenajdenko, V.G. Organometal-free arylation and arylation/trifluoroacetylation of quinolines by their reaction with CF3-ynones and base-induced rearrangement. J. Org. Chem. 2020, 85, 9993–10006. [Google Scholar] [CrossRef]
- Hansen, L.D.; West, B.D.; Baca, E.J.; Blank, C.L. Thermodynamics of proton ionization from some substituted 1,2,3-triazoles in dilute aqueous solution. J. Am. Chem. Soc. 1968, 90, 6588–6892. [Google Scholar] [CrossRef]
- Sysak, A.; Obminska-Mrukowicz, B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem. 2017, 137, 292–309. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Mo, J.; Lin, H.-Z.; Chen, Y.; Sun, H.-P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem. 2018, 26, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res. 2018, 27, 1309–1344. [Google Scholar] [CrossRef] [PubMed]
- Kozuch, S.; Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 2011, 44, 101–110. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Sizova, Z.A.; Duisenov, A.I.; Shastin, A.V.; Nenajdenko, V.G. Efficient multi gram approach to acetylenes and CF3-ynones starting from dichloroalkenes prepared by catalytic olefination reaction (COR). Eur. J. Org. Chem. 2020, 2020, 4161–4166. [Google Scholar] [CrossRef]
- Khairnar, P.V.; Lung, T.-H.; Lin, Y.-J.; Wu, C.-Y.; Koppolu, S.R.; Edukondalu, A.; Karanam, P.; Lin, W. An intramolecular Wittig approach toward heteroarenes: Synthesis of pyrazoles, isoxazoles, and chromenone-oximes. Org. Lett. 2019, 21, 4219–4223. [Google Scholar] [CrossRef]
- Chalyk, B.A.; Hrebeniuk, K.V.; Fil, Y.V.; Gavrilenko, K.S.; Rozhenko, A.B.; Vashchenko, B.V.; Borysov, O.V.; Biitseva, A.V.; Lebed, P.S.; Bakanovych, I.; et al. Synthesis of 5-(fluoroalkyl)isoxazole building blocks by regioselective reactions of functionalized halogenoximes. J. Org. Chem. 2019, 84, 15877–15899. [Google Scholar] [CrossRef]
- Martins, M.A.P.; Siqueira, G.M.; Bastos, G.P.; Bonacorso, H.G.; Zanatta, N. Haloacetylated enol ethers. 7 †. Synthesis of 3-aryl-5-trihalomethylisoxazoles and 3-aryl-5-hydroxy-5-trihalomethyl-4,5-dihydroisoxazoles. J. Heterocycl. Chem. 1996, 33, 1619–1622. [Google Scholar] [CrossRef]
- Kumar, V.; Aggarwal, R.; Singh, S.P. The reaction of hydroxylamine with aryl trifluoromethyl-β-diketones: Synthesis of 5-hydroxy-5-trifluoromethyl-Δ2-isoxazolines and their dehydration to 5-trifluoromethylisoxazoles. J. Fluor. Chem. 2006, 127, 880–888. [Google Scholar] [CrossRef]
- Hamper, B.C.; Leschinsky, K.L. Reaction of benzohydroximinoyl chlorides and β-(trifluoromethyl)-acetylenic esters: Synthesis of regioisomeric (trifluoromethyl)-isoxazolecarboxylate esters and oxime addition products. J. Heterocycl. Chem. 2009, 40, 575–583. [Google Scholar] [CrossRef]
Entry | Solvent | Yield of 2a, % a | Yield of 3a, % |
---|---|---|---|
1 | PhMe | 2 | 12 |
2 | Acetone-H2O | 12 | 5 |
3 | MeCN | 26 | 7 |
4 | THF | 19 | 12 |
5 | EtOAc-H2O | 23 | 14 |
6 | DMF | 49 | 2 |
7 | DMSO | 48 | 1 |
8 | NMP | 52 | 2 |
9 | MeOH | 77 | 4 |
10 | EtOH | 85(81 b) | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzalevskiy, V.M.; Sizova, Z.A.; Nechaev, M.S.; Nenajdenko, V.G. Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF3-Ynones with NaN3: DFT Study of the Reaction Mechanism. Int. J. Mol. Sci. 2022, 23, 14522. https://doi.org/10.3390/ijms232314522
Muzalevskiy VM, Sizova ZA, Nechaev MS, Nenajdenko VG. Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF3-Ynones with NaN3: DFT Study of the Reaction Mechanism. International Journal of Molecular Sciences. 2022; 23(23):14522. https://doi.org/10.3390/ijms232314522
Chicago/Turabian StyleMuzalevskiy, Vasiliy M., Zoia A. Sizova, Mikhail S. Nechaev, and Valentine G. Nenajdenko. 2022. "Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF3-Ynones with NaN3: DFT Study of the Reaction Mechanism" International Journal of Molecular Sciences 23, no. 23: 14522. https://doi.org/10.3390/ijms232314522
APA StyleMuzalevskiy, V. M., Sizova, Z. A., Nechaev, M. S., & Nenajdenko, V. G. (2022). Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF3-Ynones with NaN3: DFT Study of the Reaction Mechanism. International Journal of Molecular Sciences, 23(23), 14522. https://doi.org/10.3390/ijms232314522