Next Article in Journal
Chromosomally Unstable Gastric Cancers Overexpressing Claudin-6 Disclose Cross-Talk between HNF1A and HNF4A, and Upregulated Cholesterol Metabolism
Next Article in Special Issue
Optogenetic Low-Frequency Stimulation of Principal Neurons, but Not Parvalbumin-Positive Interneurons, Prevents Generation of Ictal Discharges in Rodent Entorhinal Cortex in an In Vitro 4-Aminopyridine Model
Previous Article in Journal
Characterization of a Glycolipid Synthase Producing α-Galactosylceramide in Bacteroides fragilis
Previous Article in Special Issue
The Brain Protein Acylation System Responds to Seizures in the Rat Model of PTZ-Induced Epilepsy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Towards Zebrafish Models of CNS Channelopathies

by
Tatiana O. Kolesnikova
1,
Konstantin A. Demin
2,3,
Fabiano V. Costa
1,
Konstantin N. Zabegalov
1,
Murilo S. de Abreu
4,*,
Elena V. Gerasimova
1 and
Allan V. Kalueff
1,2,3,4,5,6,7,*
1
Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
2
Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
3
Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
4
Moscow Institute of Physics and Technology, 141701 Moscow, Russia
5
Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 St. Petersburg, Russia
6
Ural Federal University, 620002 Yekaterinburg, Russia
7
Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2022, 23(22), 13979; https://doi.org/10.3390/ijms232213979
Submission received: 14 September 2022 / Revised: 6 November 2022 / Accepted: 10 November 2022 / Published: 12 November 2022
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy)

Abstract

:
Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.

1. Introduction

Membrane-bound ion channels play an important role in the development and functioning of multiple physiological systems, including the central nervous system (CNS) [1,2,3]. While transmembrane transport of K+, Na+, Ca2+ and Cl by these channels in the brain is key for the transmission of nerve impulses [1,4], experimentally induced (e.g., genetic or pharmacological) deficits of ion transport may lead to a wide range of systemic disorders termed ‘CNS channelopathies’ [2,5] (Table 1). The global prevalence of this disorder group is estimated as ~35 per 100,000 [3], with most common pathologies including epilepsy, followed by migraine, as well as various movement- and psychiatric disorders [5].
Animal models are a widely used tool for studying neurological diseases, including channelopathies, as well as their mechanisms and strategies for therapy [6,7]. Complementing rodent evidence, the zebrafish (Danio rerio) is rapidly gaining popularity as a translational model organism in biomedicine, including neurobiology and preclinical genetic and CNS drug screening [8,9]. Due to substantial genetic and physiological homology to humans, rapid growth and development, high fertility and medium-to-high throughput, zebrafish have become a powerful system for studying CNS pathologies [10,11]. The presence of all major mediator systems and neurotransmitters, as well as their receptors and transporters, in zebrafish makes them suitable for modeling of a wide range of CNS channelopathies. Zebrafish also demonstrate the ease of behavioral, genetic and pharmacological manipulations, hence further fostering the development of sensitive models of CNS channelopathies. Here, we discuss the prospects of using genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.
Table 1. Selected CNS channelopathies in humans.
Table 1. Selected CNS channelopathies in humans.
Ion Channel and Associated DiseasesSymptomsGeneReferences
K+
Episodic ataxia type IBrief attacks of cerebellar ataxia, neuromyotoniaKCNAI[4]
Andersen-Tawil syndromeVentricular arrhythmias, periodic paralysis, dysmorphic features, cognitive defects, memory impairments, depression, dysexecutive syndromeKCNJ2[12]
Nocturnal frontal lobe epilepsy type 5Seizures during sleep, regular, sudden bicycle-pedaling leg and arm movements, shivering, feeling touchy, being pushed, falling and fearKCNT1[13]
Deafness, autosomal-dominant, type 2ASymmetrical, delayed, progressive high-frequency hearing loss, tinnitus and vestibular dysfunctionsKCNQ4[14]
Deafness, autosomal-recessive, type 4, with enlarged vestibular aqueductInner ear malformation, high-frequency hearing loss, vestibular disordersKCNJ10[15,16]
Early infantile epileptic encephalopathy type 7BFNC (benign clinical course), early seizures, hypotonia, dystonia, basal ganglia, thalamic hyperintensitiesKCNQ2[17]
Early infantile epileptic encephalopathy type 14Partial seizures, microcephaly, developmental delay, intellectual disability, disability to eye contact and control head movementKCNT1[18,19]
EAST (Epilepsy, Ataxia, Sensorineural deafness, Tubulopathy)Epilepsy, ataxia, sensorineural hearing loss, tubulopathy, intellectual disability, cerebellum changes, delayed motor and mental development, hypotoniaKCNJ10[20]
Benign neonatal familial convulsionsTonic posturing, clonic and generalized convulsions between days 1-14 of lifeKCNQ3[21]
Generalized epilepsy with paroxysmal dyskinesiaAbsence seizure, mental retardation, generalized spike wave complexes, Lennox–Gastaut pattern in electroencephalogram (EEG), myoclonic seizuresKCNMA1[22]
Spinocerebellar ataxia type 13Delayed motor development, mental retardation, epilepsy, dysarthria, dysphagia, limb ataxia, impaired cognitionKCNC3[23]
Na+
Generalized epilepsy with febrile seizures plus (GEFS+)Seizures with fever, including tonic, clonic, myoclonic or absence seizures, febrile seizures and febrile seizures plus, absences, myoclonic or atonic seizures, myoclonic-astatic epilepsySCN1B, SCN1A[2,24]
Generalized epilepsy with febrile seizures plus type 2 (GEFS+2)Generalized tonic/clonic convulsions, hyperexcitabilitySCN1A[25,26]
Benign familial infantile epilepsyPartial seizures in occipito-parietal areas, slow deviation of head and eyes to one side, cyanosis, unilateral limb jerksSCN2A[27]
Cognitive impairment with or without cerebellar ataxiaDementia, poor verbal memory and executive dysfunction, visuospatial dysfunction, intellectual impairment, limb ataxia, dysarthria, loss of proprioception, ataxiaSCN8A[28]
Congenital indifference to pain, autosomal-recessiveInsensitivity to pain, absence of physiological responses to noxious stimuliSCN9A[29]
Small fiber neuropathyIncreased pain and temperature perception, pain (prickling, burning, shooting, and aching), cramps, restless legs, increased or decreased sweating, constipation or diarrhea, allodynia, hyperesthesia, pinprick sensationSCN9A[30]
Primary erythermalgiaRecurrent attacks of red, warm, and painful hands and/or feet, local red-purple discoloration, increased local temperature in hands/feet, burning painSCN9A[31,32]
Potassium-aggravated myotoniaMuscle stiffness, cramps, muscle hypertrophy, respiratory dysfunction, painful myotonia, sensory disturbance, orbicularis oculi myotoniaSCN4A[33,34]
Paroxysmal extreme pain disorderStiffening in flexion position, erythematous harlequin-type color changes, loss of consciousness, pain, tachycardia/bradycardia, bronchospasm, lacrimation; hypersalivation, rhinorrhea, syncopal eventsSCN9A[35]
Hyperkalemic periodic paralysisFlaccid limb weakness, myopathy, muscle degeneration, myotonia, hyperkalemiaSCN4A[36,37]
Hypokalemic periodic paralysis type 2Episodes of flaccid paralysis, low serum K+, weakness of limbs, paroxysmal muscle stiffnessSCN4A[38]
Early infantile epileptic encephalopathy type 11Focal, tonic and tonic/clonic seizures, intellectual disabilitySCN2A[39]
Early infantile epileptic encephalopathy type 13Pyramidal and extrapyramidal symptoms, developmental impairment, developmental and epileptic encephalopathy, multifocal epileptiform abnormalities, focal, generalized seizures, and epileptic spasmsSCN8A[39]
Dravet syndromeProlonged and recurrent febrile seizures, hyperactivity, autistic and psychotic disorder, myoclonic and atypical absence, partial seizuresSCN1A[40]
Paramyotonia congenitaMuscle weakness, myotonia in eyelids, neck and upper limb musclesSCN4A[41]
Ca2+
Episodic ataxia type 2Intermittent attacks of cerebellar, ataxia, migraine-like headache, vertigo, nausea, vomiting, dysarthria, tinnitus or EEG dysrhythmia, nystagmus [42]
Hypokalemic periodic paralysis type 1Quadriparesis, muscle weakness, hypokalemiaCACNA1S[43,44]
Spinocerebellar ataxia type 6Progressive cerebellar ataxia, gait ataxia, stiffness, cerebellar oculomotor deficit, upper limb ataxia, cerebellar dysarthria, dysphagia, tremor, mild bradykinesia with rigidity, mild peripheral neuropathyCACNA1A[45]
Episodic ataxia type 5Vertigo, tinnitus, blurred vision, diplopia, myokymia, tremor, headache, unilateral numbness, weakness, loss of consciousness, migraine with aura, epilepsy, cerebellar ataxiaCACNB4[46]
Familial hemiplegic migraineHemianopia, hemisensory loss, dysphasia, hemiparesis, weakness, migraine, attention and memory deficitsCACNA1A[4]
Childhood absence epilepsyBrief episodes of epileptic activity, depression, anxiety, typical absence seizures, impairment of consciousness without major motor symptoms, attention and cognitive impairments, dysgraphiaCACNA1H[47,48]
Timothy syndromeLong QT syndrome, autism, congenital heart defects, facial dysmorphisms, seizures, intellectual disabilityCACNA1C[49]
Åland Island eye disease (AIED, Forsius–Eriksson syndrome)Fundus hypopigmentation, decreased visual acuity, nystagmus, astigmatism, color vision defect, progressive myopia, defective dark adaptationCACNA1F[50]
Cone-rod dystrophy, X-linked, type 3Progressive dysfunction of photoreceptors (disturbed cone or cone-rod responses), diminished visual acuity, photophobia, myopia, central scotomas in visual fields, impaired color visionCACNA1F[51]
Congenital stationary night blindness type 2AMyopia, hyperopia, nystagmus, strabismus, decreased visual acuity, impaired scotopic visionCACNA1F[52]
Cl
Thomsen’s diseaseMild myotonia, muscle hypertrophy, myalgiaCLCN1[4]
Becker’s diseaseMyotonia congenita, myotonia with the warm-up phenomenon, muscle hypertrophy, mild myopathyCLCN1[4]

