Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw
Abstract
:1. Introduction
2. Results
2.1. Optimized Culture Factors for Laccase Production in P. ostreatus Suping 1
2.2. Cloning and Analysis of the Laccase-Encoding Gene (Lacc1) in P. ostreatus Suping 1
2.3. Overexpression of Lacc1 Gene
2.4. Characterization of the Function of Lacc1 Gene in Lignin Degradation of Cotton Straw
2.5. FTIR Analysis of the Degradation Products from Lignin
2.6. 1H-NMR Analysis of the Degradation Products from Lignin
3. Discussion
4. Materials and Methods
4.1. Strains
4.2. Single-Factor Optimization of Lignin Degradation in Cotton Straw by Pleurotus ostreatus
4.3. Orthogonal Array Optimization of Lignin Degradation in Cotton Straw by P. ostreatus
4.4. Determination of Lignin Content
4.5. Optimization of Laccase Production by Orthogonal Array Method
4.6. Laccase Activity Assay
4.7. Cloning and Expression Pattern Analysis of Lacc1 in P. ostreatus Suping 1
4.8. Agrobacterium Tumefaciens-Mediated Transformation of P. ostreatus
4.9. PCR Analysis and Visual Detection of β-Glucuronidase (GUS)
4.10. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
4.11. 1H-NMR
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhavi, V.; Lele, S.S. Laccase: Properties and applications. Bioresources 2009, 4, 1694–1717. [Google Scholar]
- Mayolo-Deloisa, K.; Gonzalez-Gonzalez, M.; Rito-Palomares, M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Front. Bioeng. Biotechnol. 2020, 8, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugnari, T.; Braga, D.M.; dos Santos, C.S.A.; Torres, B.H.C.; Modkovski, T.A.; Haminiuk, C.W.I.; Maciel, G.M. Laccases as green and versatile biocatalysts: From lab to enzyme market-an overview. Bioresour. Bioprocess. 2021, 8, 131. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gomez-Gil, X.; Gutierrez-Soto, G.; Eduardo Hernandez-Luna, C.; Herrera de los Santos, M.; Levin, L.; Rojo-Dominguez, A.; Romero-Martinez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Fact. 2019, 18, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Pandiyan, K.; Singh, A.; Singh, S.; Saxena, A.K.; Nain, L. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew. Energ. 2019, 132, 723–741. [Google Scholar] [CrossRef]
- Mayr, S.A.; Subagia, R.; Weiss, R.; Schwaiger, N.; Weber, H.K.; Leitner, J.; Ribitsch, D.; Nyanhongo, G.S.; Guebitz, G.M. Oxidation of various kraft lignins with a bacterial laccase enzyme. Int. J. Mol. Sci. 2021, 22, 13161. [Google Scholar] [CrossRef]
- Yang, L.-H.; Qiao, B.; Xu, Q.-M.; Liu, S.; Yuan, Y.; Cheng, J.-S. Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways. J. Hazard. Mater. 2021, 416, 125815. [Google Scholar] [CrossRef]
- Zheng, X.-T.; Dong, Y.-Q.; Liu, X.-D.; Xu, Y.-L.; Jian, R.-K. Fully bio-based flame-retardant cotton fabrics via layer-by-layer self assembly of laccase and phytic acid. J. Clean. Prod. 2022, 350, 131525. [Google Scholar] [CrossRef]
- Gutierrez, A.; del Rio, J.C.; Martinez, A.T. Microbial and enzymatic control of pitch in the pulp and paper industry. Appl. Microbiol. Biotechnol. 2009, 82, 1005–1018. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.D.; Ibarra, D.; Alvira, P.; Tomas-Pejo, E.; Ballesteros, M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit. Rev. Biotechnol. 2015, 35, 342–354. [Google Scholar] [CrossRef]
