Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Atherosclerosis and Inflammation in SLE
Atherosclerosis Mechanism in SLE
3. Non-Traditional Pro-Atherosclerotic Biomarkers in sSLE
3.1. piHDL
3.2. Endothelial Progenitor Cells
3.3. Endocan
3.4. Leptin
Biomarker | Study | Results |
---|---|---|
Leptin | Garcia-Gonzalez et al., 2002 [88] |
|
Sada et al., 2006 [89] |
| |
Chung et al., 2009 [90] |
| |
Al et al., 2009 [91] |
| |
Kim et al., 2010 [92] |
| |
McMahon et al., 2011 [44] |
| |
Vadacca et al., 2013 [93] |
| |
Wang et al., 2017 [94] |
| |
Diaz-Rizo et al., 2017 [95] |
| |
Demir et al., 2018 [96] |
|
3.5. Resistin
3.6. S100A8 and S100A9
3.7. NETs and Microparticles (MPs)
3.8. Other Potential Biomarkers of Atherosclerosis in SLE
Interferon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hammad, S.M.; Harden, O.C.; Wilson, D.A.; Twal, W.O.; Nietert, P.J.; Oates, J.C. Plasma Sphingolipid Profile Associated With Subclinical Atherosclerosis and Clinical Disease Markers of Systemic Lupus Erythematosus: Potential Predictive Value. Front. Immunol. 2021, 12, 694318. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.; Tam, L.S. Novel Insights in Systemic Lupus Erythematosus and Atherosclerosis. Front. Med. 2018, 4, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, P.; Cicco, S.; Prete, M.; Solimando, A.G.; Susca, N.; Crudele, L.; Buonavoglia, A.; Colonna, P.; Dammacco, F.; Vacca, A.; et al. Early echocardiographic detection of left ventricular diastolic dysfunction in patients with systemic lupus erythematosus asymptomatic for cardiovascular disease. Clin. Exp. Med. 2020, 20, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Vizcaya, A.; Isenberg, D. Analysis of trends and causes of death in SLE patients over a 40-years period in a cohort of patients in the United Kingdom. Lupus 2021, 30, 702–706. [Google Scholar] [CrossRef]
- Ståhl-Hallengren, C.; Jönsen, A.; Nived, O.; Sturfelt, G. Incidence studies of systemic lupus erythematosus in Southern Sweden: Increasing age, decreasing frequency of renal manifestations and good prognosis. J. Rheumatol. 2000, 27, 685–691. [Google Scholar]
- Aranow, C.; Ginzler, E.M. Epidemiology of cardiovascular disease in systemic lupus erythematosus. Lupus 2000, 9, 166–169. [Google Scholar] [CrossRef]
- Lai, E.C.; Huang, Y.C.; Liao, T.C.; Weng, M.Y. Premature coronary artery disease in patients with immune-mediated inflammatory disease: A population-based study. RMD Open 2022, 8, e001993. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Pinto, C.; Munguía-Realpzo, P.; García-Carrasco, M.; Godinez-Bolaños, K.; Rojas-Villarraga, A.; Morales-Etchegaray, I.; Ayón-Aguilar, J.; Méndez-Martínez, S.; Cervera, R. Asymptomatic coronary artery disease assessed by coronary computed tomography in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Eur. J. Intern. Med. 2022, 100, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Skaggs, B.J.; Grossman, J.; Sahakian, L.; Perry, L.; FitzGerald, J.; Charles-Schoeman, C.; Gorn, A.; Taylor, M.; Moriarty, J.; Ragavendra, N.; et al. A Panel of Biomarkers Associates With Increased Risk for Cardiovascular Events in Women with Systemic Lupus Erythematosus. ACR Open Rheumatol. 2021, 3, 209–220. [Google Scholar] [CrossRef]
- Manzi, S.; Meilahn, E.N.; Rairie, J.E.; Conte, C.G.; Medsger, T.A., Jr.; Jansen-McWilliams, L.; D’Agostino, R.B.; Kuller, L.H. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: Comparison with the Framingham Study. Am. J. Epidemiol. 1997, 145, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Vavlukis, M.; Pop-Gjorcevab, D.; Poposka, L.; Sandevska, E.; Kedev, S. Myocardial Infarction in Systemic Lupus Erythematosus—The Sex-Specific Risk Profile. Curr. Pharm. Des. 2021, 27, 3221–3228. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Hahn, B.H. Atherosclerosis and systemic lupus erythematosus: Mechanistic basis of the association. Curr. Opin. Immunol. 2007, 19, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Arkema, E.V.; Svenungsson, E.; Von Euler, M.; Sjöwall, C.; Simard, J.F. Stroke in systemic lupus erythematosus: A Swedish population-based cohort study. Ann. Rheum. Dis. 2017, 76, 1544–1549. [Google Scholar] [CrossRef] [Green Version]
- Hanly, J.G.; Li, Q.; Su, L.; Urowitz, M.B.; Gordon, C.; Bae, S.C.; Romero-Diaz, J.; Sanchez-Guerrero, J.; Bernatsky, S.; Clarke, A.E.; et al. Cerebrovascular Events in Systemic Lupus Erythematosus: Results From an International Inception Cohort Study. Arthritis Care Res. 2018, 70, 1478–1487. [Google Scholar] [CrossRef] [Green Version]
- Chuang, Y.W.; Yu, M.C.; Lin, C.L.; Yu, T.M.; Shu, K.H.; Kao, C.H. Risk of Peripheral Arterial Occlusive Disease in Patients With Systemic Lupus Erythematosus: A Nationwide Population-Based Cohort Study. Medicine 2015, 94, e2121. [Google Scholar] [CrossRef] [PubMed]
- Manzi, S.; Selzer, F.; Sutton-Tyrrell, K.; Fitzgerald, S.G.; Rairie, J.E.; Tracy, R.P.; Kuller, L.H. Prevalence and risk factors of carotid plaque in women with systemic lupus erythematosus. Arthritis Rheum. 1999, 42, 51–60. [Google Scholar] [CrossRef]
