Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr.
Abstract
:1. Introduction
2. Results
2.1. Gene Cloning of GmNAC3
2.2. Molecular Properties of Proteins Encoded by GmNAC3 Gene
2.3. Transcriptional Activation Activity of GmNAC3 Protein
2.4. Subcellular Localization of GmNAC3 Protein
2.5. Expression Pattern of GmNAC3 Gene
2.6. Generation of Transgenic Soybean Hairy Roots and Arabidopsis thaliana with GmNAC3
2.7. Stress Resistance of Soybean Hairy Roots and Expression of Drought-Related Genes in Transgenic Soybean with GmNAC3
2.8. Phenotypic Variations of Transgenic Arabidopsis thaliana with GmNAC3 under Drought Stress
2.9. Physiological Indices of Transgenic Arabidopsis thaliana with GmNAC3 under Drought Stress
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Gene Cloning of GmNAC3
4.3. Properties of GmNAC3 Gene and GmNAC3 Protein
4.4. Transcriptional Activation Activity of GmNAC3
4.5. Subcellular Localization of GmNAC3 Protein
4.6. Construction of Plant Overexpression Vector pCAMBIA3301–GFP–GmNAC3 and Genetic Transformation by Agrobacterium
4.7. Expressions of GmNAC3 Gene and Drought Resistance Related Genes
4.8. Physiological Indices Related to Stress Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.C.; Luan, S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2011, 35, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Yendrek, C.R.; Skoneczka, J.A.; Long, S.P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell Environ. 2012, 35, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.B.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Song, S.; Wang, X.; Liu, J.; Dong, S.K. Transcriptomic and metabolomic analysis of seedling-stage soybean responses to PEG-simulated drought stress. Int. J. Mol. Sci. 2022, 12, 6869. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, S. Transcription factors in plants: Physiological functions and regulation of expression. J. Plant Res. 1998, 111, 363–371. [Google Scholar] [CrossRef]
- Diao, P.F.; Chen, C.; Zhang, Y.Z.; Meng, Q.W.; Lv, W.; Ma, N.N. The role of NAC transcription factor in plant cold response. Plant Signal. Behav. 2020, 9, 1785668. [Google Scholar] [CrossRef]
- Wang, W.X.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Manna, M.; Thakur, T.; Chirom, O.; Mandlik, R.; Deshmukh, R.; Salvi, P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol. Plantarum 2020, 2, 847–868. [Google Scholar] [CrossRef]
- Olsen, A.N.; Ernst, H.A.; Leggio, L.L.; Skriver, K. NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant. Sci. 2005, 10, 79–87. [Google Scholar] [CrossRef]
- Singh, S.; Koyama, H.; Bhati, K.K.; Alok, A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. J. Plant. Res. 2021, 134, 475–495. [Google Scholar] [CrossRef]
- Christianson, J.A.; Dennis, E.S.; Llewellyn, D.J.; Wilson, L.W. ATAF NAC transcription factors: Regulators of plant stress signaling. Plant. Signal. Behav. 2010, 5, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Hu, M.L.; Li, J.Y.; Chen, L.; Li, M.; Zhang, S.Q.; Zhang, X.L.; Yang, X.Y. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant. Biol. 2018, 1, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Luo, F.; Zhong, Y.; He, J.J.; Li, L.G. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis. J. Exp. Bot. 2020, 4, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Souer, E.; Houwelingen, A.V.; Kloos, D.; Mol, J.; Koes, R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 1996, 85, 159. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Ma, Y.; Feng, Z.; Zhang, X.; Mukesh, J. Transcriptomic analysis of drought stress responses of sea buckthorn (Hippophae rhamnoides subsp. sinensis) by RNA-Seq. PLoS ONE 2018, 13, e0202213. [Google Scholar]