- Suryadi, H.; Judono, J.J.; Putri, M.R.; Eclessia, A.D.; Ulhaq, J.M.; Agustina, D.N.; Sumiati, T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 2022, 8, e08865. [Google Scholar] [CrossRef] [PubMed]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kwan, H.S. Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl. Environ. Microbiol. 1999, 65, 4908–4913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zain ul Arifeen, M.; Xue, Y.; Liu, C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Front. Microbiol. 2022, 13, 923451. [Google Scholar] [CrossRef]
- Liu, N.; Cao, Z.; Cao, K.; Ma, S.; Gong, X.; Jia, H.; Dai, D.; Dong, J. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. Eur. J. Plant Pathol. 2019, 153, 1149–1163. [Google Scholar] [CrossRef]
- Sun, S.J.; Liu, J.Z.; Hu, K.H.; Zhu, H.X. The level of secreted laccase activity in the edible fungi and their growing cycles are closely related. Curr. Microbiol. 2011, 62, 871–875. [Google Scholar] [CrossRef]
- Jiao, X.; Li, G.; Wang, Y.; Nie, F.; Cheng, X.; Abdullah, M.; Lin, Y.; Cai, Y. Systematic analysis of the Pleurotus ostreatus laccase gene (PoLac) family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules 2018, 23, 880. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wu, G.; Lian, L.; Guo, L.; Wang, W.; Yang, Z.; Miao, J.; Chen, B.; Xie, B. Cloning and expression analysis of Vvlcc3, a novel and functional laccase gene possibly involved in stipe elongation. Int. J. Mol. Sci. 2015, 16, 28498–28509. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, F.; Jiang, Y.; Wu, G.; Guo, L.; Chen, R.; Chen, B.; Lu, Y.; Dai, Y.; Xie, B. The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes. Gene 2015, 563, 142–149. [Google Scholar] [CrossRef]
- Ryu, S.-H.; Cho, M.-K.; Kim, M.; Jung, S.-M.; Seo, J.-H. Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Appl. Biochem. Biotechnol. 2013, 171, 1525–1534. [Google Scholar] [CrossRef]
- Arimoto, M.; Yamagishi, K.; Wang, J.; Tanaka, K.; Miyoshi, T.; Kamei, I.; Kondo, R.; Mori, T.; Kawagishi, H.; Hirai, H. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene. AMB Express 2015, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.E.; Chang, M.C.Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 2014, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Makela, M.R.; Marinovic, M.; Nousiainen, P.; Liwanag, A.J.M.; Benoit, I.; Sipila, J.; Hatakka, A.; de Vries, R.P.; Hilden, K.S. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv. Appl. Microbiol. 2015, 91, 63–137. [Google Scholar] [PubMed]
- Li, Y.; Zhang, Q. Effects of naturally and microbially decomposed cotton stalks on cotton seedling growth. Arch. Agron. Soil Sci. 2016, 62, 1264–1270. [Google Scholar] [CrossRef]
- Wang, Q.; Tuohedi, N. Polyurethane foams and bio-polyols from liquefied cotton stalk agricultural waste. Sustainability 2020, 12, 4214. [Google Scholar] [CrossRef]
- Salame, T.M.; Knop, D.; Levinson, D.; Mabjeesh, S.J.; Yarden, O.; Hadar, Y. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ. Microbiol. 2014, 16, 265–277. [Google Scholar] [CrossRef]