- Voutilainen, A.; Brester, C.; Kolehmainen, M.; Tuomainen, T.P. Epidemiological analysis of coronary heart disease and its main risk factors: Are their associations multiplicative, additive, or interactive? Ann. Med. 2022, 54, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Adam, C.A.; Șalaru, D.L.; Prisacariu, C.; Marcu, D.T.M.; Sascău, R.A.; Stătescu, C. Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights in the Research Field. Int. J. Mol. Sci. 2022, 23, 4998. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Genest, J.; Giles, J.T.; Rayner, K.J.; Dwivedi, G.; Beanlands, R.S.; Gupta, M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018, 276, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojan, G.; Petri, M. Atherosclerosis in systemic lupus erythematosus. J. Cardiovasc. Pharmacol. 2013, 62, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdany, J.; Tonner, C.; Trupin, L.; Panopalis, P.; Gillis, J.Z.; Hersh, A.O.; Julian, L.J.; Katz, P.P.; Criswell, L.A.; Yelin, E.H. Provision of preventive health care in systemic lupus erythematosus: Data from a large observational cohort study. Arthritis Res. Ther. 2010, 12, R84. [Google Scholar] [CrossRef]
- Oliveira, C.B.; Kaplan, M.J. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin. Immunopathol. 2022, 44, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Colaco, K.; Ocampo, V.; Ayala, A.P.; Harvey, P.; Gladman, D.D.; Piguet, V.; Eder, L. Predictive Utility of Cardiovascular Risk Prediction Algorithms in Inflammatory Rheumatic Diseases: A Systematic Review. J. Rheumatol. 2020, 47, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Mosca, M.; Tani, C.; Aringer, M.; Bombardieri, S.; Boumpas, D.; Cervera, R.; Doria, A.; Jayne, D.; Khamashta, M.A.; Kuhn, A.; et al. Development of quality indicators to evaluate the monitoring of SLE patients in routine clinical practice. Autoimmun. Rev. 2011, 10, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Mak, A.; Chan, J.K.Y. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2022, 18, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J. The pathophysiology of hypertension in systemic lupus erythematosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1258–R1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roldan, C.A.; Alomari, I.B.; Awad, K.; Boyer, N.M.; Qualls, C.R.; Greene, E.R.; Sibbitt, W.L., Jr. Aortic stiffness is associated with left ventricular diastolic dysfunction in systemic lupus erythematosus: A controlled transesophageal echocardiographic study. Clin. Cardiol. 2014, 37, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Kaplan, M.J. Cardiovascular disease in systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Tumurkhuu, G.; Montano, E.; Jefferies, C. Innate immune dysregulation in the development of cardiovascular disease in lupus. Curr. Rheumatol. Rep. 2019, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. High-sensitivity C-reactive protein: Potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001, 103, 1813–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, P.T.; Hallerstam, S.; Rosfors, S.; Wallén, N.H. Circulating markers of inflammation are related to carotid artery atherosclerosis. Int. Angiol. 2005, 24, 43–51. [Google Scholar]
- Montarello, N.J.; Nguyen, M.T.; Wong, D.T.L.; Nicholls, S.J.; Psaltis, P.J. Inflammation in Coronary Atherosclerosis and Its Therapeutic Implications. Cardiovasc. Drugs Ther. 2022, 36, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Leopoulou, M.; Theofilis, P.; Antonopoulos, A.S.; Siasos, G.; Latsios, G.; Mystakidi, V.C.; Antoniades, C.; Tousoulis, D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020, 309, 16–26. [Google Scholar] [CrossRef]
- Saeli, S.; Bichile, T.; Thakkar, P.; Manzi, S. Cardiovascular disease in systemic lupus erythematosus: An update. In Systemic Lupus Erythematosus. Basic, Applied and Clinical Aspects, 2nd ed.; Tsokos, G.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 44; pp. 415–426. [Google Scholar]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Hansson, G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1876–1890. [Google Scholar] [CrossRef] [PubMed]
- Poddar, R.; Sivasubramanian, N.; DiBello, P.M.; Robinson, K.; Jacobsen, D.W. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: Implications for vascular disease. Circulation 2001, 103, 2717–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Khismatullin, D.B. Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells. PLoS ONE 2015, 10, e0123088. [Google Scholar] [CrossRef]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [Green Version]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Nhek, S.; Clancy, R.; Lee, K.A.; Allen, N.M.; Barrett, T.J.; Marcantoni, E.; Nwaukoni, J.; Rasmussen, S.; Rubin, M.; Newman, J.D.; et al. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pérez, H.; Quevedo-Abeledo, J.C.; de Armas-Rillo, L.; Rua-Figueroa, Í.; Tejera-Segura, B.; Armas-González, E.; Machado, J.D.; García-Dopico, J.A.; Jimenez-Sosa, A.; Rodríguez-Lozano, C.; et al. Impaired HDL cholesterol efflux capacity in systemic lupus erythematosus patients is related to subclinical carotid atherosclerosis. Rheumatology 2020, 59, 2847–2856. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, P.M.; Purmalek, M.M.; Dey, A.K.; Temesgen-Oyelakin, Y.; Sakhardande, S.; Joshi, A.A.; Lerman, J.B.; Fike, A.; Davis, M.; Chung, J.H.; et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight 2018, 3, e99276. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Skaggs, B.J.; Sahakian, L.; Grossman, J.; FitzGerald, J.; Ragavendra, N.; Charles-Schoeman, C.; Chernishof, M.; Gorn, A.; Witztum, J.L.; et al. High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids. Ann. Rheum. Dis. 2011, 70, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Skaggs, B.J.; Grossman, J.M.; Sahakian, L.; Fitzgerald, J.; Wong, W.K.; Lourenco, E.V.; Ragavendra, N.; Charles-Schoeman, C.; Gorn, A.; et al. A panel of biomarkers is associated with increased risk of the presence and progression of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheumatol. 2014, 66, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.J.; Crow, M.K.; Lockshin, M.D.; Devereux, R.B.; Paget, S.A.; Sammaritano, L.; Levine, D.M.; Davis, A.; Salmon, J.E. Rate and determinants of progression of atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2007, 56, 3412–3419. [Google Scholar] [CrossRef]
- Pownall, H.J.; Rosales, C.; Gillard, B.K.; Gotto, A.M., Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. 2021, 18, 712–723. [Google Scholar] [CrossRef]
- McMahon, M.; Grossman, J.; FitzGerald, J.; Dahlin-Lee, E.; Wallace, D.J.; Thong, B.Y.; Badsha, H.; Kalunian, K.; Charles, C.; Navab, M.; et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 2006, 54, 2541–2549. [Google Scholar] [CrossRef]
- McMahon, M.; Grossman, J.; Skaggs, B.; Fitzgerald, J.; Sahakian, L.; Ragavendra, N.; Charles-Schoeman, C.; Watson, K.; Wong, W.K.; Volkmann, E.; et al. Dysfunctional proinflammatory high-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheum. 2009, 60, 2428–2437. [Google Scholar] [CrossRef] [Green Version]
- Reiss, A.B.; Jacob, B.; Ahmed, S.; Carsons, S.E.; DeLeon, J. Understanding Accelerated Atherosclerosis in Systemic Lupus Erythematosus: Toward Better Treatment and Prevention. Inflammation 2021, 44, 1663–1682. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yu, M.; Morin, E.E.; Kang, J.; Kaplan, M.J.; Schwendeman, A. High-Density Lipoprotein in Lupus: Disease Biomarkers and Potential Therapeutic Strategy. Arthritis Rheumatol. 2020, 72, 20–30. [Google Scholar] [CrossRef]
- Han, C.Y.; Tang, C.; Guevara, M.E.; Wei, H.; Wietecha, T.; Shao, B.; Subramanian, S.; Omer, M.; Wang, S.; O’Brien, K.D.; et al. Serum amyloid A impairs the antiinflammatory properties of HDL. J. Clin. Investig. 2016, 126, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Gaál, K.; Tarr, T.; Lőrincz, H.; Borbás, V.; Seres, I.; Harangi, M.; Fülöp, P.; Paragh, G. High-density lipopoprotein antioxidant capacity, subpopulation distribution and paraoxonase-1 activity in patients with systemic lupus erythematosus. Lipids Health Dis. 2016, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Marsillach, J.; Becker, J.O.; Vaisar, T.; Hahn, B.H.; Brunzell, J.D.; Furlong, C.E.; de Boer, I.H.; McMahon, M.A.; Hoofnagle, A.N.; DCCT/EDIC Research Group. Paraoxonase-3 is depleted from the high-density lipoproteins of autoimmune disease patients with subclinical atherosclerosis. J. Proteome Res. 2015, 14, 2046–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaggs, B.J.; Hahn, B.H.; Sahakian, L.; Grossman, J.; McMahon, M. Dysfunctional, pro-inflammatory HDL directly upregulates monocyte PDGFRβ, chemotaxis and TNFα production. Clin. Immunol. 2010, 137, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyers, C.M., III; Miller, F.J., Jr. Endothelial dysfunction in chronic inflammatory diseases. Int. J. Mol. Sci. 2014, 15, 11324–11349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 9, 830–834. [Google Scholar] [CrossRef]
- Mauro, D.; Nerviani, A. Endothelial Dysfunction in Systemic Lupus Erythematosus: Pathogenesis, Assessment and Therapeutic Opportunities. Rev. Recent Clin. Trials 2018, 13, 192–198. [Google Scholar] [CrossRef]
- Stalc, M.; Tomsic, M.; Jezovnik, M.K.; Poredos, P. Endothelium-dependent and independent dilation capability of peripheral arteries in patients with systemic lupus erythematosus and antiphospholipid syndrome. Clin. Exp. Rheumatol. 2011, 29, 616–623. [Google Scholar]
- Johnson, S.R.; Harvey, P.J.; Floras, J.S.; Iwanochko, M.; Ibanez, D.; Gladman, D.D.; Urowitz, M. Impaired brachial artery endothelium dependent flow mediated dilation in systemic lupus erythematosus: Preliminary observations. Lupus 2004, 13, 590–593. [Google Scholar] [CrossRef]
- Kiss, E.; Soltesz, P.; Der, H.; Kocsis, Z.; Tarr, T.; Bhattoa, H.; Shoenfeld, Y.; Szegedi, G. Reduced flow-mediated vasodilation as a marker for cardiovascular complications in lupus patients. J. Autoimmun. 2006, 27, 211–217. [Google Scholar] [CrossRef]