- Su, H.Y.; Zhang, S.Z.; Yuan, X.W.; Chen, C.T.; Wang, X.F.; Hao, Y.J. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple. Plant. Physiol. Biochem. 2013, 71, 11–21. [Google Scholar] [CrossRef]
- Cenci, A.; Guignon, V.; Roux, N.; Rouard, M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant. Mol. Biol. 2014, 85, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Nishiyama, R.; Watanabe, Y.; Mochida, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011, 18, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.J.; Lu, S.C.; Lv, B.; Zhang, B.; Ming, F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant. Physiol. 2017, 174, 1747–1763. [Google Scholar] [CrossRef] [Green Version]
- Puranik, S.; Sahu, P.P.; Srivastava, P.S.; Prasad, M. NAC proteins: Regulation and role in stress tolerance. Trends Plant. Sci. 2012, 17, 369–381. [Google Scholar] [CrossRef]
- Tran, L.-S.P.; Nishiyama, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 2010, 1, 32–39. [Google Scholar] [CrossRef] [PubMed]
- So, H.A.; Lee, J.H. NAC Transcription Factors from soybean (Glycine max L.) differentially regulated by abiotic stress. J. Plant. Biol. 2019, 2, 147–160. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, X. Bioinformatics analysis of NAC gene family in Glycine max L. Soybean Sci. 2014, 33, 325–333. [Google Scholar]
- Ooka, H. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003, 10, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Manimekalai, R.; Sharoni, A.M.; Satoh, K.; Kondoh, H.; Ooka, H.; Kikuchi, S. Genome-wide analysis of NAC transcription factor family in rice. Gene 2010, 465, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Takasaki, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. NAC transcription factors in plant abiotic stress responses. BBA-Gene Regul. Mech. 2012, 1819, 97–103. [Google Scholar] [CrossRef]
- Duval, M.; Hsieh, T.-F.; Kim, S.Y.; Thomas, T.L. Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily. Plant. Mol. Biol. 2002, 50, 237–248. [Google Scholar] [CrossRef]
- Kikuchi, K.; Ueguchi-Tanaka, M.; Yoshida, K.T.; Nagato, Y.; Matsusoka, M.; Hirano, H.Y. Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 2000, 262, 1047–1051. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, Z.; Lai, J.; Zhang, Y.; Yang, C.; Yin, B.; Zhao, Q.; Zhang, L.; Li, Y.; Yang, C. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 2009, 19, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, Y.; Kim, Y.S.; Han, S.H.; Lee, B.D.; Paek, N.C. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant. Cell 2015, 27, 1771–1787. [Google Scholar] [CrossRef] [Green Version]
- Sukiran, N.L.; Ma, J.C.; Ma, H.; Su, Z. ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. Plant. Mol. Biol. 2019, 99, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liao, K.; Du, H.; Xu, Y.; Song, H.; Li, X.; Xiong, L. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J. Exp. Bot. 2015, 66, 6803–6817. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.B.; Zhang, H.J.; Huang, L.; Li, D.Y.; Song, F.M. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front. Plant. Sci. 2016, 7, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.S.; Oh, N.; Chung, P.J.; Kim, Y.S.; Do, C.Y.; Kim, J.K. Overexpression of OsNAC14 improves drought tolerance in rice. Front. Plant. Sci. 2018, 9, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.J.; Wang, Y.; Li, B.; Chang, J.L.; Chen, M.J.; Li, K.X.; Yang, G.X.; He, G.Y. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant. Biol. 2015, 15, 268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Xia, C.; Zhao, G.; Jia, J.; Kong, X. The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front. Plant. Sci. 2015, 6, 1174–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.D.; Li, S.M.; Wang, Z.X.; Cheng, X.X.; Li, F.F.; Mei, F.M.; Chen, N.; Kang, Z.S. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. Plant. Biotechnol. J. 2020, 18, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hong, L.; Li, X.Y.; Yao, Y.; Hu, B.; Li, Y. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci. Biotechnol. Biochem. 2011, 75, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Yu, L.J.; Han, R.; Li, Z.J.; Liu, H. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant. Physiol. Biochem. 2016, 105, 55–66. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, J.; Wang, Q.; Li, G.B.; Tang, X.; Liu, T.H.; Feng, X.J.; Wu, F.K.; Li, M.L.; Xie, W.B.; et al. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J. Exp. Bot. 2021, 7, 2790–2806. [Google Scholar] [CrossRef]
- Jia, D.F.; Jiang, Q.; Nocker, S.V.; Gong, X.Q.; Ma, F.W. An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants. Plant. Physiol. Biochem. 2019, 139, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Huang, Y.; Lv, W.; Zhang, Y.; Zhao, T. GmNAC8 acts as a positive regulator in soybean drought stress. Plant. Sci. 2020, 293, 110442. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, H.; Cai, J.T.; Bi, Y.; Song, F.M. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant. Biol. 2019, 19, 278. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, L.Y.; Dai, J.X.; Wang, Y.; Li, D. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. Plant. Biol. 2021, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, G.L.; Marques, C.S.; Costa, M.D.B.L.; Reis, P.A.B.; Alves, M.S.; Carvalho, C.M.; Fietto, L.G.; Fontes, E.P.B. Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 2009, 444, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kim, M.Y.; Ha, J.; Lee, S.H. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants. Front. Plant. Sci. 2019, 10, 1036. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.; Melo, B.P.D. Revisiting the soybean GmNAC superfamily. Front. Plant. Sci. 2018, 9, 1864. [Google Scholar]
- Zhou, X.G.; Chen, X.J. Identification a new NAC transcription factor OsNAC3 in rice. Acta Phytopathol. Sin. 2018, 48, 9. [Google Scholar]
- Jing, Y. Transcription factor WRKY33 mediates the phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in Arabidopsis roots. Int. J. Mol. Sci. 2021, 22, 9275. [Google Scholar]
- He, G.H.; Liu, P.; Zhao, H.X.; Sun, J.Q. The HD-ZIP II transcription factors regulate plant architecture through the auxin pathway. Int. J. Mol. Sci. 2020, 21, 3250. [Google Scholar] [CrossRef]
- Chen, D.; Chai, S.; Mcintyre, C.L.; Xue, G.P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant. Cell Rep. 2018, 37, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Li, D.P.; Peng, S.B.; Chen, S.W.; Li, Z.Y.; Yang, G.Y. Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling. Physiol. Mol. Biol. Plants 2021, 27, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, K.; Chen, S.; Li, T.; Xia, H.; Chen, L.; Liu, H.; Luo, L. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. Plant. Biol. 2019, 19, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef] [PubMed]