2. A Brief Summary of CNS Channelopathies and Their Experimental Models

Channelopathies most commonly involve aberrant functions of calcium (Ca2+), potassium (K+), sodium (Na+) and chloride (Cl) ion channels [1]. For example, K+ channels are one of the most abundant CNS channels, and include voltage-gated (Kv), inwardly rectifying (Kir), Ca2+-sensitive, ATP-sensitive and some other types [1]. Voltage-gated K+ channels are encoded by KCNA (Shaker), shal, KCNB (shab), KCNC (shaw), KCND, KCNE, KCNF, KCNG, KCNQ and KCNS genes [1]. In humans, several K+ channel-related (e.g., KCNA and KCNQ) mutations are associated with CNS channelopathies, causing fatal brain deficits [53]. Mutations in KNCQ2 are associated with severe epileptic encephalopathies [54,55], whereas some cases of the DEND (developmental delay, epilepsy and neonatal diabetes) syndrome are caused by mutations in KCNJ11 [56], and benign familial neonatal convulsions (BFNC)—by the loss-of-function mutations in two K+ channel genes, KCNQ2 and KCNQ3 [57,58]. Likewise, the KCNA ion channel gene has a Shaker locus associated with CNS hyperexcitability in Drosophila melanogaster mutants, evoking spontaneous leg twitching due to aberrant CNS K+ fluxes [59,60,61]. Eight Shaker genes are also found in mammals (rats, mice and humans) [62,63]. The voltage-gated K+ channel Kv1.1, first discovered in mouse juxtaparanodal regions of myelinated axons and synaptic terminals [61,64], plays a role in repolarization, action potentials and the regulation of neurotransmitter release [1]. Kv1.1 knockout mice develop spontaneous epileptic activity due to the hyperexcitability of hippocampal cells [1]. Of the ten KCNA genes found in humans, four (KCNA1, KCNA2, KCNA4 and KCNA6) are expressed in the brain, and KCNA1 mutation causes episodic ataxia [1]. There are five genes of the KCNQ family (KCNQ1, KCNQ2, KCNQ3, KCNQ4 and KCNQ5) encoding proteins forming different K+ channels. While the KCNQ2 and KCNQ3 gene products regulate the repetitive firing of neurons (when they are continuously exposed to a depolarizing stimulus), their mutations lead to BFNC [1].
Voltage-gated Ca2+ channels play an important role in the brain, regulating neuronal excitability and the release of neurotransmitters [65]. Ca2+ channels include L (long lasting), N (neuronal), P (Purkinje cell), Q (granule cell), R (toxin-resistant), and T (transient) types [1]. The L-, N-, P-, Q- and R- types of Ca2+ channels regulate neurotransmitter release [1], whereas mutations in the P- and Q-type channel genes cause ataxia and migraine in both human and animals, due to their high density in cerebellar Purkinje and granule cells that control locomotion [1]. Mutations in these channels commonly lead to overt epilepsy and ataxia phenotypes in several animal models. For example, mouse leaner mutants show seizures similar to human absence seizures, and progressive cerebellar degeneration caused by splicing mutation impact on the α subunit of the P/Q-type Ca2+ channel [1]. The tottering mutant mice also demonstrate absence-like seizures, whereas rolling mutants display no seizure activity, but poor limb coordination, falling and rolling over [1,66]. Mouse lethargic mutants exhibit absence-like seizures and ataxia without neurodegeneration, stargazer mice show spike-like wave seizures (common in absence seizures) in the cerebellum [1], and Roker mice present absence-like seizure and ataxia resembling the tottering mouse phenotype discussed above. Interestingly, ablating the P/Q-type Ca2+ channel in the serotonergic neurons increases aggression in male mice without affecting their anxiety, which not only implicates these channels in the regulation of some evolutionarily conservative behaviors (e.g., aggression), but suggests novel ways of alleviating aggressive behaviors in people with CNS channelopathies [67].
Deficient Na+ channels also play a key role in CNS pathogenesis [68]. The structure of the Na+ channels includes two subunits, the α-subunit encoded by SCNA genes (11 isoforms) and β-subunit encoded by SCNB genes (3–4 isoforms) [1]. Major CNS voltage-gated Na+ channel subtypes include NaV1.1, NaV1.2, NaV1.3, and NaV1.6 [69,70]. NaV1.1 channels are localized in the dendrites and cell bodies of excitatory neurons [71], NaV1.3 in neuronal soma [72], NaV1.2 in unmyelinated neuronal processes [72,73], and NaV1.6 in myelinated axons and dendrites [74]. The main CNS role of these channels is the regulation of the action potential in the soma, axons, and dendrites, thereby controlling overall neuronal excitability [75]. Mutated Na+ channels cause various types of epilepsy, including generic epilepsy with febrile seizures plus (GEFS+) [24] and GEFS+ type 2 (GEFS+2) [25], neuropathies [30], cognitive impairment [28], myotonia [33], and the Dravet’s syndrome [76] (see further).
Idiopathic or primary epilepsy is typically caused by mutations in genes encoding ion channels [1], including neuronal nicotinic acetylcholine receptor (nAChR) subunits, as well as voltage-gated K+ (Kv), Na+, and Ca2+ channels. A popular genetic rodent model of idiopathic epilepsy involves WAG/Rij rats (an outbred subline of Wistar rats) developed in the 1920s [77]. WAG/Rij rats can also be a valid genetic animal model of absence seizures [78], given their similar EEG and behavioral patterns with those in human absence seizures. Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), BFNC and severe myoclonic epilepsy in infancy (SMEI) are common types of idiopathic epilepsy [79], whose candidate genes include CACNA1A, CACNA1G, CACNA1H, CACNA1I, CACNAB4, CACNAG2 and CACNG3 that encode subunits of Ca2+ channels, and GABRG2, GABRAB3, GABRA5, GABA(B1) and GABA(B2) that encode subunits of the Cl channels on the gamma aminobutyric acid (GABA)-A receptors [80], respectively.
Zebrafish have become popular model organisms in translational neuroscience, physiology and preclinical screening mostly because of their low cost, easy maintenance, as well as high genetic and physiological homology with mammals, including humans [81]. Fast development and transparent embryos make zebrafish a useful tool for genetic manipulations, with multiple established genetic models of CNS disorders, including autism [82], schizophrenia [83], attention deficit hyperactivity disorder (ADHD) [84] and epilepsy [81]. Zebrafish are also susceptible to a wide range of pharmacological agents, including a conventional GABA-lytic drug pentylenetetrazole (PTZ) that blocks Cl ionophore on GABA-A receptors and induces seizures in zebrafish that resemble those observed in mammals [85].
One of the best-characterized genetic epilepsy models in zebrafish is presently an N-ethyl-N-nitrosourea (ENU)-generated model of Dravet’s syndrome, involving mutation in the SCN1A gene that affects voltage-gated Na+ channels [86] (Table 2). For example, the scn1Lab zebrafish mutants have spontaneous seizures that resemble those in patients with Dravet’s syndrome, both behaviorally and electrophysiologically [85]. Another interesting zebrafish model of epilepsy is based on the kcnj10 morphants, recapitulating the EAST (Epilepsy, Ataxia, Sensorineural deafness, Tubulopathy) syndrome [87]. KCNL10 encodes a K+ channel protein that regulates K+ levels in glial cells and hence modulates their excitability [88]. Other promising candidates for genetic models of epilepsy in zebrafish involve temperature-gated ‘transient receptor potential vanilloid’ (TRPV) TRPV1 and TRPV4 ion channels. TRPVs are a family of ion channels with high Ca2+ permeability, thus regulating neuronal excitability in both mammals [89,90] and zebrafish [91]. Activation of thermosensitive TRPV1 and TRPV4 ion channels generally increases pathological excitability of neurons and causes febrile seizures in zebrafish [92].
Ataxia is another complex neurological symptom that involves poor coordination of movements or gait, and some forms of which are commonly caused by channelopathies. For example, ataxia is observed in both clinical EAST syndrome and in zebrafish knockdown of kcnj10, which presents as abnormal swimming, frequent spontaneous tail flicks, circling, bursts of speed and other aberrant movements [102]. Spinocerebellar ataxia type 6 (SCA6) is a neurological disease resulting from a mutation in CACNA1A [103]. Due to teleost-specific duplication of the zebrafish genome, there are two gene copies encoding the CaV2.1 Ca2+ channels, cacna1aa and cacna1ab. Two mutations of the cacna1ab gene include tb204a [104] and fakir [105], both disrupting Ca2+ channel function in zebrafish [106]. The tb204a mutation (which replaces tyrosine with asparagine (Y1662N) at the carboxyl end of the CaV2.1a channel) reduces the mobility of zebrafish larvae and lowers intracellular Ca2+ in presynaptic neuromuscular junctions [104]. The fakir cacna1ab mutation (referred to as L356V, substituting leucine 356 with a valine), impairs larval locomotion and causes depolarizing shifts during the Ca2+ channel activation [105]. Although both cacna1a and -b mutations in zebrafish have similar effects on locomotion, there are some differences in the mechanism of occurrence of these deficits: while fakir mutants have decreased touch sensitivity and altered transmission between motor neurons and slow-twitch fibers in muscles [107], tb204a mutant fish demonstrate aberrant transmission in neuromuscular junction [104].
Spinocerebellar ataxia type 13 (SCA13) is neurodegenerative disease caused by mutated KCNC3 gene encoding the Kv3.3 K+ ion channel, presenting as the atrophy of cerebellar neurons, motor dysfunction and intellectual disability followed by progressive ataxia in adulthood [108,109,110]. In zebrafish, kncn3 mutant larvae also display reduced startle response to touch [108], supporting the validity of this model of ataxia. As already noted, the Dravet’s syndrome is a severe childhood epileptic encephalopathy due to a mutation in the SCN1A gene encoding voltage-gated Na+ channels (Nav1.1) [111]. In addition, the SCN2A, SCN8A, GABRA1 and STXBP1 genes (that encode Na+, Cl channels and syntaxin-associated proteins, respectively) also play a role in Dravet’s pathogenesis [76,112]. Mutations within the SCN1A gene (encoding the Nav1.1 channel) disrupt Na+ flow into neurons [113], hence affecting the action potential of the GABA-ergic neurons in brain structures that are critical for modulating seizure activity (e.g., in cortex and the hippocampus) [114]. The scn1lab zebrafish mutants show good survival rate, increased synaptic activity and reduced inhibitory tone in the brain [115]. In addition, by 7th day post-fertilization (dpf), the scn1labmut/mut fish show fewer GABA-ergic neurons and increased glutamatergic signaling [115]. Interestingly, the number of glial cells in these mutants is also markedly higher, which may be useful for studying (and, eventually, parsing) the role of glia in the pathogenesis of Na+ channelopathies [115].