- Lu, W.; Yan, W.C.; Chen, J.C.; Feng, H.; Gao, P.J. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Sci. China Ser. C Life Sci. 2008, 51, 214–221. [Google Scholar]
- Philippoussis, A.; Zervakis, G.; Diamantopoulou, P. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J. Microbiol. Biotechnol. 2001, 17, 191–200. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Mountzouris, K.C.; Chatzipavlidis, I.; Zervakis, G.I. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi—Assessment of their effect on the final product and spent substrate properties. Food Chem 2014, 161, 127–135. [Google Scholar] [CrossRef]
- Khan, S.M.; Nawaz, A.; Ali, M.A.; Ahmad, T.; Khan, N.A.; Atiq Ur, R. Response of oyster mushroom on different agricultural wastes of southern punjab. Pak. J. Agric. Sci. 2012, 49, 127–130. [Google Scholar]
- Wang, J.T.; Wang, Q.; Han, J.R. Yield, polysaccharides content and antioxidant properties of the mushroom Agaricus subrufescens produced on different substrates based on selected agricultural wastes. Sci. Hortic. 2013, 157, 84–89. [Google Scholar] [CrossRef]
- Sardar, H.; Ali, M.A.; Anjum, M.A.; Nawaz, F.; Hussain, S.; Naz, S.; Karimi, S.M. Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Sci. Hortic. 2017, 225, 327–334. [Google Scholar]
- Song, T.; Shen, Y.; Jin, Q.; Feng, W.; Fan, L.; Cao, G.; Cai, W. Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. PeerJ 2021, 9, e10452. [Google Scholar] [CrossRef]
- Nakamura, Y.; Sungusia, M.G.; Sawada, T.; Kuwahara, M. Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J. Biosci. Bioeng. 1999, 88, 41–47. [Google Scholar] [CrossRef]
- Rao, R.G.; Ravichandran, A.; Kandalam, G.; Kumar, S.A.; Swaraj, S.; Sridhar, M. Screening of wild basidiomycetes and evaluation of the biodegradation potential of dyes and lignin by manganese peroxidases. Bioresources 2019, 14, 6558–6576. [Google Scholar]
- Shabaev, A.V.; Moiseenko, K.V.; Glazunova, O.A.; Savinova, O.S.; Fedorova, T.V. Comparative analysis of Peniophora lycii and Trametes hirsuta exoproteomes demonstrates "shades of gray" in the concept of white-rotting fungi. Int. J. Mol. Sci. 2022, 23, 10322. [Google Scholar] [CrossRef] [PubMed]
- He, M.; He, Y.; Luo, Q.; Wang, M. From DNA to protein: No living cells required. Process Biochem. 2011, 46, 615–620. [Google Scholar] [CrossRef]
- Corradi, E.; Baudet, M.-L. In the right place at the right time: miRNAs as key regulators in developing axons. Int. J. Mol. Sci. 2020, 21, 8726. [Google Scholar] [CrossRef]
- Roy, B.; Jacobson, A. The intimate relationships of mRNA decay and translation. Trends Genet. 2013, 29, 691–699. [Google Scholar]
- Hanson, G.; Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 2018, 19, 20–30. [Google Scholar] [CrossRef]
- Kang, S.; Xiao, L.; Meng, L.; Zhang, X.; Sun, R. Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. Int. J. Mol. Sci. 2012, 13, 15209–15226. [Google Scholar] [CrossRef]