- Borsani, O.; Diaz, P.; Agius, M.F.; Valpuesta, V.; Monza, J. Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant. Sci. 2001, 161, 757–763. [Google Scholar] [CrossRef]
- Elavarthi, S.; Martin, B. Spectrophotometric assays for antioxidant enzymes in plants. Methods Mol. Biol. 2010, 639, 273. [Google Scholar] [PubMed]
- Long, H.; He, T.; Farrar, S.; Ji, L.; Xi, M. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longe. 2014, 2014, 360438. [Google Scholar] [CrossRef] [Green Version]
- Abrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. Methods Mol. Biol. 2015, 639, 317–331. [Google Scholar]
- Ozturk, M.; Unal, B.T.; García-Caparrós, P.; Khursheed, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2020, 12, 1321–1335. [Google Scholar] [CrossRef]
- Lv, K.W.; Wei, H.R.; Liu, G.F. A R2R3-MYB transcription factor gene, BpMYB123, regulates BpLEA14 to improve drought tolerance in Betula platyphylla. Front. Plant. Sci. 2021, 12, 791390. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.L.; Yue, X.F.; Min, Z.; Wang, X.H.; Fang, Y.L.; Zhang, J.X. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant. Physiol. Biochem. 2020, 146, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Székely, G.; Ábrahám, E.; Cséplö, Á.; Rigó, G.; Zsigmond, L.; Csiszár, J.; Ayaydin, F.; Strizhov, N.; Schmelzer, E.; Koncz, C.; et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant. J. 2008, 53, 11–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishor, P.B.K.; Hong, Z.L.; Miao, C.H.; Hu, C.A.A.; Verma, D.P.S. Overexpression of Δ1-Pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant. Physiol. 1995, 108, 1387–1394. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Z.; Hu, L.J.; Zhang, S.H.; Zhang, M.X.; Jiang, W.Z.; Wu, T.; Du, X.L. Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth, and ABA-independent salt stress tolerance. Int. J. Mol. Sci. 2021, 22, 8625. [Google Scholar] [CrossRef]
- Sun, Y.J.; Liu, Z.X.; Guo, J.G.; Zhu, Z.N.; Zhou, Y.P.; Guo, C.X.; Hu, Y.H.; Li, J.A.; Yan, S.G.; Li, T.; et al. WRKY33-PIF4 loop is required for the regulation of H2O2 homeostasis. Biochem. Biophys. Res. Commun. 2020, 527, 922–928. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, H.S.; Wang, J.F.; Yang, J.S. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol. Biol. Rep. 2003, 30, 223–227. [Google Scholar] [CrossRef]
- Zhang, X.; Long, Y.; Chen, X.X.; Zhang, B.L.; Xin, Y.F.; Li, L.Y.; Cao, S.L.; Fu, H.; Wang, Z.G.; Huang, H.; et al. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant. Biol. 2021, 21, 546. [Google Scholar] [CrossRef]
- Ma, H.Z.; Liu, C.; Li, Z.X.; Ran, Q.J.; Xie, G.N. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant. Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yu, T.F.; Ma, J.; Xu, Z.S. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int. J. Mol. Sci. 2020, 21, 670. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Xia, Z.; Cai, Z.; Li, L.; Cheng, Y.B.; Jia, L.; Nian, H. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front. Plant. Sci. 2019, 9, 1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.C.; Peng, Z.H.; Liu, Y.; Lang, M.R.; Chen, Y.H.; Wang, H.H.; Li, Y.S.; Shi, B.R.; Huang, W.P.; Han, L.; et al. Overexpression of peroxisome-localized GmABCA7 promotes seed germination in Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 2389. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, L.P.; Wang, Y.Z.; Yang, L.; Wang, M.J.; Liu, J.X. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta 2020, 252, 95. [Google Scholar] [CrossRef]