3. Towards Valid Zebrafish Models Relevant to CNS Channelopathies

Overall, ion channels play a critical role in functioning and control of various physiological systems, including CNS [1] (Table 1). Genetic mutations of K+, Na+, Ca2+ and Cl channels in neurons lead to severe cardiovascular, respiratory and CNS diseases [1,4] (Table 1, Table 2, Table 3 and Table 4). The search for novel treatments for these prevalent and debilitating maladies represents an urgent unmet biological problem, necessitating reliable, throughput, sensitive and efficient animal models. As already discussed, the use of zebrafish to model CNS channelopathies is beginning to develop rapidly in translational research, also offering an indispensable and effective tool for rapid CNS drug screening. Indeed, zebrafish are highly sensitive to a wide range of major CNS drugs, including antidepressant [116], antiepileptic [117], antipsychotic [118], anxiolytic [119], nootropic [120] and other psychoactive substances [121,122], including addictive drugs, such as alcohol [123,124], nicotine [123,125], caffeine [126] and synthetic salts [127,128,129]. The low cost of maintenance, easy breeding, fast development cycle, the availability of “two models in one” (i.e., both larvae and adult fish), as well as the simplicity of treatment with acute and chronic substances, all make this model organism an indispensable tool for drug discovery and high-throughput preclinical screening [130].
A unique practical advantage of using zebrafish for pharmacological modeling of epilepsy-related phenotypes of channelopathies is the possibility of treating multiple fish with a water-diluted convulsant drug at once, evoking simultaneous and rapid development of seizures in these zebrafish and allowing a rapid screening of a wide range of anticonvulsants at the same time [148]. For example, as we calculated based on our own 20-year experience with experimental epilepsy models in both mammals and fish, a typical time-consuming full-day rodent experiment with systemic (e.g., intraperitoneal, i.p.) PTZ injection to induce seizures would require ~10 times more time than a zebrafish study of a similar experimental design and sample size, where the drug is administered via water immersion to multiple fish at once, and several fish are recorded per trial, to assess their seizure-specific locomotor endpoints. The simplicity of pharmacological model of epilepsy also highlights the similarity of the observed phenotypes of zebrafish seizure behavior (i.e., similar clonic and tonic–clonic seizures, hyperlocomotion, corkscrew-like circular swimming and ataxia) to those in rodent models [149]—as discussed above, another highly relevant phenotype to modeling CNS channelopathies.
Furthermore, with the additional genome duplication event in teleost fishes, the zebrafish becomes an excellent model for various genetic manipulations and modifications, including the creation of morphants and knockout mutants of known human CNS diseases associated with specific mutations [81,150,151], including those affecting ion channels in the brain [152,153]. An important conceptual advantage of zebrafish models in this regard is that with partially duplicated genome, it becomes possible to create mutants whose genetic analogues in rodents are impossible due to the lethality of these mutations [130] (a situation not uncommon for mutations in genes encoding critical ion channels with so many key physiological functions). This aspect paves the way for the creation of more accurate model systems for studying the pathogenesis of the development of mutations in ion channels in aquatic vertebrates with 70+% genetic similarity to humans [154].
Furthermore, behavioral phenotypes of zebrafish are quite simple, clear-cut and generally comparable to rodents in all major domains [155]. There are also multiple behavioral tests and paradigms to assess zebrafish motor phenotypes, similarly to rodents, hence making behavioral phenotyping in general (including targeting epilepsy and, likely, other related CNS channelopathies) a simple, fast and efficient procedure [149,155]. In addition, zebrafish models seem to be more resilient (than rodent models) to variation in external testing procedures, which may contribute to increased reproducibility and reliability of laboratory data using zebrafish [156].
Interestingly, the use of a 3D system software for studying zebrafish behavior [157] enables the creation of libraries of locomotor responses to various pharmacological agents [155]. Despite the simplicity of demonstrated phenotypes, zebrafish have complex behavioral responses to various stimuli, including social behavior in a group, sufficient to study and model complex behavioral paradigms [158]. Developing high-efficiency software, along with 3D behavioral tracking, facilitates automated behavioral screening of chemical agents using artificial intelligence (AI) [159]. It is therefore likely that AI-based drug screening in zebrafish, including tracking of their tonic and clonic seizures in epilepsy simulation, will greatly advance preclinical studies of anticonvulsants and other drugs to treat channelopathies. Zebrafish also present several protocols to assess CNS channel activity or action potentials using various electrophysiological methods [160,161,162]. For instance, electrophysiological characterization of heterologously expressed zebrafish Kcnh1a and Kcnh1b channels reveals functional patterns similar to those of human K+ channels [163]. Such methods, particularly useful and feasible in zebrafish with their smaller transparent brains, enable the evaluation of the action potential and direct linking aberrant (e.g., mutant) ion channel activity to CNS disorders.
Despite multiple obvious advantages, zebrafish models also have significant limitations as well. For example, no animal model is an exact reproduction of complex human CNS diseases [164]. While there is a large number of genetic models of CNS diseases in zebrafish, these animals are often unable to reproduce due to the loss of fertility. Another limitation of zebrafish models is the methods of administering the test substances, mainly by water immersion or i.p. injection, which complicates studying water-insoluble compounds and requires the use of special solvents [165]. Another important technical limitation of zebrafish as a model is the likely difference in dosing between humans and fish, which requires a specific recalculation of the used dose of the drug for preclinical studies when translating the results to humans [166,167].
The reproduction of core clinical symptoms in rodents and zebrafish represents yet another key translational issue with modeling CNS channelopathies in fish. For example, one of broad clusters of clinical signs of CNS channelopathies (beyond epilepsy) is migraine and headaches of various types and etiologies (Table 1) [4]. Indeed, K+ channels are found mainly in the heart and brain, where they modulate and stabilize action potentials of cells by regulating K+ current [168]. The loss of ion channel function due to mutation of the KCNK18 gene is a common cause of migraine [169]. In addition to K+ channels, mutation in CACNA1A Ca2+ channel gene contribute to the pathogenesis of type 2 episodic ataxia and hemiplegic migraine [170]. First, assessing the level of headache and the ability to accurately diagnose this condition in animal models are a challenging task [171]. For instance, in genetic models of migraine-like conditions in rodents, it is impossible to accurately assess the presence and the severity of headache. Thus, altered sensitivity of animals to various stimuli is rather tested instead, similar to clinical signs of migraine, such as photophobia, increased tactile and sound sensitivity, and preference for darkness.
It is therefore impossible to assume that migraine-like pain models in rodents cause migraines per se, and the same problem applies a priori to any such zebrafish models as well. In addition, when modeling migraine, only that accompanied by the aura lends itself to quantitative and qualitative assessment. In contrast, it seems that migraine without the aura cannot be reliably diagnosed in animal models. Accordingly, it remains unclear whether it is possible to simulate migraine and migraine-like pain in fish, and whether fish are even capable of experiencing headaches similar to those observed clinically. Likewise, we do not know what pharmacological and genetic tools can help model these conditions best in both rodents and fish.
In summary, the high global prevalence of diseases directly related to abnormal ion channels necessitates our improved understanding of the pathological mechanisms underlying CNS channelopathies, as well as the development of novel pharmacological agents for their treatment. For this, zebrafish models can be a useful tool for identifying evolutionary-conservative mechanisms underlying CNS channelopathies, and a powerful efficient drug-screening platform, to induce or prevent these conditions in vivo. With multiple conceptual and methodological questions remaining open in the field (Table 5), this collectively calls for a wider use of zebrafish models in studying CNS channelopathies.

Author Contributions

Conceptualization, T.O.K., M.S.d.A. and A.V.K.; methodology, investigation, T.O.K., M.S.d.A. and E.V.G.; resources, A.V.K.; data curation, T.O.K.; writing—original draft preparation, T.O.K., K.N.Z. and F.V.C.; writing—review and editing, K.A.D., E.V.G., M.S.d.A. and A.V.K.; visualization, F.V.C. and K.A.D.; supervision, A.V.K.; project administration, A.V.K.; funding acquisition, A.V.K. All authors have read and agreed to the published version of the manuscript.