- Dong, X.Q.; Yang, J.S.; Zhu, N.; Wang, E.T.; Yuan, H.L. Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour. Technol. 2013, 131, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; You, T.; Zhou, T.; Zhang, L.; Xu, F. Determining lignin degradation in white-rot fungi-treated sacrau poplar: Lignin structural changes and degradation compound analysis. Bioresources 2016, 11, 3972–3986. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Stark, R.E. Biosynthesis, molecular structure, and domain architecture of potato suberin: A (13)C NMR study using isotopically labeled precursors. J. Agric. Food Chem. 2000, 48, 3298–3304. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Na, R.; Guo, J.F.; Liu, T. Study on the construction of recombined plasmid pMG36e-lacc1 and the electroporation of Lactobacillus buchneri. Bio-Med. Mate.r Eng. 2014, 24, 3855–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Bio-Med. Mater. Eng. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ya, Y.; Sakamoto, T.; Honda, Y.; Kagotani, Y.; Izumitsu, K.; Suzuki, K.; Irie, T. The white-rot fungus Pleurotus ostreatus transformant overproduced intracellular cAMP and laccase. Biosci. Biotechnol. Biochem. 2013, 77, 2309–2311. [Google Scholar] [CrossRef] [Green Version]
- Castanera, R.; Perez, G.; Omarini, A.; Alfaro, M.; Pisabarro, A.G.; Faraco, V.; Amore, A.; Ramirez, L. Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Appl. Environ. Microbiol. 2012, 78, 4037–4045. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Zheng, L.; Zhu, J.; Chen, L.; Ma, A. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus. FEMS Microbiol. Lett. 2015, 362, fnv010. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liang, S.; Lei, J.; Chen, L.; Kothe, E.; Ma, A. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol. Res. 2011, 166, 314–322. [Google Scholar] [CrossRef]
- Yan, C.; Yin, M.; Zhang, N.; Jin, Q.; Fang, Z.; Lin, Y.; Cai, Y. Stone cell distribution and lignin structure in various pear varieties. Sci. Hortic. 2014, 174, 142–150. [Google Scholar] [CrossRef]
Run | Code Variable Level | Real Variable Level | Laccase Activity (U/mL) * | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Straw Particle Size (mm) | Solid–Liquid Ratio (w/v) | Temperature (°C) | Tween (g/L) | ||
1 | 3 | 3 | 2 | 3 | 1 | 1:4 | 27 | 0.25 | 97.8 ± 2.2 c |
2 | 2 | 1 | 2 | 2 | 0.75 | 1:2 | 27 | 0.2 | 12.3 ± 0.9 e |
3 | 1 | 3 | 1 | 2 | 0.5 | 1:4 | 26 | 0.2 | 50 ± 0 cd |
4 | 3 | 1 | 1 | 1 | 1 | 1:2 | 26 | 0.15 | 31.6 ± 2.2 e |
5 | 2 | 2 | 1 | 3 | 0.75 | 1:3 | 26 | 0.25 | 125.6 ± 8.4 a |
6 | 3 | 2 | 3 | 2 | 1 | 1:3 | 28 | 0.2 | 80.4 ± 1.5 cd |
7 | 1 | 1 | 3 | 3 | 0.5 | 1:2 | 28 | 0.25 | 11.1 ± 1.9 e |
8 | 1 | 2 | 2 | 1 | 0.5 | 1:3 | 27 | 0.15 | 57.9 ± 1.1 d |
9 | 2 | 3 | 3 | 1 | 0.75 | 1:4 | 28 | 0.15 | 115.3 ± 1.0 b |
Factors | Level | R | Significance | ||
---|---|---|---|---|---|
K1 | K2 | K3 | |||
A: Straw particle size (mm) | 5.57 ± 0.18 | 9.43 ± 0.78 | 7.34 ± 0.17 | 3.86 ± 0.91 | 2 |
B: Solid–liquid ratio (w/v) | 2.86 ± 0.13 | 9.84 ± 0.98 | 9.64 ± 0.09 | 7.23 ± 0.87 | 1 |
C: Temperature (°C) | 8.83 ± 0.97 | 6.10 ± 0.12 | 7.42 ± 0.1 | 2.74 ± 1.2 | 3 |
D: Tween (g/L) | 7.37 ± 0.1 | 6.18 ± 0.29 | 8.82 ± 0.99 | 2.64 ± 1.26 | 4 |
Infrared Spectrum Analysis [27] | Relative Intensities of Absorption Peaks Ai/A1508 | ||
---|---|---|---|
Peak/cm−1 | Functional group stretching | WT | OE L1-4 |