- Ghosh, P.; Kumar, A.; Kumar, S.; Aggarwal, A.; Sinha, N.; Misra, R. Subclinical atherosclerosis and endothelial dysfunction in young South-Asian patients with systemic lupus erythematosus. Clin. Rheumatol. 2009, 28, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Xiang, W.; He, X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front. Immunol. 2020, 11, 581385. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Chen, P.C.; Yang, Y.H.; Wang, L.C.; Lee, J.H.; Lin, Y.T.; Chiang, B.L. Statin reduces mortality and morbidity in systemic lupus erythematosus patients with hyperlipidemia: A nationwide population-based cohort study. Atherosclerosis 2015, 243, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Adam, C.A.; Anghel, R.; Marcu, D.T.M.; Mitu, O.; Roca, M.; Mitu, F. Impact of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors on Arterial Stiffness and Vascular Aging-What Do We Know So Far? (A Narrative Review). Life 2022, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Castejon, R.; Jimenez-Ortiz, C.; Valero-Gonzalez, S.; Rosado, S.; Mellor, S.; Yebra-Bango, M. Decreased circulating endothelial progenitor cells as an early risk factor of subclinical atherosclerosis in systemic lupus erythematosus. Rheumatology 2014, 53, 631–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerweel, P.E.; Luijten, R.K.; Hoefer, I.E.; Koomans, H.A.; Derksen, R.H.; Verhaar, M.C. Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann. Rheum. Dis. 2007, 66, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Moonen, J.R.; de Leeuw, K.; van Seijen, X.J.; Kallenberg, C.G.; van Luyn, M.J.; Bijl, M.; Harmsen, M.C. Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2007, 9, R84. [Google Scholar] [CrossRef] [Green Version]
- Denny, M.F.; Thacker, S.; Mehta, H.; Somers, E.C.; Dodick, T.; Barrat, F.J.; McCune, W.J.; Kaplan, M.J. Interferon-alpha promotes abnormal vasculogenesis in lupus: A potential pathway for premature atherosclerosis. Blood 2007, 110, 2907–2915. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.Y.; Li, Y.; Richards, H.B.; Chan, F.S.; Zhuang, H.; Narain, S.; Butfiloski, E.J.; Sobel, E.S.; Reeves, W.H.; Segal, M.S. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheum. 2007, 56, 3759–3769. [Google Scholar] [CrossRef]
- Baker, J.F.; Zhang, L.; Imadojemu, S.; Sharpe, A.; Patil, S.; Moore, J.S.; Mohler, E.R., III; Von Feldt, J. Circulating endothelial progenitor cells are reduced in SLE in the absence of coronary artery calcification. Rheumatol. Int. 2012, 32, 997–1002. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, Y.J.; Kim, K.J.; Choi, J.J.; Kim, W.U.; Cho, C.S. Osteoprotegerin causes apoptosis of endothelial progenitor cells by induction of oxidative stress. Arthritis Rheum. 2013, 65, 2172–2182. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Kow, N.Y.; Lee, H.Y.; Fairhurst, A.M.; Mak, A. CD34+CD133+CD309+ circulating angiogenic cell level is reduced but positively related to hydroxychloroquine use in SLE patients-a case-control study and meta-regression analysis. Rheumatology 2021, 60, 3936–3944. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, S.; Adam, E.; Lyon, M.; Depontieu, F.; Motte, V.; Landolfi, C.; Lortat-Jacob, H.; Bechard, D.; Lassalle, P.; Delehedde, M. Endocan or endothelial cell specific molecule-1 (ESM-1): A potential novel endothelial cell marker and a new target for cancer therapy. Biochim. Biophys. Acta 2006, 1765, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Choi, H.Y.; Bae, J.S. Endocan as a potential diagnostic or prognostic biomarker for chronic kidney disease. Kidney Int. 2014, 86, 1079–1081. [Google Scholar] [CrossRef] [Green Version]
- Icli, A.; Cure, E.; Cure, M.C.; Uslu, A.U.; Balta, S.; Mikhailidis, D.P.; Ozturk, C.; Arslan, S.; Sakız, D.; Sahin, M.; et al. Endocan Levels and Subclinical Atherosclerosis in Patients with Systemic Lupus Erythematosus. Angiology 2016, 67, 749–755. [Google Scholar] [CrossRef]
- Tokarska, K.; Bogaczewicz, J.; Robak, E.; Woźniacka, A. The role of endocan and selected pro-inflammatory cytokines in systemic lupus erythematosus. Postepy Dermatol. Alergol. 2020, 37, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Tselios, K.; Sheane, B.J.; Gladman, D.D.; Urowitz, M.B. Optimal Monitoring for Coronary Heart Disease Risk in Patients with Systemic Lupus Erythematosus: A Systematic Review. J. Rheumatol. 2016, 43, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Song, G.G. Association between circulating leptin levels and systemic lupus erythematosus: An updated meta-analysis. Lupus 2018, 27, 428–435. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, H.; Li, X.; Wei, J. Leptin: An unappreciated key player in SLE. Clin. Rheumatol. 2020, 39, 305–317. [Google Scholar] [CrossRef]
- Amarilyo, G.; Iikuni, N.; Liu, A.; Matarese, G.; La Cava, A. Leptin enhances availability of apoptotic cell-derived self-antigen in systemic lupus erythematosus. PLoS ONE 2014, 9, e112826. [Google Scholar] [CrossRef] [Green Version]