Funding

The study is supported by Sirius University budgetary funds (Project ID NRB-RND-2116).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The research partially used the facilities and equipment of the Resource Fund of Applied Genetics MIPT (support grant 075-15-2021-684). A.V.K.’s contribution was partially supported by the SPSU funding program (Project ID 93020614).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Li, M.; Lester, H.A. Ion channel diseases of the central nervous system. CNS Drug Rev. 2001, 7, 214–240. [Google Scholar] [CrossRef] [PubMed]
  2. Kim, J.-B. Channelopathies. Korean J. Pediatr. 2014, 57, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Jurkat-Rott, K.; Lerche, H.; Weber, Y.; Lehmann-Horn, F. Hereditary channelopathies in neurology. Rare Dis. Epidemiol. 2010, 305–334. [Google Scholar]
  4. Graves, T.; Hanna, M. Neurological channelopathies. Postgrad. Med. J. 2005, 81, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Kullmann, D.M. Neurological channelopathies. Annu. Rev. Neurosci. 2010, 33, 151–172. [Google Scholar] [CrossRef]
  6. Odening, K.E.; Ziupa, D. Transgenic Animal Models of Cardiac Channelopathies: Benefits and Limitations. In Channelopathies in Heart Disease; Springer: Berlin/Heidelberg, Germany, 2018; pp. 379–420. [Google Scholar]
  7. Charpentier, F.; Demolombe, S.; Escande, D. Cardiac channelopathies: From men to mice. Ann. Med. 2004, 36, 28–34. [Google Scholar] [CrossRef]
  8. Choi, T.-Y.; Choi, T.-I.; Lee, Y.-R.; Choe, S.-K.; Kim, C.-H. Zebrafish as an animal model for biomedical research. Exp. Mol. Med. 2021, 53, 310–317. [Google Scholar] [CrossRef]
  9. Patton, E.E.; Zon, L.I.; Langenau, D.M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 2021, 20, 611–628. [Google Scholar] [CrossRef]
  10. Zabegalov, K.N.; Wang, D.; Yang, L.; Wang, J.; Hu, G.; Serikuly, N.; Alpyshov, E.T.; Khatsko, S.L.; Zhdanov, A.; Demin, K.A.; et al. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res. Bull. 2021, 166, 44–53. [Google Scholar] [CrossRef] [PubMed]
  11. Bashirzade, A.A.; Zabegalov, K.N.; Volgin, A.D.; Belova, A.S.; Demin, K.A.; de Abreu, M.S.; Babchenko, V.Y.; Bashirzade, K.A.; Yenkoyan, K.B.; Tikhonova, M.A.; et al. Modeling neurodegenerative disorders in zebrafish. Neurosci. Biobehav. Rev. 2022, 138, 104679. [Google Scholar] [CrossRef] [PubMed]
  12. Nguyen, H.-L.; Pieper, G.H.; Wilders, R. Andersen–Tawil syndrome: Clinical and molecular aspects. Int. J. Cardiol. 2013, 170, 1–16. [Google Scholar] [CrossRef] [PubMed]
  13. Siddiqui, M.M.; Srivastava, G.; Saeed, S.H. Diagnosis of Nocturnal Frontal Lobe Epilepsy (NFLE) sleep disorder using short time frequency analysis of PSD approach applied on EEG signal. Biomed. Pharmacol. J. 2016, 9, 393–403. [Google Scholar] [CrossRef]
  14. Zhang, X.; Wang, H.; Wang, Q. Progression of KCNQ4 related genetic hearing loss: A narrative review. J. Bio-X Res. 2021, 4, 151–157. [Google Scholar] [CrossRef]
  15. Yang, T.; Gurrola II, J.G.; Wu, H.; Chiu, S.M.; Wangemann, P.; Snyder, P.M.; Smith, R.J. Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet. 2009, 84, 651–657. [Google Scholar] [CrossRef] [Green Version]
  16. Bitner-Glindzicz, M. Hereditary deafness and phenotyping in humans. Br. Med. Bull. 2002, 63, 73–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Asher, Y.J.T.; Scaglia, F. Molecular bases and clinical spectrum of early infantile epileptic encephalopathies. Eur. J. Med. Genet. 2012, 55, 299–306. [Google Scholar] [CrossRef] [PubMed]
  18. Ohba, C.; Kato, M.; Takahashi, S.; Lerman-Sagie, T.; Lev, D.; Terashima, H.; Kubota, M.; Kawawaki, H.; Matsufuji, M.; Kojima, Y. Early onset epileptic encephalopathy caused by de novo SCN 8A mutations. Epilepsia 2014, 55, 994–1000. [Google Scholar] [CrossRef] [PubMed]
  19. Esmaeeli Nieh, S.; Sherr, E.H. Epileptic encephalopathies: New genes and new pathways. Neurotherapeutics 2014, 11, 796–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Celmina, M.; Micule, I.; Inashkina, I.; Audere, M.; Kuske, S.; Pereca, J.; Stavusis, J.; Pelnena, D.; Strautmanis, J. EAST/SeSAME syndrome: Review of the literature and introduction of four new Latvian patients. Clin. Genet. 2019, 95, 63–78. [Google Scholar] [CrossRef] [Green Version]
  21. Hirsch, E.; Velez, A.; Sellal, F.; Maton, B.; Grinspan, A.; Malafosse, A.; Marescaux, C. Electroclinical signs of benign neonatal familial convulsions. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1993, 34, 835–841. [Google Scholar] [CrossRef] [PubMed]
  22. Wang, J.; Yu, S.; Zhang, Q.; Chen, Y.; Bao, X.; Wu, X. KCNMA1 mutation in children with paroxysmal dyskinesia and epilepsy: Case report and literature review. Transl. Sci. Rare Dis. 2017, 2, 165–173. [Google Scholar] [CrossRef]
  23. Subramony, S.; Advincula, J.; Perlman, S.; Rosales, R.L.; Lee, L.V.; Ashizawa, T.; Waters, M.F. Comprehensive phenotype of the p. Arg420his allelic form of spinocerebellar ataxia type 13. Cerebellum 2013, 12, 932–936. [Google Scholar] [CrossRef] [Green Version]
  24. Wallace, R.; Scheffer, I.; Barnett, S.; Richards, M.; Dibbens, L.; Desai, R.; Lerman-Sagie, T.; Lev, D.; Mazarib, A.; Brand, N. Neuronal sodium-channel α1-subunit mutations in generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet. 2001, 68, 859–865. [Google Scholar] [CrossRef]
  25. Nagao, Y.; Mazaki-Miyazaki, E.; Okamura, N.; Takagi, M.; Igarashi, T.; Yamakawa, K. A family of generalized epilepsy with febrile seizures plus type 2—A new missense mutation of SCN1A found in the pedigree of several patients with complex febrile seizures. Epilepsy Res. 2005, 63, 151–156. [Google Scholar] [CrossRef] [PubMed]
  26. Spampanato, J.; Escayg, A.; Meisler, M.H.; Goldin, A.L. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J. Neurosci. 2001, 21, 7481–7490. [Google Scholar] [CrossRef]
  27. Vigevano, F. Benign familial infantile seizures. Brain Dev. 2005, 27, 172–177. [Google Scholar] [CrossRef] [PubMed]
  28. Bürk, K.; Globas, C.; Bösch, S.; Gräber, S.; Abele, M.; Brice, A.; Dichgans, J.; Daum, I.; Klockgether, T. Cognitive deficits in spinocerebellar ataxia 2. Brain 1999, 122, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Cox, J.J.; Reimann, F.; Nicholas, A.K.; Thornton, G.; Roberts, E.; Springell, K.; Karbani, G.; Jafri, H.; Mannan, J.; Raashid, Y. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006, 444, 894–898. [Google Scholar] [CrossRef]
  30. Chan, A.C.; Wilder-Smith, E.P. Small fiber neuropathy: Getting bigger! Muscle Nerve 2016, 53, 671–682. [Google Scholar] [CrossRef] [PubMed]
  31. Drenth, J.P.; Finley, W.H.; Breedveld, G.J.; Testers, L.; Michiels, J.J.; Guillet, G.; Taieb, A.; Kirby, R.L.; Heutink, P. The primary erythermalgia–susceptibility gene is located on chromosome 2q31-32. Am. J. Hum. Genet. 2001, 68, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
  32. Yang, Y.; Wang, Y.; Li, S.a.; Xu, Z.; Li, H.; Ma, L.; Fan, J.; Bu, D.; Liu, B.; Fan, Z. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 2004, 41, 171–174. [Google Scholar] [CrossRef] [PubMed]
  33. Kubota, T.; Kinoshita, M.; Sasaki, R.; Aoike, F.; Takahashi, M.P.; Sakoda, S.; Hirose, K. New mutation of the Na channel in the severe form of potassium-aggravated myotonia. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2009, 39, 666–673. [Google Scholar] [CrossRef] [PubMed]
  34. Orrell, R.W.; Jurkat-Rott, K.; Lehmann-Horn, F.; Lane, R.J. Familial cramp due to potassium-aggravated myotonia. J. Neurol. Neurosurg. Psychiatry 1998, 65, 569–572. [Google Scholar] [CrossRef] [PubMed]
  35. Choi, J.-S.; Boralevi, F.; Brissaud, O.; Sanchez-Martin, J.; Te Morsche, R.H.; Dib-Hajj, S.D.; Drenth, J.P.; Waxman, S.G. Paroxysmal extreme pain disorder: A molecular lesion of peripheral neurons. Nat. Rev. Neurol. 2011, 7, 51–55. [Google Scholar] [CrossRef]
  36. Jurkat-Rott, K.; Lehmann-Horn, F. Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 2007, 4, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Weber, F. Hyperkalemic Periodic Paralysis. 2021. Available online: https://europepmc.org/article/NBK/nbk1496 (accessed on 1 October 2022).
  38. Liu, X.-l.; Huang, X.-j.; Luan, X.-h.; Zhou, H.-y.; Wang, T.; Wang, J.-y.; Chen, S.-d.; Tang, H.-d.; Cao, L. Mutations of SCN4A gene cause different diseases: 2 case reports and literature review. Channels 2015, 9, 82–87. [Google Scholar] [CrossRef] [Green Version]
  39. Trivisano, M.; Specchio, N. Early-onset epileptic encephalopathies. In Clinical Electroencephalography; Springer: New York, NY, USA, 2019; pp. 405–411. [Google Scholar]
  40. Noh, G.J.; Asher, Y.J.T.; Graham Jr, J.M. Clinical review of genetic epileptic encephalopathies. Eur. J. Med. Genet. 2012, 55, 281–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  41. Phuyal, P.; Nagalli, S. Hypokalemic periodic paralysis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