- Jin, J.; Li, K.K.; Qin, J.; Yan, L.L.; Wang, S.W.; Zhang, G.H.; Wang, X.M.; Bi, Y.R. The response mechanism to salt stress in Arabidopsis transgenic lines over-expressing of GmG6PD. Plant Physiol. Biochem. 2021, 162, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.R.; Liu, X.; Niu, F.; Zhao, Q.Q.; Fan, N.; Cao, D.; Meng, D.; He, W.; Guo, B.; Wei, Y.H.; et al. OoNAC72, a NAC-type Oxytropis ochrocephala transcription factor, conferring enhanced drought and salt stress tolerance in Arabidopsis. Front. Plant. Sci. 2019, 10, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, W.Q.; Chen, L.M.; Ma, J.K.; Liu, X.R.; Chen, H.F.; Yang, H.L.; Guo, W.; Shan, Z.H.; Yang, Z.L.; Chen, S.L.; et al. Identification of quantitative trait locus and candidate genes for drought tolerance in a soybean recombinant inbred line population. Int. J. Mol. Sci. 2022, 23, 10828. [Google Scholar] [CrossRef] [PubMed]
- Magwangaro, R.O.; Lu, P.; Kirungujn, J.N.; Cai, X.Y.; Zhou, Z.L.; Gaya, A.S.; Wang, K.B.; Liu, F. Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton. J. Cotton Res. 2020, 1, 13–45. [Google Scholar]
- Pandey, M.K.; Gangurde, S.S.; Sharma, V.; Pattanashetti, S.K.; Naidu, G.K.; Faye, I.; Desmae, H.H.; Kane, N.A.; Yuan, M.; Vadez, V.; et al. Improved genetic map identified major QTLs for drought tolerance- and iron deficiency tolerance-related traits in groundnut. Genes 2021, 12, 37. [Google Scholar] [CrossRef]
- Mao, H.M.; Li, S.M.; Chen, B.; Jian, C.; Mei, F.M.; Zhang, Y.F.; Li, F.F.; Chen, N.; Li, T.; Du, L.Y.; et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant. 2022, 15, 276–292. [Google Scholar] [CrossRef]
- Abdirad, S.; Ghaffari, M.R.; Majd, A.; Irian, S.; Soleymaniniya, A.; Daryani, P.; Koobaz, P.; Shobbar, Z.S.; Farsad, L.K.; Yazdanpanah, P.; et al. Genome-wide expression analysis of root tips in contrasting rice genotypes revealed novel candidate genes for water stress adaptation. Front. Plant. Sci. 2022, 13, 792079. [Google Scholar] [CrossRef]
- Tyagia, S.; Shumayla; Verma, P.C.; Singh, K.; Upadhyaya, S.K. Molecular characterization of ascorbate peroxidase (APX) and APX-related (APX-R) genes in Triticum aestivum L. Genomics 2020, 112, 4208–4223. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, Z.S.; Yusop, M.R.; Ismail, M.R.; Mohamed, M.T.M.; Harun, A.R.; Yusuff, O.; Magaji, U.; Fatai, A. LEA gene expression assessment in advanced mutant rice genotypes under drought stress. Int. J. Genomics 2019, 2019, 8406036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, F.Y.; Huang, J.; Yu, S.L.; Zhang, H.S. The 6-phosphogluconate dehydrogenase genes are responsive to abiotic stresses in rice. J. Integr. Plant. Biol. 2007, 49, 655–663. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Species (Gene ID or Protein ID) | Chromosome Number | Location |
---|---|---|
Phaseolusvulgaris (18620214) | 9 | 21883166–21887652 |
Vigna unguiculata (114164401) | 9 | 27465669–27470240 |
Glycine max (100781170) | 4 | 48507639–48511991 |
Glycine soja (114410096) | 4 | 48113653–48118040 |
Cajanus cajan (109808119) | 11 | 45241951–45245555 |