- Bouloumie, A.; Marumo, T.; Lafontan, M.; Busse, R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999, 13, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Zhang, X.; Ren, J. Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway. Hypertension 2006, 47, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Chougule, D.; Nadkar, M.; Venkataraman, K.; Rajadhyaksha, A.; Hase, N.; Jamale, T.; Kini, S.; Khadilkar, P.; Anand, V.; Madkaikar, M.; et al. Adipokine interactions promote the pathogenesis of systemic lupus erythematosus. Cytokine 2018, 111, 20–27. [Google Scholar] [CrossRef]
- De Sanctis, J.B.; Zabaleta, M.; Bianco, N.E.; Garmendia, J.V.; Rivas, L. Serum adipokine levels in patients with systemic lupus erythematosus. Autoimmunity 2009, 42, 272–274. [Google Scholar] [CrossRef]
- Toussirot, E.; Gaugler, B.; Bouhaddi, M.; Nguyen, N.U.; Saas, P.; Dumoulin, G. Elevated adiponectin serum levels in women with systemic autoimmune diseases. Mediat. Inflamm. 2010, 2010, 938408. [Google Scholar] [CrossRef] [Green Version]
- Wisłowska, M.; Rok, M.; Stepień, K.; Kuklo-Kowalska, A. Serum leptin in systemic lupus erythematosus. Rheumatol. Int. 2008, 28, 467–473. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, A.; Gonzalez-Lopez, L.; Valera-Gonzalez, I.C.; Cardona-Muñoz, E.G.; Salazar-Paramo, M.; González-Ortiz, M.; Martínez-Abundis, E.; Gamez-Nava, J.I. Serum leptin levels in women with systemic lupus erythematosus. Rheumatol. Int. 2002, 22, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Sada, K.E.; Yamasaki, Y.; Maruyama, M.; Sugiyama, H.; Yamamura, M.; Maeshima, Y.; Makino, H. Altered levels of adipocytokines in association with insulin resistance in patients with systemic lupus erythematosus. J. Rheumatol. 2006, 33, 1545–1552. [Google Scholar]
- Chung, C.P.; Long, A.G.; Solus, J.F.; Rho, Y.H.; Oeser, A.; Raggi, P.; Stein, C.M. Adipocytokines in systemic lupus erythematosus: Relationship to inflammation, insulin resistance and coronary atherosclerosis. Lupus 2009, 18, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Al, M.; Ng, L.; Tyrrell, P.; Bargman, J.; Bradley, T.; Silverman, E. Adipokines as novel biomarkers in paediatric systemic lupus erythematosus. Rheumatology 2009, 48, 497–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.A.; Choi, G.S.; Jeon, J.Y.; Yoon, J.M.; Sung, J.M.; Suh, C.H. Leptin and ghrelin in Korean systemic lupus erythematosus. Lupus 2010, 19, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Vadacca, M.; Zardi, E.M.; Margiotta, D.; Rigon, A.; Cacciapaglia, F.; Arcarese, L.; Buzzulini, F.; Amoroso, A.; Afeltra, A. Leptin, adiponectin and vascular stiffness parameters in women with systemic lupus erythematosus. Intern. Emerg. Med. 2013, 8, 705–712. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, Y.; Yang, L.; Song, S.; Han, Y.; Tian, Y.; Ding, M.; Jin, H.; Shao, F.; Liu, A. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus 2017, 26, 1401–1406. [Google Scholar] [CrossRef]
- Diaz-Rizo, V.; Bonilla-Lara, D.; Gonzalez-Lopez, L.; Sanchez-Mosco, D.; Fajardo-Robledo, N.S.; Perez-Guerrero, E.E.; Rodriguez-Jimenez, N.A.; Saldaña-Cruz, A.M.; Vazquez-Villegas, M.L.; Gomez-Bañuelos, E.; et al. Serum levels of adiponectin and leptin as biomarkers of proteinuria in lupus nephritis. PLoS ONE 2017, 12, e0184056. [Google Scholar] [CrossRef]
- Demir, S.; Erten, G.; Artım-Esen, B.; Şahinkaya, Y.; Pehlivan, Ö.; Alpay-Kanıtez, N.; Deniz, G.; Inanç, M. Increased serum leptin levels are associated with metabolic syndrome and carotid intima media thickness in premenopausal systemic lupus erythematosus patients without clinical atherosclerotic vascular events. Lupus 2018, 27, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.F.; Morales, M.; Qatanani, M.; Cucchiara, A.; Nackos, E.; Lazar, M.A.; Teff, K.; von Feldt, J.M. Resistin levels in lupus and associations with disease-specific measures, insulin resistance, and coronary calcification. J. Rheumatol. 2011, 38, 2369–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutcheson, J.; Ye, Y.; Han, J.; Arriens, C.; Saxena, R.; Li, Q.Z.; Mohan, C.; Wu, T. Resistin as a potential marker of renal disease in lupus nephritis. Clin. Exp. Immunol. 2015, 179, 435–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamez-Nava, J.I.; Diaz-Rizo, V.; Perez-Guerrero, E.E.; Muñoz-Valle, J.F.; Saldaña-Cruz, A.M.; Fajardo-Robledo, N.S.; Jacobo-Cuevas, H.; Nava-Valdivia, C.A.; Alcaraz-Lopez, M.F.; Trujillo, X.; et al. Assessment of serum macrophage migration inhibitory factor (MIF), adiponectin, and other adipokines as potential markers of proteinuria and renal dysfunction in lupus nephritis: A cross-sectional study. Biomark. Res. 2020, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, A.; Helmy, M.; Barakat, M.; Elneily, D.; Ahmed, O. Serum resistin, insulin resistance and carotid intima-media thickness as an indication of subclinical atherosclerosis in systemic lupus erythematosus patients. Egypt. Rheumatol. 2021, 43, 319–323. [Google Scholar] [CrossRef]