  42. Imbrici, P.; Jaffe, S.L.; Eunson, L.H.; Davies, N.P.; Herd, C.; Robertson, R.; Kullmann, D.M.; Hanna, M.G. Dysfunction of the brain calcium channel CaV2. 1 in absence epilepsy and episodic ataxia. Brain 2004, 127, 2682–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Kim, H.; Hwang, H.; Cheong, H.I.; Park, H.W. Hypokalemic periodic paralysis; two different genes responsible for similar clinical manifestations. Korean J. Pediatr. 2011, 54, 473. [Google Scholar] [CrossRef] [PubMed]
  44. Yang, B.; Yang, Y.; Tu, W.; Shen, Y.; Dong, Q. A rare case of unilateral adrenal hyperplasia accompanied by hypokalaemic periodic paralysis caused by a novel dominant mutation in CACNA1S: Features and prognosis after adrenalectomy. BMC Urol. 2014, 14, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Schöls, L.; Krüger, R.; Amoiridis, G.; Przuntek, H.; Epplen, J.T.; Riess, O. Spinocerebellar ataxia type 6: Genotype and phenotype in German kindreds. J. Neurol. Neurosurg. Psychiatry 1998, 64, 67–73. [Google Scholar] [CrossRef] [PubMed]
  46. Sánchez, M.G.; Izquierdo, S.; Álvarez, S.; Alonso, R.E.B.; Berciano, J.; Gazulla, J. Clinical manifestations of episodic ataxia type 5. Neurol. Clin. Pract. 2019, 9, 503–504. [Google Scholar] [CrossRef] [PubMed]
  47. Vega, C.; Guo, J.; Killory, B.; Danielson, N.; Vestal, M.; Berman, R.; Martin, L.; Gonzalez, J.L.; Blumenfeld, H.; Spann, M.N. Symptoms of anxiety and depression in childhood absence epilepsy. Epilepsia 2011, 52, e70–e74. [Google Scholar] [CrossRef] [Green Version]
  48. Verrotti, A.; Matricardi, S.; Rinaldi, V.; Prezioso, G.; Coppola, G. Neuropsychological impairment in childhood absence epilepsy: Review of the literature. J. Neurol. Sci. 2015, 359, 59–66. [Google Scholar] [CrossRef] [PubMed]
  49. Boczek, N.J.; Miller, E.M.; Ye, D.; Nesterenko, V.V.; Tester, D.J.; Antzelevitch, C.; Czosek, R.J.; Ackerman, M.J.; Ware, S.M. Novel Timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm 2015, 12, 211–219. [Google Scholar] [CrossRef] [Green Version]
  50. Jalkanen, R.; Bech-Hansen, N.T.; Tobias, R.; Sankila, E.-M.; Mäntyjärvi, M.; Forsius, H.; de la Chapelle, A.; Alitalo, T. A novel CACNA1F gene mutation causes Aland Island eye disease. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2498–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  51. Jalkanen, R.; Mäntyjärvi, M.; Tobias, R.; Isosomppi, J.; Sankila, E.-M.; Alitalo, T.; Bech-Hansen, N.T. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J. Med. Genet. 2006, 43, 699–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Peloquin, J.; Rehak, R.; Doering, C.; McRory, J. Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience 2007, 150, 335–345. [Google Scholar] [CrossRef] [PubMed]
  53. Spillane, J.; Kullmann, D.M.; Hanna, M.G. Genetic neurological channelopathies: Molecular genetics and clinical phenotypes. J. Neurol. Neurosurg. Psychiatry 2016, 87, 37–48. [Google Scholar] [CrossRef] [PubMed]
  54. Veeramah, K.R.; O’Brien, J.E.; Meisler, M.H.; Cheng, X.; Dib-Hajj, S.D.; Waxman, S.G.; Talwar, D.; Girirajan, S.; Eichler, E.E.; Restifo, L.L. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet. 2012, 90, 502–510. [Google Scholar] [CrossRef] [Green Version]
  55. Weckhuysen, S.; Mandelstam, S.; Suls, A.; Audenaert, D.; Deconinck, T.; Claes, L.R.F.; Deprez, L.; Smets, K.; Hristova, D.; Yordanova, I. KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 2012, 71, 15–25. [Google Scholar] [CrossRef] [PubMed]
  56. Slingerland, A.S.; Hattersley, A.T. Mutations in the Kir6. 2 subunit of the KATP channel and permanent neonatal diabetes: New insights and new treatment. Ann. Med. 2005, 37, 186–195. [Google Scholar] [CrossRef]
  57. Singh, N.A.; Charlier, C.; Stauffer, D.; DuPont, B.R.; Leach, R.J.; Melis, R.; Ronen, G.M.; Bjerre, I.; Quattlebaum, T.; Murphy, J.V. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 1998, 18, 25–29. [Google Scholar] [CrossRef] [PubMed]
  58. Hirose, S.; Zenri, F.; Akiyoshi, H.; Fukuma, G.; Iwata, H.; Inoue, T.; Yonetani, M.; Tsutsumi, M.; Muranaka, H.; Kurokawa, T. A novel mutation of KCNQ3 (c. 925T→ C) in a Japanese family with benign familial neonatal convulsions. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2000, 47, 822–826. [Google Scholar]
  59. Kamb, A.; Tseng-Crank, J.; Tanouye, M.A. Multiple products of the Drosophila Shaker gene may contribute to potassium channel diversity. Neuron 1988, 1, 421–430. [Google Scholar] [CrossRef]
  60. Papazian, D.M.; Schwarz, T.L.; Tempel, B.L.; Jan, Y.N.; Jan, L.Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 1987, 237, 749–753. [Google Scholar] [CrossRef] [PubMed]
  61. Tempel, B.L.; Jan, Y.N.; Jan, L.Y. Cloning of a probable potassium channel gene from mouse brain. Nature 1988, 332, 837–839. [Google Scholar] [CrossRef] [PubMed]
  62. Gutman, G.A.; Chandy, K.G. Nomenclature of mammalian voltage-dependent potassium channel genes. In Seminars in Neuroscience; Academic Press: Cambridge, MA, USA, 1993; pp. 101–106. [Google Scholar]
  63. Lock, L.F.; Gilbert, D.J.; Street, V.A.; Migeon, M.B.; Jenkins, N.A.; Copeland, N.G.; Tempel, B.L. Voltage-gated potassium channel genes are clustered in paralogous regions of the mouse genome. Genomics 1994, 20, 354–362. [Google Scholar] [CrossRef] [PubMed]
  64. Veh, R.W.; Lichtinghagen, R.; Sewing, S.; Wunder, F.; Grumbach, I.M.; Pongs, O. Immunohistochemical localization of five members of the Kv1 channel subunits: Contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur. J. Neurosci. 1995, 7, 2189–2205. [Google Scholar] [CrossRef]
  65. Pietrobon, D. Calcium channels and channelopathies of the central nervous system. Mol. Neurobiol. 2002, 25, 31–50. [Google Scholar] [CrossRef]
  66. Wakamori, M.; Yamazaki, K.; Matsunodaira, H.; Teramoto, T.; Tanaka, I.; Niidome, T.; Sawada, K.; Nishizawa, Y.; Sekiguchi, N.; Mori, E. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J. Biol. Chem. 1998, 273, 34857–34867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Bohne, P.; Volkmann, A.; Schwarz, M.K.; Mark, M.D. Deletion of the P/Q-type calcium channel from serotonergic neurons drives male aggression in mice. J. Neurosci. 2022, 42, 6637–6653. [Google Scholar] [CrossRef]
  68. Catterall, W.A.; Dib-Hajj, S.; Meisler, M.H.; Pietrobon, D. Inherited neuronal ion channelopathies: New windows on complex neurological diseases. J. Neurosci. 2008, 28, 11768–11777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Catterall, W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000, 26, 13–25. [Google Scholar] [CrossRef] [Green Version]
  70. Trimmer, J.S.; Rhodes, K.J. Localization of voltage-gated ion channels in mammalian brain. Annu. Rev. Physiol. 2004, 66, 477. [Google Scholar] [CrossRef] [PubMed]
  71. Barker, B.S.; Young, G.T.; Soubrane, C.H.; Stephens, G.J.; Stevens, E.B.; Patel, M.K. Chapter 2—Ion Channels. In Conn’s Translational Neuroscience; Conn, P.M., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 11–43. [Google Scholar]
  72. Westenbroek, R.E.; Merrick, D.K.; Catterall, W.A. Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 1989, 3, 695–704. [Google Scholar] [CrossRef]
  73. Westenbroek, R.E.; Noebels, J.; Catterall, W. Elevated expression of type II Na+ channels in hypomyelinated axons of shiverer mouse brain. J. Neurosci. 1992, 12, 2259–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Caldwell, J.H.; Schaller, K.L.; Lasher, R.S.; Peles, E.; Levinson, S.R. Sodium channel Nav1. 6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. USA 2000, 97, 5616–5620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  75. Stuart, G.J.; Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 1994, 367, 69–72. [Google Scholar] [CrossRef]
  76. Steel, D.; Symonds, J.D.; Zuberi, S.M.; Brunklaus, A. Dravet syndrome and its mimics: Beyond SCN 1A. Epilepsia 2017, 58, 1807–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Coenen, A.; Van Luijtelaar, E. The WAG/Rij rat model for absence epilepsy: Age and sex factors. Epilepsy Res. 1987, 1, 297–301. [Google Scholar] [CrossRef]
  78. Sarkisova, K.; van Luijtelaar, G. The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depressiony. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 854–876. [Google Scholar] [CrossRef] [PubMed]
  79. Okada, M.; Zhu, G.; Yoshida, S.; Kaneko, S. Validation criteria for genetic animal models of epilepsy. Epilepsy Seizure 2010, 3, 109–120. [Google Scholar] [CrossRef] [Green Version]
  80. Yalçın, Ö. Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies. Seizure 2012, 21, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Hortopan, G.A.; Dinday, M.T.; Baraban, S.C. Zebrafish as a model for studying genetic aspects of epilepsy. Dis. Model. Mech. 2010, 3, 144–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  82. Kim, L.; He, L.; Maaswinkel, H.; Zhu, L.; Sirotkin, H.; Weng, W. Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 55, 40–49. [Google Scholar] [CrossRef] [PubMed]