Cicer arietinum (101512547) | 5 | 47316071–47320366 |
Medicago truncatula (11423052) | 3 | 43934323–43939382 |
Abrus precatorius (113849838) | — | 5562701–5565889 |
Spatholobus suberectus (TKY71273.1) | 1 | 108331–108927 |
Lupinus albus (KAE9608693.1) | 8 | 11700963–11705996 |
Lupinus angustifolius (OIW15354.1) | 3 | 344992–346126 |
Trifolium subterraneum (GAU38079.1) | 7 | 99883–102744 |
Trifolium pratense (PNX72622.1) | 2 | — |
Mucuna pruriens (RDX94923.1) | — | 32788–36295 |
Melilotus albus (QSD99912.1) | — | — |
Medicago falcata (QDX01728.1) | — | — |
Growth Condition | SOD (U/g) | CAT (U/g) | POD (U/g) | Proline (μg/g) | MDA (nmol/g) |
---|---|---|---|---|---|
Normal | |||||
WT | 1159.7 ± 46.3 | 788.2 ± 31.5 | 96.3 ± 3.9 | 21.4 ± 1.1 | 15.7 ± 0.4 |
OE-1 | 2636.0 ± 79.1 * | 1013.2 ± 40.5 * | 271.3 ± 13.5 ** | 48.2 ± 2.9 * | 10.4 ± 0.6 * |
OE-2 | 2249.0 ± 89.9 * | 1051.3 ± 42.1 * | 256.7 ± 15.3 ** | 48.6 ± 1.9 * | 10.1 ± 0.4 * |
OE-3 | 2621.1 ± 26.2 * | 996.8 ± 29.8 * | 286.2 ± 11.5 ** | 45.0 ± 2.7 * | 10.5 ± 0.4 * |
Drought (treatment with 6% PEG6000) | |||||
WT | 515.8 ± 20.6 | 938.6 ± 28.2 | 173.7 ± 6.9 | 29.6 ± 1.4 | 12.3 ± 0.5 |
OE-1 | 4216.6 ± 126.5 ** | 1314.0 ± 52.6 * | 370.5 ± 11.2 * | 73.6 ± 2.9 ** | 6.7 ± 0.2 * |
OE-2 | 4134.2 ± 124.1 ** | 1379.5 ± 55.2 * | 367.3 ± 18.3 * | 74.5 ± 2.9 ** | 5.9 ± 0.3 * |
OE-3 | 4275.4 ± 85.6 ** | 1258.0 ± 37.8 * | 383.3 ± 19.1 * | 73.0 ± 2.9 ** | 6.8 ± 0.4 * |
Experiment | Primer | Sequence (5′→3′) |
---|---|---|
Gene cloning | GmNAC3-F | ATGGCCAAACCAAAAATGC |
GmNAC3-R | TTACTTATCTTGGCTACCACTTCC | |
Vector construction for subcellular localization | pCAMBIA1302-GmNAC3-F | AGATCTATGGCCAAACCAAAAATGC |
pCAMBIA1302-GmNAC3-R | ACTAGTCTTATCTTGGCTACCACTTCC | |
Vector construction for transcriptional activation | GmNAC3-pBridge-F | CGTTACTAGTGGATCCATGGCCAAACCAAAAATGC |
GmNAC3-pBridge-R | AGGGAATATTAAGCTTTTACTTATCTTGGCTACCACTTCC | |
Verification of positive plant materials | 35S-F | ACTGGTGATTTCAGCGTGTCC |
35S-R | GCTAGAGCAGCTTGCCAACAT | |
Bar-F | TCAAATCTCGGTGACGGGC | |
Bar-R | GCACCATCGTCAACCACTACATC | |
Internal reference gene for qRT-PCR | Tublin-F | GGAAGGCTTTCTTGCATTGGTA |
Tublin-R | AGTGGCATCCTGGTACTGC | |
GmNAC gene expression | qGmNAC3-F | TGACTGGGTCTTGTGTAGGATTTAC |
qGmNAC3-R | GTTCACTGTTATTGTTTGCTGGTG | |
APX2 gene expression | APX2-F | CAACCGTGAGCGCTGATTAC |
APX2-R | TCACGTCGTAAGTTCCAGCA | |
LEA14 gene expression | LEA14-F | GTATCGTTGGGTGTGATCGGT |
LEA14-R | TAGCCAAGTACTCGACGCTG | |
6PGDH gene expression | 6PGDH-F | ACTGATCAACCTGTAGACAAGAAA |
6PGDH-R | GGCCAGTTCACCCAACTTCA | |
P5CS gene expression | P5CS-F | TCACTCGCCAAGATGGAAGG |
P5CS-R | ACTTGCGGCTTCTGAAGGTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yang, X.; Tang, M.; Wang, Y.; Zhang, Q.; Li, H.; Zhou, Y.; Sun, F.; Cui, X. Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. Int. J. Mol. Sci. 2022, 23, 12378. https://doi.org/10.3390/ijms232012378
Chen Z, Yang X, Tang M, Wang Y, Zhang Q, Li H, Zhou Y, Sun F, Cui X. Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. International Journal of Molecular Sciences. 2022; 23(20):12378. https://doi.org/10.3390/ijms232012378
Chicago/Turabian StyleChen, Zhanyu, Xiaoqin Yang, Minghao Tang, Yujue Wang, Qian Zhang, Huiying Li, Ying Zhou, Fengjie Sun, and Xiyan Cui. 2022. "Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr." International Journal of Molecular Sciences 23, no. 20: 12378. https://doi.org/10.3390/ijms232012378