- Tydén, H.; Lood, C.; Gullstrand, B.; Jönsen, A.; Nived, O.; Sturfelt, G.; Truedsson, L.; Ivars, F.; Leanderson, T.; Bengtsson, A.A. Increased serum levels of S100A8/A9 and S100A12 are associated with cardiovascular disease in patients with inactive systemic lupus erythematosus. Rheumatology 2013, 52, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in Inflammation. Front. Immunol. 2018, 9, 1298. [Google Scholar] [CrossRef] [Green Version]
- Lood, C.; Tydén, H.; Gullstrand, B.; Jönsen, A.; Källberg, E.; Mörgelin, M.; Kahn, R.; Gunnarsson, I.; Leanderson, T.; Ivars, F.; et al. Platelet-Derived S100A8/A9 and Cardiovascular Disease in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2016, 68, 1970–1980. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fang, C.; Gao, H.; Bilodeau, M.L.; Zhang, Z.; Croce, K.; Liu, S.; Morooka, T.; Sakuma, M.; Nakajima, K.; et al. Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. J. Clin. Investig. 2014, 124, 2160–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tydén, H.; Lood, C.; Gullstrand, B.; Jönsen, A.; Ivars, F.; Leanderson, T.; Bengtsson, A.A. Pro-inflammatory S100 proteins are associated with glomerulonephritis and anti-dsDNA antibodies in systemic lupus erythematosus. Lupus 2017, 26, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zervides, K.A.; Jern, A.; Nystedt, J.; Gullstrand, B.; Nilsson, P.C.; Sundgren, P.C.; Bengtsson, A.A.; Jönsen, A. Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement in systemic lupus erythematosus: A cross-sectional study. BMC Rheumatol. 2022, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Schiopu, A.; Cotoi, O.S. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediat. Inflamm. 2013, 2013, 828354. [Google Scholar] [CrossRef] [Green Version]
- Soyfoo, M.S.; Roth, J.; Vogl, T.; Pochet, R.; Decaux, G. Phagocyte-specific S100A8/A9 protein levels during disease exacerbations and infections in systemic lupus erythematosus. J. Rheumatol. 2009, 36, 2190–2194. [Google Scholar] [CrossRef]
- Ometto, F.; Friso, L.; Astorri, D.; Botsios, C.; Raffeiner, B.; Punzi, L.; Doria, A. Calprotectin in rheumatic diseases. Exp. Biol. Med. 2017, 242, 859–873. [Google Scholar] [CrossRef] [Green Version]
- Salemme, R.; Peralta, L.N.; Meka, S.H.; Pushpanathan, N.; Alexander, J.J. The Role of NETosis in Systemic Lupus Erythematosus. J. Cell. Immunol. 2019, 1, 33–42. [Google Scholar]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Romo, G.S.; Caielli, S.; Vega, B.; Connolly, J.; Allantaz, F.; Xu, Z.; Punaro, M.; Baisch, J.; Guiducci, C.; Coffman, R.L.; et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011, 3, 73ra20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozzini, C.; Garbin, U.; Fratta Pasini, A.M.; Cominacini, L. An exploratory look at NETosis in atherosclerosis. Intern. Emerg. Med. 2017, 12, 13–22. [Google Scholar] [CrossRef]
- Pieterse, E.; Rother, N.; Garsen, M.; Hofstra, J.M.; Satchell, S.C.; Hoffmann, M.; Loeven, M.A.; Knaapen, H.K.; van der Heijden, O.W.H.; Berden, J.H.M.; et al. Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1371–1379. [Google Scholar] [CrossRef] [Green Version]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 2011, 3, 73ra19. [Google Scholar] [CrossRef] [Green Version]
- Döring, Y.; Manthey, H.D.; Drechsler, M.; Lievens, D.; Megens, R.T.; Soehnlein, O.; Busch, M.; Manca, M.; Koenen, R.R.; Pelisek, J.; et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 2012, 125, 1673–1683. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.S.; Subramanian, V.; O’Dell, A.A.; Yalavarthi, S.; Zhao, W.; Smith, C.K.; Hodgin, J.B.; Thompson, P.R.; Kaplan, M.J. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann. Rheum. Dis. 2015, 74, 2199–2206. [Google Scholar] [CrossRef] [Green Version]
- Kahlenberg, J.M.; Carmona-Rivera, C.; Smith, C.K.; Kaplan, M.J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 2013, 190, 1217–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobarrez, F.; Vikerfors, A.; Gustafsson, J.T.; Gunnarsson, I.; Zickert, A.; Larsson, A.; Pisetsky, D.S.; Wallén, H.; Svenungsson, E. Microparticles in the blood of patients with systemic lupus erythematosus (SLE): Phenotypic characterization and clinical associations. Sci. Rep. 2016, 6, 36025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rother, N.; Yanginlar, C.; Pieterse, E.; Hilbrands, L.; van der Vlag, J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front. Immunol. 2022, 13, 822995. [Google Scholar] [CrossRef]
- Atehortúa, L.; Rojas, M.; Vásquez, G.; Muñoz-Vahos, C.H.; Vanegas-García, A.; Posada-Duque, R.A.; Castaño, D. Endothelial activation and injury by microparticles in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res. Ther. 2019, 21, 34. [Google Scholar] [CrossRef] [Green Version]