  83. Demin, K.A.; Meshalkina, D.A.; Volgin, A.D.; Yakovlev, O.V.; de Abreu, M.S.; Alekseeva, P.A.; Friend, A.J.; Lakstygal, A.M.; Zabegalov, K.; Amstislavskaya, T.G. Developing zebrafish experimental animal models relevant to schizophrenia. Neurosci. Biobehav. Rev. 2019, 105, 126–133. [Google Scholar] [CrossRef] [PubMed]
  84. Fontana, B.D.; Franscescon, F.; Rosemberg, D.B.; Norton, W.H.; Kalueff, A.V.; Parker, M.O. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neurosci. Biobehav. Rev. 2019, 100, 9–18. [Google Scholar] [CrossRef] [Green Version]
  85. Baraban, S.C.; Taylor, M.; Castro, P.; Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005, 131, 759–768. [Google Scholar] [CrossRef] [PubMed]
  86. Griffin, A.; Krasniak, C.; Baraban, S. Advancing epilepsy treatment through personalized genetic zebrafish models. Prog. Brain Res. 2016, 226, 195–207. [Google Scholar] [PubMed]
  87. Bockenhauer, D.; Feather, S.; Stanescu, H.C.; Bandulik, S.; Zdebik, A.A.; Reichold, M.; Tobin, J.; Lieberer, E.; Sterner, C.; Landoure, G. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N. Engl. J. Med. 2009, 360, 1960–1970. [Google Scholar] [CrossRef] [Green Version]
  88. Olsen, M.L.; Sontheimer, H. Functional implications for Kir4. 1 channels in glial biology: From K+ buffering to cell differentiation. J. Neurochem. 2008, 107, 589–601. [Google Scholar] [CrossRef] [PubMed]
  89. Shibasaki, K.; Suzuki, M.; Mizuno, A.; Tominaga, M. Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 2007, 27, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  90. Bhaskaran, M.D.; Smith, B.N. Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy. Exp. Neurol. 2010, 223, 529–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Mangos, S.; Liu, Y.; Drummond, I.A. Dynamic expression of the osmosensory channel trpv4 in multiple developing organs in zebrafish. Gene Expr. Patterns 2007, 7, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Hunt, R.F.; Hortopan, G.A.; Gillespie, A.; Baraban, S.C. A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp. Neurol. 2012, 237, 199–206. [Google Scholar] [CrossRef] [Green Version]
  93. Conti, V.; Aracri, P.; Chiti, L.; Brusco, S.; Mari, F.; Marini, C.; Albanese, M.; Marchi, A.; Liguori, C.; Placidi, F. Nocturnal frontal lobe epilepsy with paroxysmal arousals due to CHRNA2 loss of function. Neurology 2015, 84, 1520–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Shao, N.; Zhang, H.; Wang, X.; Zhang, W.; Yu, M.; Meng, H. Familial hemiplegic migraine type 3 (FHM3) with an SCN1A mutation in a Chinese family: A case report. Front. Neurol. 2018, 9, 976. [Google Scholar] [CrossRef] [PubMed]
  95. Grieco, G.S.; Gagliardi, S.; Ricca, I.; Pansarasa, O.; Neri, M.; Gualandi, F.; Nappi, G.; Ferlini, A.; Cereda, C. New CACNA1A deletions are associated to migraine phenotypes. J. Headache Pain 2018, 19, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Vogt, J.; Harrison, B.J.; Spearman, H.; Cossins, J.; Vermeer, S.; ten Cate, L.N.; Morgan, N.V.; Beeson, D.; Maher, E.R. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am. J. Hum. Genet. 2008, 82, 222–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Alhasan, K.A.; Abdallah, M.S.; Kari, J.A.; Bashiri, F.A. Hypokalemic periodic paralysis due to CACNA1S gene mutation. Neurosci. J. 2019, 24, 225–230. [Google Scholar] [CrossRef] [PubMed]
  98. Yang, Z.; Sun, G.; Yao, F.; Tao, D.; Zhu, B. A novel compound mutation in GLRA1 cause hyperekplexia in a Chinese boy-a case report and review of the literature. BMC Med. Genet. 2017, 18, 1–5. [Google Scholar] [CrossRef]
  99. Al-Owain, M.; Colak, D.; Al-Bakheet, A.; Al-Hashmi, N.; Shuaib, T.; Al-Hemidan, A.; Aldhalaan, H.; Rahbeeni, Z.; Al-Sayed, M.; Al-Younes, B.; et al. Novel mutation in GLRB in a large family with hereditary hyperekplexia. Clin. Genet. 2012, 81, 479–484. [Google Scholar] [CrossRef]
  100. Bender, A.C.; Morse, R.P.; Scott, R.C.; Holmes, G.L.; Lenck-Santini, P.-P. SCN1A mutations in Dravet syndrome: Impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav. 2012, 23, 177–186. [Google Scholar] [CrossRef] [Green Version]
  101. Hammer, M.F.; Wagnon, J.L.; Mefford, H.C.; Meisler, M.H. SCN8A-Related Epilepsy with Encephalopathy. GeneReviews®[Internet]. 2016. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK379665/ (accessed on 1 October 2022).
  102. Mahmood, F.; Mozere, M.; Zdebik, A.A.; Stanescu, H.C.; Tobin, J.; Beales, P.L.; Kleta, R.; Bockenhauer, D.; Russell, C. Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome. Dis. Model. Mech. 2013, 6, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Quelle-Regaldie, A.; Sobrido-Cameán, D.; Barreiro-Iglesias, A.; Sobrido, M.J.; Sánchez, L. Zebrafish Models of Autosomal Dominant Ataxias. Cells 2021, 10, 421. [Google Scholar] [CrossRef]
  104. Wen, H.; Linhoff, M.W.; Hubbard, J.M.; Nelson, N.R.; Stensland, D.; Dallman, J.; Mandel, G.; Brehm, P. Zebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission. J. Neurosci. 2013, 33, 7384–7392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Low, S.E.; Woods, I.G.; Lachance, M.; Ryan, J.; Schier, A.F.; Saint-Amant, L. Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1 b. J. Neurophysiol. 2012, 108, 148–159. [Google Scholar] [CrossRef] [Green Version]
  106. Tyagi, S.; Ribera, A.B.; Bannister, R.A. Zebrafish as a Model System for the Study of Severe Ca(V)2.1 (α(1A)) Channelopathies. Front. Mol. Neurosci. 2019, 12, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Granato, M.; Van Eeden, F.; Schach, U.; Trowe, T.; Brand, M.; Furutani-Seiki, M.; Haffter, P.; Hammerschmidt, M.; Heisenberg, C.-P.; Jiang, Y.-J. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 1996, 123, 399–413. [Google Scholar] [CrossRef] [PubMed]
  108. Issa, F.A.; Mazzochi, C.; Mock, A.F.; Papazian, D.M. Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish. J. Neurosci. 2011, 31, 6831–6841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Waters, M.F.; Minassian, N.A.; Stevanin, G.; Figueroa, K.P.; Bannister, J.; Nolte, D.; Mock, A.F.; Evidente, V.G.H.; Fee, D.B.; Müller, U. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat. Genet. 2006, 38, 447–451. [Google Scholar] [CrossRef]
  110. Figueroa, K.P.; Waters, M.F.; Garibyan, V.; Bird, T.D.; Gomez, C.M.; Ranum, L.P.; Minassian, N.A.; Papazian, D.M.; Pulst, S.M. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13). PLoS ONE 2011, 6, e17811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Dravet, C. The core Dravet syndrome phenotype. Epilepsia 2011, 52, 3–9. [Google Scholar] [CrossRef]
  112. Marini, C.; Scheffer, I.E.; Nabbout, R.; Suls, A.; De Jonghe, P.; Zara, F.; Guerrini, R. The genetics of Dravet syndrome. Epilepsia 2011, 52, 24–29. [Google Scholar] [CrossRef]
  113. Ogiwara, I.; Miyamoto, H.; Morita, N.; Atapour, N.; Mazaki, E.; Inoue, I.; Takeuchi, T.; Itohara, S.; Yanagawa, Y.; Obata, K. Nav1. 1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 2007, 27, 5903–5914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Rutecki, P.A.; Grossman, R.G.; Armstrong, D.; Irish-Loewen, S. Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. J. Neurosurg. 1989, 70, 667–675. [Google Scholar] [CrossRef] [Green Version]
  115. Tiraboschi, E.; Martina, S.; van der Ent, W.; Grzyb, K.; Gawel, K.; Cordero-Maldonado, M.L.; Poovathingal, S.K.; Heintz, S.; Satheesh, S.V.; Brattespe, J. New insights into the early mechanisms of epileptogenesis in a zebrafish model of Dravet syndrome. Epilepsia 2020, 61, 549–560. [Google Scholar] [CrossRef] [PubMed]
  116. Nguyen, M.; Stewart, A.M.; Kalueff, A.V. Aquatic blues: Modeling depression and antidepressant action in zebrafish. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 55, 26–39. [Google Scholar] [CrossRef] [PubMed]
  117. Gupta, P.; Khobragade, S.; Shingatgeri, V. Effect of various antiepileptic drugs in zebrafish PTZ-seizure model. Indian J. Pharm. Sci. 2014, 76, 157. [Google Scholar] [PubMed]
  118. Bruni, G.; Rennekamp, A.J.; Velenich, A.; McCarroll, M.; Gendelev, L.; Fertsch, E.; Taylor, J.; Lakhani, P.; Lensen, D.; Evron, T. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat. Chem. Biol. 2016, 12, 559–566. [Google Scholar] [CrossRef] [PubMed]
  119. Stewart, A.; Wu, N.; Cachat, J.; Hart, P.; Gaikwad, S.; Wong, K.; Utterback, E.; Gilder, T.; Kyzar, E.; Newman, A. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
  120. Grossman, L.; Stewart, A.; Gaikwad, S.; Utterback, E.; Wu, N.; DiLeo, J.; Frank, K.; Hart, P.; Howard, H.; Kalueff, A.V. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res. Bull. 2011, 85, 58–63. [Google Scholar] [CrossRef] [PubMed]
  121. Cachat, J.; Kyzar, E.J.; Collins, C.; Gaikwad, S.; Green, J.; Roth, A.; El-Ounsi, M.; Davis, A.; Pham, M.; Landsman, S. Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behav. Brain Res. 2013, 236, 258–269. [Google Scholar] [CrossRef]
  122. Kolesnikova, T.O.; Khatsko, S.L.; Eltsov, O.S.; Shevyrin, V.A.; Kalueff, A.V. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’on adult zebrafish. Neurotoxicol. Teratol. 2019, 73, 15–21. [Google Scholar] [CrossRef] [PubMed]