3435 | O-H stretching in hydroxyl groups | 1.66 | 1.55 |
2924 | C-H stretching in methyl and methyene groups | 0.95 | 0.76 |
1720 | C=O stretching in unconjugated ketone | 0.97 | 0.97 |
1635 | C=O stretching in conjugated aryl ketene of carbonyl groups | 1.14 | 1.12 |
1595 | Aromatic skeletal vibrations plus C=O stretching | 1.10 | 1.11 |
1506 | Aromatic skeletal vibrations | 0.99 | 0.99 |
1460 | C-H deformation in methyl | 1.02 | 1.02 |
1419 | aromatic skeletal combined with C-H in plane stretching | 1.02 | 1.00 |
1330 | Condensation of guaiacyl unit and syringyl unit, syringyl unit and CH2 bending stretching | 0.96 | 0.94 |
1267 | G ring plus C=O stretching | 1.10 | 1.15 |
1218 | Aromatic C-O stretching (S units) | 1.05 | 1.09 |
1128 | Aromatic C-H in plane deformations | 1.14 | 1.18 |
1033 | Aromatic C-H in-plane deformation plus C-O deform. In primary alcohols plus C=O stretching | 1.03 | 0.99 |
Chemicalshift Region (δ) | Type of Protons [29] | Percentage of Protons (%) | |
---|---|---|---|
WT | OE L1-4 | ||
7.1–6.8 | Aromatic protons in guaiacyl units | 0.68 | 0.64 |
6.8–6.3 | Aromatic protons in syringyl units | 0.35 | 0.45 |
6.2–5.8 | Hα of β-O-4 and β-1 structures | 0.26 | 0.31 |
5.2–4.9 | Hydrocarbon protons | 0.08 | 0.17 |
4.9–4.4 | Hγ and Hβ of β-O-4 structures | 0.81 | 1.11 |
4.4–4.1 | Hα of β-β structures | 0.80 | 0.71 |
4.1–2.8 | H of methoxyl groups | 4.83 | 4.92 |
2.7–2.2 | H of aromatic acetates | 1.12 | 1.52 |
2.2–1.7 | H of aliphatic acetates | 4.82 | 4.16 |
1.7–1.5 | Hydrocarbon protons | 0.55 | 0.37 |
Level | Straw Particle Size (mm) | Solid–Liquid Ratio (w/v) | Temperature (°C) | Tween Content (g/L) |
---|---|---|---|---|
1 | 0.50 | 1:2 | 26 | 0.15 |
2 | 0.75 | 1:3 | 27 | 0.20 |
3 | 1.00 | 1:4 | 28 | 0.25 |
Primer Name | Primer Sequence (5′-3′) |
---|---|
Lac1-F | ATGCGCACATTCTCCCGCTTTCTC |
Lac1-R | CTAGGTTGGGAGCAAACCGCCTTTTTCC |
Lac1-qF | CGGTACATCTTAGCACCCAATG |
Lac1-qR | GGACAGGGCTCGCTGGTT |
cyph-F | GACATTGCTATCGACTCCCAG |
cyph-R | GAAATTCCTTGCAGTCTTGGG |
Pogpd-4F | CGGAATTCTCTGGAATCGTTATCTCGGT |
Pogpd-1R | CGGGATCCCGTGGACAGGCTTTTGGGAATA |
Lac1-eukF | GAAGATCTGATGCGCACATTCTCCCGCTTTCTC |
Lac1-eukR | GGACTAGTGGTTGGGAGCAAACCGCCTTTTTC |
GUS-F | GTCCTGTAGAAACCCCAACCCGTGA |
GUS-R | TTTGCCTCCCTGCTGCGGTTTTTCA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wang, Y.; Zhu, P.; Zhao, G.; Liu, C.; Zhao, H. Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw. Int. J. Mol. Sci. 2022, 23, 13545. https://doi.org/10.3390/ijms232113545
Li G, Wang Y, Zhu P, Zhao G, Liu C, Zhao H. Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw. International Journal of Molecular Sciences. 2022; 23(21):13545. https://doi.org/10.3390/ijms232113545
Chicago/Turabian StyleLi, Guoqing, Yahui Wang, Peilei Zhu, Guiyun Zhao, Caiyu Liu, and Hongyuan Zhao. 2022. "Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw" International Journal of Molecular Sciences 23, no. 21: 13545. https://doi.org/10.3390/ijms232113545
APA StyleLi, G., Wang, Y., Zhu, P., Zhao, G., Liu, C., & Zhao, H. (2022). Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw. International Journal of Molecular Sciences, 23(21), 13545. https://doi.org/10.3390/ijms232113545