- López, P.; Rodríguez-Carrio, J.; Martínez-Zapico, A.; Caminal-Montero, L.; Suárez, A. Circulating microparticle subpopulations in systemic lupus erythematosus are affected by disease activity. Int. J. Cardiol. 2017, 236, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Dieker, J.; Tel, J.; Pieterse, E.; Thielen, A.; Rother, N.; Bakker, M.; Fransen, J.; Dijkman, H.B.; Berden, J.H.; de Vries, J.M.; et al. Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis. Arthritis Rheumatol. 2016, 68, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Pérez, L.; Rojas, M.; Muñoz-Vahos, C.; Vanegas-García, A.; Vásquez, G. Plasma microparticles from patients with systemic lupus erythematosus modulate the content of miRNAs in U937 cells. Immunology 2021, 164, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Austin, R.C. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors 2009, 35, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Davì, G.; Falco, A. Oxidant stress, inflammation and atherogenesis. Lupus 2005, 14, 760–764. [Google Scholar] [CrossRef]
- Lertratanakul, A.; Wu, P.; Dyer, A.R.; Kondos, G.; Edmundowicz, D.; Carr, J.; Ramsey-Goldman, R. Risk factors in the progression of subclinical atherosclerosis in women with systemic lupus erythematosus. Arthritis Care Res. 2014, 66, 1177–1185. [Google Scholar] [CrossRef] [Green Version]
- Suttichet, T.B.; Kittanamongkolchai, W.; Phromjeen, C.; Anutrakulchai, S.; Panaput, T.; Ingsathit, A.; Kamanamool, N.; Ophascharoensuk, V.; Sumethakul, V.; Avihingsanon, Y. Urine TWEAK level as a biomarker for early response to treatment in active lupus nephritis: A prospective multicentre study. Lupus Sci. Med. 2019, 6, e000298. [Google Scholar] [CrossRef]
- Xue, L.; Liu, L.; Huang, J.; Wen, J.; Yang, R.; Bo, L.; Tang, M.; Zhang, Y.; Liu, Z. Tumor necrosis factor-like weak inducer of apoptosis activates type I interferon signals in lupus nephritis. BioMed Res. Int. 2017, 2017, 4927376. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Garlanda, C.; Doni, A.; Bottazzi, B. Pentraxins in innate immunity: From C-reactive protein to the long pentraxin PTX3. J. Clin. Immunol. 2008, 28, 1–13. [Google Scholar] [CrossRef]
- Pang, Y.; Tan, Y.; Li, Y.; Zhang, J.; Guo, Y.; Guo, Z.; Zhang, C.; Yu, F.; Zhao, M.H. Pentraxin 3 is closely associated with tubulointerstitial injury in lupus nephritis: A large multicenter cross-sectional study. Medicine 2016, 95, e2520. [Google Scholar] [CrossRef]
- Cieślik, P.; Hrycek, A. Pentraxin 3 as a biomarker of local inflammatory response to vascular injury in systemic lupus erythematosus. Autoimmunity 2015, 48, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Peilot, H.; Rosengren, B.; Bondjers, G.; Hurt-Camejo, E. Interferon-gamma induces secretory group IIA phospholipase A2 in human arterial smooth muscle cells. Involvement of cell differentiation, STAT-3 activation, and modulation by other cytokines. J. Biol. Chem. 2000, 275, 22895–22904. [Google Scholar] [CrossRef] [Green Version]
- Kuriyama, Y.; Shimizu, A.; Kanai, S.; Oikawa, D.; Motegi, S.I.; Tokunaga, F.; Ishikawa, O. Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Sci. Rep. 2021, 11, 23146. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.; Kow, N.Y. Imbalance between endothelial damage and repair: A gateway to cardiovascular disease in systemic lupus erythematosus. BioMed Res. Int. 2014, 2014, 178721. [Google Scholar] [CrossRef] [PubMed]
- Avalos, A.M.; Busconi, L.; Marshak-Rothstein, A. Regulation of autoreactive B cell responses to endogenous TLR ligands. Autoimmunity 2010, 43, 76–83. [Google Scholar] [CrossRef]
- Kirou, K.A.C.P.; Salmon, J.E.; Roman, M.J.; Crow, M.K. Identification of molecular pathways associated with progression of carotid atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2006, 54, S807. [Google Scholar]
- Agarwal, S.; Elliott, J.R.; Manzi, S. Atherosclerosis risk factors in systemic lupus erythematosus. Curr. Rheumatol. Rep. 2009, 11, 241–247. [Google Scholar] [CrossRef]
- Kahlenberg, J.M.; Kaplan, M.J. The interplay of inflammation and cardiovascular disease in systemic lupus erythematosus. Arthritis Res. Ther. 2011, 13, 203. [Google Scholar] [CrossRef] [Green Version]
- Arida, A.; Protogerou, A.D.; Kitas, G.D.; Sfikakis, P.P. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int. J. Mol. Sci. 2018, 19, 1890. [Google Scholar] [CrossRef] [Green Version]
- Kahlenberg, J.M.; Thacker, S.G.; Berthier, C.C.; Cohen, C.D.; Kretzler, M.; Kaplan, M.J. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J. Immunol. 2011, 187, 6143–6156. [Google Scholar] [CrossRef] [Green Version]
- Rezaieyazdi, Z.; AkbariRad, M.; Saadati, N.; Salari, M.; Orang, R.; Sedighi, S.; Esmaily, H.; Azarpazhooh, M.R.; Firoozi, A.; Akbarpour, E. Serum interleukin-18 and its relationship with subclinical atherosclerosis in systemic lupus erythematosus. ARYA Atheroscler. 2021, 17, 1. [Google Scholar]
- Kiani, A.N.; Aukrust, P.; Ueland, T.; Hollan, I.; Barr, E.; Magder, L.S.; Petri, M. Serum osteoprotegrin (OPG) in subclinical atherosclerosis in systemic lupus erythematosus. Lupus 2017, 26, 865–870. [Google Scholar] [CrossRef]
- Harris, E.N.; Pierangeli, S.S. Primary, secondary, and catastrophic antiphospholipid syndrome: What’s in a name? Semin. Thromb. Hemost. 2008, 34, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Meroni, P.L.; Raschi, E.; Testoni, C.; Borghi, M.O. Endothelial cell activation by antiphospholipid antibodies. Clin. Immunol. 2004, 112, 169–174. [Google Scholar] [CrossRef]
- Ritis, K.; Doumas, M.; Mastellos, D.; Micheli, A.; Giaglis, S.; Magotti, P.; Rafail, S.; Kartalis, G.; Sideras, P.; Lambris, J.D. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 2006, 177, 4794–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doria, A.; Shoenfeld, Y.; Wu, R.; Gambari, P.F.; Puato, M.; Ghirardello, A.; Gilburd, B.; Corbanese, S.; Patnaik, M.; Zampieri, S.; et al. Risk factors for subclinical atherosclerosis in a prospective cohort of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2003, 62, 1071–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svenungsson, E.; Jensen-Urstad, K.; Heimbürger, M.; Silveira, A.; Hamsten, A.; de Faire, U.; Witztum, J.L.; Frostegård, J. Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 2001, 104, 1887–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirestam, L.; Saleh, M.; Svensson, C.; Compagno, M.; Zachrisson, H.; Wetterö, J.; Sjöwall, C. Plasma osteopontin versus intima media thickness of the common carotid arteries in well-characterised patients with systemic lupus erythematosus. Lupus 2021, 30, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Wirestam, L.; Enocsson, H.; Skogh, T.; Padyukov, L.; Jönsen, A.; Urowitz, M.B.; Gladman, D.D.; Romero-Diaz, J.; Bae, S.C.; Fortin, P.R.; et al. Osteopontin and Disease Activity in Patients with Recent-onset Systemic Lupus Erythematosus: Results from the SLICC Inception Cohort. J. Rheumatol. 2019, 46, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, M.; Chiocchetti, A.; Cena, T.; Musetti, C.; Monti, S.; Clemente, N.; Dianzani, U.; Magnani, C.; Stratta, P. Osteopontin circulating levels correlate with renal involvement in systemic lupus erythematosus and are lower in ACE inhibitor-treated patients. Clin. Rheumatol. 2014, 33, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Wirestam, L.; Frodlund, M.; Enocsson, H.; Skogh, T.; Wetterö, J.; Sjöwall, C. Osteopontin is associated with disease severity and antiphospholipid syndrome in well characterised Swedish cases of SLE. Lupus Sci. Med. 2017, 4, e000225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, F.; Dallegri, F.; Montecucco, F.; Poggi, A.; Nobili, F.M.; Cacciapaglia, F.; Afeltra, A.; Moccetti, T.; Colombo, B.M. Serum osteopontin negatively impacts on intima-media thickness in patients with systemic lupus erythematosus. Eur. J. Clin. Investig. 2019, 49, e13089. [Google Scholar] [CrossRef] [PubMed]
- Mancardi, D.; Arrigo, E.; Cozzi, M.; Cecchi, I.; Radin, M.; Fenoglio, R.; Roccatello, D.; Sciascia, S. Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players? Eur. J. Clin. Investig. 2021, 51, e13441. [Google Scholar] [CrossRef]
- Valer, P.; Paul, B.; Eugenia, B.; Camelia, B. Annexin A5 as independent predictive biomarker for subclinical atherosclerosis and endothelial dysfunction in systemic lupus erythematosus patients. Clin. Lab. 2013, 59, 359–367. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Study | Results |
---|---|---|
piHDL | McMahon et al., 2006 [48] |
|
McMahon et al., 2009 [49] |
| |
Skaggs et al., 2010 [55] |
|
Biomarker | Study | Results |
---|---|---|
EPCs | Westerweel et al., 2007 [67] |
|
Moonen et al., 2007 [68] |
| |
Denny et al., 2007 [69] |
| |
Lee et al., 2007 [70] |
| |
Baker et al., 2012 [71] |
| |
Kim et al., 2013 [72] |
| |
Castejon et al., 2014 [66] |
| |
Huang et al., 2021 [73] |
|
Biomarker | Study | Results |
---|---|---|
Endocan | Icli et al., 2016 [76] |
|
Tokarska et al., 2020 [77] |
|
Biomarker | Study | Results |
---|---|---|
Resistin | Baker et al., 2011 [97] |
|
Hutcheson et al., 2015 [98] |
| |
Chougule et al., 2018 [84] |
| |
Gamez-Nava et al., 2020 [99] |
| |
Shaaban et al., 2021 [100] |
|
Biomarker | Study | Results |
---|---|---|
Protein complex S100 A8/A9 | Soyfoo et al., 2009 [108] |
|
Tydén et al., 2013 [101] |
| |
Lood et al., 2016 [103] |
| |
Tydén et al., 2016 [105] |
|
Biomarker | Study | Results |
---|---|---|
MPs | Mobarrez et al., 2016 [121] |
|
Dieker et al., 2016 [125] |
| |
Atehortúa et al., 2019 [123] |
| |
Carmona-Pérez et al., 2021 [126] |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, P.; Cardoneanu, A.; Rezus, C.; Burlui, A.M.; Rezus, E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2022, 23, 12604. https://doi.org/10.3390/ijms232012604
Richter P, Cardoneanu A, Rezus C, Burlui AM, Rezus E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. International Journal of Molecular Sciences. 2022; 23(20):12604. https://doi.org/10.3390/ijms232012604
Chicago/Turabian StyleRichter, Patricia, Anca Cardoneanu, Ciprian Rezus, Alexandra Maria Burlui, and Elena Rezus. 2022. "Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus" International Journal of Molecular Sciences 23, no. 20: 12604. https://doi.org/10.3390/ijms232012604
APA StyleRichter, P., Cardoneanu, A., Rezus, C., Burlui, A. M., & Rezus, E. (2022). Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 23(20), 12604. https://doi.org/10.3390/ijms232012604