  123. Miller, N.; Greene, K.; Dydinski, A.; Gerlai, R. Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav. Brain Res. 2013, 240, 192–196. [Google Scholar] [CrossRef]
  124. Chacon, D.M.; Luchiari, A.C. A dose for the wiser is enough: The alcohol benefits for associative learning in zebrafish. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 53, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Levin, E.D.; Bencan, Z.; Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 2007, 90, 54–58. [Google Scholar] [CrossRef]
  126. Rosa, L.V.; Ardais, A.P.; Costa, F.V.; Fontana, B.D.; Quadros, V.A.; Porciúncula, L.O.; Rosemberg, D.B. Different effects of caffeine on behavioral neurophenotypes of two zebrafish populations. Pharmacol. Biochem. Behav. 2018, 165, 1–8. [Google Scholar] [CrossRef] [PubMed]
  127. Kolesnikova, T.O.; Shevyrin, V.A.; Eltsov, O.S.; Khatsko, S.L.; Demin, K.A.; Galstyan, D.S.; de Abreu, M.S.; Kalueff, A.V. Psychopharmacological characterization of an emerging drug of abuse, a synthetic opioid U-47700, in adult zebrafish. Brain Res. Bull. 2021, 167, 48–55. [Google Scholar] [CrossRef] [PubMed]
  128. Bachour, R.-L.; Golovko, O.; Kellner, M.; Pohl, J. Behavioral effects of citalopram, tramadol, and binary mixture in zebrafish (Danio rerio) larvae. Chemosphere 2020, 238, 124587. [Google Scholar] [CrossRef] [PubMed]
  129. De Campos, E.G.; Bruni, A.T.; De Martinis, B.S. Ketamine induces anxiolytic effects in adult zebrafish: A multivariate statistics approach. Behav. Brain Res. 2015, 292, 537–546. [Google Scholar] [CrossRef] [PubMed]
  130. Kalueff, A.V.; Echevarria, D.J.; Stewart, A.M. Gaining Translational Momentum: More Zebrafish Models for Neuroscience Research; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
  131. Hoebeek, F.; Stahl, J.; Van Alphen, A.; Schonewille, M.; Luo, C.; Rutteman, M.; Van den Maagdenberg, A.; Molenaar, P.; Goossens, H.; Frens, M. Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 2005, 45, 953–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Stahl, J.S. Eye movements of the murine P/Q calcium channel mutant rocker, and the impact of aging. J. Neurophysiol. 2004, 91, 2066–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Rose, S.J.; Hess, E.J. Mouse Models of Episodic Ataxia Type 2. In Movement Disorders; Elsevier: Amsterdam, The Netherlands, 2015; pp. 809–814. [Google Scholar]
  134. Zwingman, T.A.; Neumann, P.E.; Noebels, J.L.; Herrup, K. Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J. Neurosci. 2001, 21, 1169–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Coenen, A.; Van Luijtelaar, E. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behav. Genet. 2003, 33, 635–655. [Google Scholar] [CrossRef] [PubMed]
  136. Klein, J.P.; Khera, D.S.; Nersesyan, H.; Kimchi, E.Y.; Waxman, S.G.; Blumenfeld, H. Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Res. 2004, 1000, 102–109. [Google Scholar] [CrossRef] [PubMed]
  137. Felix, R. Insights from mouse models of absence epilepsy into Ca2+ channel physiology and disease etiology. Cell. Mol. Neurobiol. 2002, 22, 103–120. [Google Scholar] [CrossRef] [PubMed]
  138. Burgess, D.L.; Noebels, J.L. Single gene defects in mice: The role of voltage-dependent calcium channels in absence models. Epilepsy Res. 1999, 36, 111–122. [Google Scholar] [CrossRef]
  139. Bader, P.L.; Faizi, M.; Kim, L.H.; Owen, S.F.; Tadross, M.R.; Alfa, R.W.; Bett, G.C.; Tsien, R.W.; Rasmusson, R.L.; Shamloo, M. Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc. Natl. Acad. Sci. USA 2011, 108, 15432–15437. [Google Scholar] [CrossRef] [Green Version]
  140. Xie, G.; Harrison, J.; Clapcote, S.J.; Huang, Y.; Zhang, J.-Y.; Wang, L.-Y.; Roder, J.C. A new Kv1. 2 channelopathy underlying cerebellar ataxia. J. Biol. Chem. 2010, 285, 32160–32173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Strupp, M.; Zwergal, A.; Brandt, T. Episodic ataxia type 2. Neurotherapeutics 2007, 4, 267–273. [Google Scholar] [CrossRef] [PubMed]
  142. Herson, P.S.; Virk, M.; Rustay, N.R.; Bond, C.T.; Crabbe, J.C.; Adelman, J.P.; Maylie, J. A mouse model of episodic ataxia type-1. Nat. Neurosci. 2003, 6, 378–383. [Google Scholar] [CrossRef]
  143. Barclay, J.; Balaguero, N.; Mione, M.; Ackerman, S.L.; Letts, V.A.; Brodbeck, J.; Canti, C.; Meir, A.; Page, K.M.; Kusumi, K. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci. 2001, 21, 6095–6104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  144. De Vries, B.; Frants, R.R.; Ferrari, M.D.; van den Maagdenberg, A.M. Molecular genetics of migraine. Hum. Genet. 2009, 126, 115–132. [Google Scholar] [CrossRef]
  145. Maagdenberg, A.M.; Pizzorusso, T.; Kaja, S.; Terpolilli, N.; Shapovalova, M.; Hoebeek, F.; Barrett, C.; Gherardini, L.; van de Ven, R.; Todorov, B. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca (v) 2.1 S218L mice. Ann. Neurol. 2010, 67, 85–98. [Google Scholar] [CrossRef]
  146. Chanda, M.L.; Tuttle, A.H.; Baran, I.; Atlin, C.; Guindi, D.; Hathaway, G.; Israelian, N.; Levenstadt, J.; Low, D.; Macrae, L. Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. PAIN® 2013, 154, 1254–1262. [Google Scholar] [CrossRef]
  147. Leo, L.; Gherardini, L.; Barone, V.; De Fusco, M.; Pietrobon, D.; Pizzorusso, T.; Casari, G. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011, 7, e1002129. [Google Scholar] [CrossRef] [Green Version]
  148. Afrikanova, T.; Serruys, A.-S.K.; Buenafe, O.E.; Clinckers, R.; Smolders, I.; de Witte, P.A.; Crawford, A.D.; Esguerra, C.V. Validation of the zebrafish pentylenetetrazol seizure model: Locomotor versus electrographic responses to antiepileptic drugs. PLoS ONE 2013, 8, e54166. [Google Scholar] [CrossRef] [Green Version]
  149. Stewart, A.M.; Desmond, D.; Kyzar, E.; Gaikwad, S.; Roth, A.; Riehl, R.; Collins, C.; Monnig, L.; Green, J.; Kalueff, A.V. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res. Bull. 2012, 87, 135–143. [Google Scholar] [CrossRef]
  150. Liu, C.-x.; Li, C.-y.; Hu, C.-C.; Wang, Y.; Lin, J.; Jiang, Y.-h.; Li, Q.; Xu, X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  151. Khan, K.M.; Collier, A.D.; Meshalkina, D.A.; Kysil, E.V.; Khatsko, S.L.; Kolesnikova, T.; Morzherin, Y.Y.; Warnick, J.E.; Kalueff, A.V.; Echevarria, D.J. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br. J. Pharmacol. 2017, 174, 1925–1944. [Google Scholar] [CrossRef]
  152. Cheresiz, S.V.; Volgin, A.D.; Kokorina Evsyukova, A.; Bashirzade, A.A.O.; Demin, K.A.; de Abreu, M.S.; Amstislavskaya, T.G.; Kalueff, A.V. Understanding neurobehavioral genetics of zebrafish. J. Neurogenet. 2020, 34, 203–215. [Google Scholar] [CrossRef]
  153. Paukert, M.; Sidi, S.; Russell, C.; Siba, M.; Wilson, S.W.; Nicolson, T.; Gründer, S. A Family of Acid-sensing Ion Channels from the Zebrafish: WIDESPREAD EXPRESSION IN THE CENTRAL NERVOUS SYSTEM SUGGESTS A CONSERVED ROLE IN NEURONAL COMMUNICATION. J. Biol. Chem. 2004, 279, 18783–18791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Stewart, A.M.; Gerlai, R.; Kalueff, A.V. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front. Behav. Neurosci. 2015, 9, 14. [Google Scholar] [CrossRef]
  155. Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013, 10, 70–86. [Google Scholar] [CrossRef]
  156. de Abreu, M.S.; Kalueff, A.V. Of mice and zebrafish: The impact of the experimenter identity on animal behavior. Lab Anim. 2021, 50, 7. [Google Scholar] [CrossRef] [PubMed]
  157. Cachat, J.; Stewart, A.; Utterback, E.; Hart, P.; Gaikwad, S.; Wong, K.; Kyzar, E.; Wu, N.; Kalueff, A.V. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS ONE 2011, 6, e17597. [Google Scholar] [CrossRef] [Green Version]
  158. Buske, C. Zebrafish Social Behavior Testing in Developmental Brain Disorders. Org. Model. Autism Spectr. Disord. 2015, 303–316. [Google Scholar]
  159. Bozhko, D.V.; Myrov, V.O.; Kolchanova, S.M.; Polovian, A.I.; Galumov, G.K.; Demin, K.A.; Zabegalov, K.N.; Strekalova, T.; de Abreu, M.S.; Petersen, E.V.; et al. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 112, 110405. [Google Scholar] [CrossRef]
  160. Madden, M.E.; Suminaite, D.; Ortiz, E.; Early, J.J.; Koudelka, S.; Livesey, M.R.; Bianco, I.H.; Granato, M.; Lyons, D.A. CNS hypomyelination disrupts axonal conduction and behavior in larval zebrafish. J. Neurosci. 2021, 41, 9099–9111. [Google Scholar] [CrossRef]
  161. Hong, S.; Lee, P.; Baraban, S.C.; Lee, L.P. A novel long-term, multi-channel and non-invasive electrophysiology platform for zebrafish. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  162. Tsata, V.; Kroehne, V.; Reinhardt, S.; El-Armouche, A.; Brand, M.; Wagner, M.; Reimer, M.M. Electrophysiological properties of adult zebrafish oligodendrocyte progenitor cells. Front. Cell. Neurosci. 2019, 13, 102. [Google Scholar] [CrossRef] [PubMed]
  163. Stengel, R.; Rivera-Milla, E.; Sahoo, N.; Ebert, C.; Bollig, F.; Heinemann, S.H.; Schönherr, R.; Englert, C. Kcnh1 voltage-gated potassium channels are essential for early zebrafish development. J. Biol. Chem. 2012, 287, 35565–35575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Dawson, T.M.; Golde, T.E.; Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 2018, 21, 1370–1379. [Google Scholar] [CrossRef]
  165. Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of Zebrafish in Drug Discovery Toxicology. Chem. Res. Toxicol. 2020, 33, 95–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Margiotta-Casaluci, L.; Owen, S.F.; Cumming, R.I.; De Polo, A.; Winter, M.J.; Panter, G.H.; Rand-Weaver, M.; Sumpter, J.P. Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine. PLoS One 2014, 9, e110467. [Google Scholar] [CrossRef] [Green Version]
  167. Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
  168. Goldstein, S.A.; Bockenhauer, D.; O’Kelly, I.; Zilberberg, N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2001, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
  169. Lafrenière, R.G.; Cader, M.Z.; Poulin, J.-F.; Andres-Enguix, I.; Simoneau, M.; Gupta, N.; Boisvert, K.; Lafrenière, F.; McLaughlan, S.; Dubé, M.-P. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat. Med. 2010, 16, 1157–1160. [Google Scholar] [CrossRef]
  170. Rajakulendran, S.; Graves, T.D.; Labrum, R.W.; Kotzadimitriou, D.; Eunson, L.; Davis, M.B.; Davies, R.; Wood, N.W.; Kullmann, D.M.; Hanna, M.G. Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J. Physiol. 2010, 588, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
  171. Harriott, A.M.; Strother, L.C.; Vila-Pueyo, M.; Holland, P.R. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J. Headache Pain 2019, 20, 91. [Google Scholar] [CrossRef] [PubMed]
Table 2. Summary of selected genetic causes of CNS channelopathies.
Table 2. Summary of selected genetic causes of CNS channelopathies.
PathologyNa+K+Ca2+GABAANicotinicClGlycineReferences
EpilepsySCN1AKCNQ2CACNA1HGABRA1CHRNA2 [2,17,21,24,25,26,47,48,80,93]
SCN1BKCNQ3GABRB3CHNRA4
SCN2AKCNMA1GABRG2CHRNB2
MigraineSCN1A CACNAA1A [94,95]
Myasthenia
Fetal akinesia
CHRNA1 [96]
CHRNB1
CHRNG
CHRND
CHRNE
MyotoniaSCN4A CLCN1 [4,33,34]
Periodic paralysisSCN4AKCNJ2CACNA1S [12,38,97]
Pain, ErythemaSCN9A [35]
Ataxia KCNA1CACNA1A [4,23,45]
KCNC3
Hypereplexia GLRA1[98,99]
GLRB
Dravet syndrome (DS)SCN1 SCN8 [100,101]
Spino-cerebellar ataxia type 13 (SCA13) KCNC3 [23]
Table 3. Summary of rodents’ models of CNS channelopathies.
Table 3. Summary of rodents’ models of CNS channelopathies.
Animal ModelIon Channel SubtypePhenotypeReferences
Epilepsy
Tottering miceCa2+Absence-like seizures, abnormal eye movements, dystonia[1,66,131,132,133]
Leaner miceCa2+Absence ataxia and progressive cerebellar degeneration[1]
Rolling Nagoya miceCa2+No seizures, limb incoordination, falling and rolling over[1]
Lethargic miceCa2+Absence epilepsy and ataxia without neurodegeneration[1]
Stargazer miceCa2+Spike-like wave seizures characteristic of absence epilepsy parallel with obstruction in the cerebellum and inner ear[1]
Roker miceCa2+Intermittent seizures similar to absence epilepsy, mild ataxia, reduction in branching of the dendritic arbor[65,134]
WAG/Rij ratsCa2+, K+, Na+Facial myoclonic jerks, eye and vibrissae twitching, head tilting[135,136]
Ducky miceCa2+Cerebellar, medullar and spinal atrophy, spike-wave phenotype, abnormal morphology of Purkinje neurons, cerebellar dysfunction[137,138]
Timothy syndrome
TS2-like mouseCa2+Markedly restricted, repetitive, and perseverative behavior, altered social behavior, altered ultrasonic vocalization, enhanced tone-cued and contextual memory following fear conditioning[139]
Ataxia
Pingu (Pgu) miceK+Abnormal gait, smaller body size, splayed hind limbs, growth delayed, motor incoordination, flattened body posture, severe tremors, myoclonic jerks, ataxic movement[140]
Tottering miceCa2+Episodic attacks of ataxia due to stress[141]
Leaner miceCa2+Degeneration of differentiated granule, Golgi, and Purkinje cells in cerebellum[141]
Rolling Nagoya miceCa2+Severe ataxia without motor seizures[141]
V408A/+ miceK+Loss of motor coordination, increased frequency and amplitude of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs), motor impairment,[142]
Ducky miceCa2+Ataxia, and paroxysmal dyskinesia, “ducky” gait[143]
Migraine
S218L mutant miceCa2+Severe migraine with seizures, coma, severe cerebral edema following mild head trauma, propensity to multiple cortical spreading depression (CSD) events[68]
R192Q knock-in miceCa2+Increased glutamate release in the cerebellar cortex, decreased threshold for CSD, decreased neuronal response to nociceptive activation, photophobia; unilateral head grooming; lateralized winking/blinking, migraine-like headache[144,145,146]
S218L knock-in miceCa2+Exquisite sensitivity to CSD (reduced triggering threshold, increased propagation velocity and frequency of CSC events), ataxia, seizures, migraine-like headache, photophobia; unilateral head grooming; lateralized winking/blinking[145,146]
Atp1a2+/R887 miceNa,K-ATPaseDecreased induction threshold, increased velocity of propagation CSD, higher susceptibility to fear and anxiety[147]
Table 4. Selected zebrafish models of CNS channelopathies.
Table 4. Selected zebrafish models of CNS channelopathies.
CNS DisorderModulated Ion ChannelZebrafish ModelPhenotypesReferences
Dravet’s syndromeNa+scn1Lab mutantsSeizures[85]
scn1lab mutantsIncreased synaptic activity and reduced inhibitory tone in the brain[115]
EpilepsyCa2+kcnj10 morphantsEpilepsy, ataxia and sensorineural deafness[87]
Ca2+kcnj10 knockdownAbnormal swimming, frequent spontaneous tail flicks, circling, bursts of speed and other aberrant movements[102]
Spinocerebellar ataxia type 6Ca2+tb204a mutantsReduced the locomotor activity, accompanied by reduced intracellular Ca2+ in presynaptic neuromuscular junctions[104]
Spinocerebellar ataxia type 13K+kcnc3 mutantsReduced startle response to touch[108]
Table 5. Selected open questions related to zebrafish-based modeling of CNS channelopathies.
Table 5. Selected open questions related to zebrafish-based modeling of CNS channelopathies.
Open Questions
  • Given generally high overall genetic homology (70%) of zebrafish to humans, do CNS channelopathies share similarly overlapping genetic substrate between the two model organisms?
  • Zebrafish have a generally high (85+%) percentage of gene orthologs for known human-disorder-associated genes. Is there a similar (i.e., comparably high) percentage of disorder-associated genes for CNS channelopathies?
  • What is the percentage of unique, human-specific channelopathies that are not present in zebrafish, and vice versa?
  • What is the exact impact of teleost fish-specific genome duplication on the expression of disordered phenotypes in CNS channelopathies?
  • What are reliable behavioral or neurological tests that can distinguish between mental and neurological manifestations of CNS channelopathies in experimental animal models in general, and in zebrafish in particular?
  • Are there overt sex and strain differences in the pathogenesis of CNS channelopathies in zebrafish models?
  • Is there a direct correlation between physiological aspects of CNS channelopathies (e.g., Ca2+ channel modulation) and behavioral phenotypes (e.g., seizure)? If so, is this correlation translational (e.g., from zebrafish to humans)?
  • How can specific diet (e.g., high-Na+ or low-Ca2+ diet) influence various phenotypes of CNS channelopathies? Can other dietary factors (e.g., high-fat/high-sugar diet) play a role in CNS channelopathies?
  • What non-pharmacological therapies can be effective for CNS channelopathy treatment?
  • Are there epigenetic mechanisms underlying CNS channelopathies in zebrafish models?
  • Can certain animal models (e.g., based on chronic pain) undergo epigenetic modulation to trigger the development of CNS channelopathies in their progenies?
  • Does early-life stress or early-life pain exposure influence CNS channelopathies?
  • Is it possible to assess migraine-like pain in zebrafish? What assessment methods (and putative specific behavioral indices) may help diagnose migraine-like condition in zebrafish?
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kolesnikova, T.O.; Demin, K.A.; Costa, F.V.; Zabegalov, K.N.; de Abreu, M.S.; Gerasimova, E.V.; Kalueff, A.V. Towards Zebrafish Models of CNS Channelopathies. Int. J. Mol. Sci. 2022, 23, 13979. https://doi.org/10.3390/ijms232213979

AMA Style

Kolesnikova TO, Demin KA, Costa FV, Zabegalov KN, de Abreu MS, Gerasimova EV, Kalueff AV. Towards Zebrafish Models of CNS Channelopathies. International Journal of Molecular Sciences. 2022; 23(22):13979. https://doi.org/10.3390/ijms232213979

Chicago/Turabian Style

Kolesnikova, Tatiana O., Konstantin A. Demin, Fabiano V. Costa, Konstantin N. Zabegalov, Murilo S. de Abreu, Elena V. Gerasimova, and Allan V. Kalueff. 2022. "Towards Zebrafish Models of CNS Channelopathies" International Journal of Molecular Sciences 23, no. 22: 13979. https://doi.org/10.3390/ijms232213979

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop