Chromium Flavonoid Complexation in an Antioxidant Capacity Role
Abstract
:1. Introduction
2. Results
2.1. Syntheses
2.2. Description of X-ray Crystallographic Structures
2.3. FT-IR Spectroscopy
2.4. UV-Visible Spectroscopy
2.5. ESI-MS Spectrometry
2.6. Luminescence Studies
2.7. Cell Survival Results
2.7.1. Toxicity in C2C12 Myoblasts in 24 and 48 h
2.7.2. Toxicity in C2C12 Mature Myotubes for 24 h
2.7.3. Oxidative Stress Studies
3. Discussion
3.1. The Premise of Flavonoid Availability in Cell Physiology
3.2. The Structural Speciation in Ternary Cr(III) Systems Containing Chrysin
3.3. The Antioxidant Potency
3.4. Mechanistic Considerations
4. Experimental
4.1. Materials and Methods
4.2. Physical Measurements
4.2.1. ESI-MS Spectrometry
4.2.2. Photoluminescence
4.3. Materials Preparation
4.4. X-ray Crystal Structure Determination
4.5. Biological Studies
4.5.1. Cell Culture
4.5.2. Cell Viability and Proliferation Studies
4.5.3. Oxidative Stress Studies
4.5.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | one-way analysis of variance |
DMEM | Dulbecco’s modified Eagle’s medium |
ESI-MS | electron spray ionization–mass spectrometry |
FBS | fetal bovine serum |
FT-IR | Fourier transform infrared |
ROS | reactive oxygen species |
SEM | standard error of the mean |
XTT | sodium 3-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate |
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nut. Sci. 2016, 5, E47. [Google Scholar] [CrossRef] [Green Version]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.; Yuan, Y.; Lin, B.; Miao, Z.; Li, Z.; Guo, Q.; Lu, N. LW-215, a newly synthesized flavonoid exhibits potent anti-angiogenic activity in vitro and in vivo. Gene 2018, 642, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids Health Benefits and Their Molecular Mechanism. Mini-Rev. Med. Chem. 2011, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Proença, C.; Rufino, A.T.; Ferreira de Oliveira, J.M.P.; Freitas, M.; Fernandes, P.A.; Silva, A.M.S.; Fernandes, E. Inhibitory activity of flavonoids against human sucrase-isomaltase (α-glucosidase) activity in a Caco-2/TC7 cellular model. Food Funct. 2022, 13, 1108–1118. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Pradhan, A. Flavonoids and phenolic acids as antioxidants in plants and human health. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 130–134. [Google Scholar]
- Cao, Y.; Xie, L.; Liu, K.; Liang, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol. Res. 2021, 174, 105919. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Harborne, J.B.; Baxter, H. The Handbook of Natural Flavonoids; John Wiley and Sons: Chichester, UK, 1999; Volumes 1 and 2. [Google Scholar]
- Ferraiuolo, S.B.; Restaino, O.F.; Gutiérrez-del-Río, I.; Ventriglia, R.; Cammarota, M.; Villar, C.J.; Lombó, F.; Schiraldi, C. Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain. Fermentation 2021, 7, 161. [Google Scholar] [CrossRef]
- Marín, L.; Gutiérrez-del-Río, I.; Yagüe, P.; Manteca, Á.; Villar, C.J.; Lombó, F. De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete Streptomyces albus and production improvement by feeding and spore conditioning. Front. Microbiol. 2017, 8, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, L.; Gutiérrez-del-Río, I.; Entrialgo-Cadierno, R.; Villar, C.J.; Lombó, F. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE 2018, 13, e0207278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, X.; Zhao, G.; Ng, K.R.; Mark, R.; Chen, W. Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol. J. Agric. Food Chem. 2019, 67, 5596–5606. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019, 11, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Yin, Y. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Han, L.; Pan, C.; Lei, C.; Chen, H.; Lan, X. C2C12 Mouse Myoblasts Damage Induced by Oxidative Stress Is Alleviated by the Antioxidant Capacity of the Active Substance Phloretin. Front. Cell Dev. Biol. 2020, 8, 541260. [Google Scholar] [CrossRef]
- Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A.; Iahtisham-Ul-Haq; IqraYasmin; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; et al. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019, 235, 116797. [Google Scholar] [CrossRef]
- Hong, J.S.; Feng, J.H.; Park, J.S.; Lee, H.J.; Lee, J.Y.; Lim, S.S.; Suh, H.W. Antinociceptive effect of chrysin in diabetic neuropathy and formalin-induced pain models. Anim. Cells Syst. 2020, 24, 143–150. [Google Scholar] [CrossRef]
- Tsave, O.; Yavropoulou, M.P.; Kafantari, M.; Gabriel, C.; Yovos, J.G.; Salifoglou, A. The adipogenic potential of Cr(III). A molecular approach exemplifying metal-induced enhancement of insulin mimesis in diabetes mellitus II. J. Inorg. Biochem. 2016, 163, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, C.L.; Domenico, P. Clinical Studies on Chromium Picolinate Supplementation in Diabetes Mellitus—A Review. Diabetes Technol. Ther. 2006, 8, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Tsave, O.; Gabriel, C.; Kafantari, M.; Yavropoulou, M.; Yovos, J.G.; Raptopoulou, C.P.; Salifoglou, A. Synthetic investigation of binary-ternary Cr(III)-hydroxycarboxylic acid-aromatic chelator systems. Structure-specific influence on adipogenic biomarkers linked to insulin mimesis. J. Inorg. Biochem. 2018, 184, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Pusz, J.; Nitka, B.; Zielińska, A.; Wawer, I. Synthesis and physicochemical properties of the Al(III), Ga(III) and In(III) complexes with chrysin. Microchem. J. 2000, 65, 245–253. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Antonoglou, O.; Hatzidimitriou, A.; Sagnou, M.; Pantazaki, A.A.; Litsardakis, G.; Pelecanou, M. Structurally characterized gallium-chrysin complexes with anticancer potential. Dalton Trans. 2020, 49, 2734–2746. [Google Scholar] [CrossRef]
- Kirilova, E.; Bulanovs, A.; Puckins, A.; Romanovska, E.; Kirilov, G. Spectral and structural characterization of chromium(III) complexes bearing 7-oxo-7H-benzo[de]anthracen-3-yl-amidines ligand. Polyhedron 2019, 157, 107–115. [Google Scholar] [CrossRef]
- Gabriel, C.; Raptopoulou, C.P.; Terzis, A.; Lalioti, N.; Salifoglou, A. Synthesis, structural, spectroscopic and magnetic susceptibility studies of a soluble Cr(III)–heida (2-hydroxyethyliminodiacetic acid) complex. Relevance to aqueous chromium(III)–heida speciation. Inorg. Chim. Acta 2007, 360, 513–522. [Google Scholar] [CrossRef]
- De Souza, R.F.; De Giovani, W.F. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep. 2004, 9, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Halevas, E.; Mavroidi, B.; Pelecanou, M.; Hatzidimitriou, A.G. Structurally characterized zinc complexes of flavonoids chrysin and quercetin with antioxidant potential. Inorg. Chim. Acta 2021, 523, 120407. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Kaplanis, M.; Hatzidimitriou, A.G.; Moschona, A.; Litsardakis, G.; Pelecanou, M. Hydrophilic bis-MPA hyperbranched dendritic scaffolds as nanocarriers of a fully characterized flavonoid morin-Zn(II) complex for anticancer applications. J. Inorg. Biochem. 2022, 232, 111832. [Google Scholar] [CrossRef] [PubMed]
- Halevas, E.; Mitrakas, A.; Mavroidi, B.; Athanasiou, D.; Gkika, P.; Antoniou, K.; Samaras, G.; Lialiaris, E.; Hatzidimitriou, A.; Pantazaki, A.; et al. Structurally characterized copper-chrysin complexes display genotoxic and cytotoxic activity in human cells. Inorg. Chim. Acta 2020, 515, 120062. [Google Scholar] [CrossRef]
- Tanui, H.K.; Nkabyo, H.A.; Pearce, B.H.; Hussein, A.A.; Lopis, A.S.; Luckay, R.C. Iron(III) and copper(II) complexes derived from the flavonoids morin and quercetin: Chelation, crystal structure and DFT studies. J. Mol. Struct. 2022, 1257, 132591. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 5, 55–74. [Google Scholar] [CrossRef]
- Serra, A.J.; Prokić, M.D.; Vasconsuelo, A.; Pinto, J.R. Oxidative Stress in Muscle Diseases: Current and Future Therapy. Oxidative Med. Cell. Longev. 2018, 2018, 6439138. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Puente, E.; Sánchez-Martín, M.A.; de Andrés, J.; Rodríguez-Izquierdo, L.; Méndez, L.; Palomero, J. Expression and functional analysis of the hydrogen peroxide biosensors HyPer and HyPer2 in C2C12 myoblasts/myotubes and single skeletal muscle fibres. Sci. Rep. 2020, 10, 871. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006, 54, 6343–6351. [Google Scholar] [CrossRef]
- Van Acker, S.A.; van den Berg, D.J.; Tromp, M.N.; Griffioen, D.H.; van Bennekom, W.P.; van der Vijgh, W.J.; Bast, A. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef]
- Kostyuk, V.A.; Potapovich, A.I.; Vladykovskaya, E.N.; Korkina, L.G.; Afanas’ev, I.B.A. Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch. Biochem. Biophys. 2001, 385, 129–137. [Google Scholar] [CrossRef]
- Panhwar, Q.K.; Memon, S. Synthesis of Cr(III)-Morin Complex: Characterization and Antioxidant Study. Sci. World J. 2014, 2014, 845208. [Google Scholar] [CrossRef] [Green Version]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Meth. Enzymol. 1990, 186, 343–355. [Google Scholar]
- Sun, S.F.; Chen, W.J.; Cao, W.; Zhang, F.Y.; Song, J.R.; Tian, C.R. Research on the chelation between quercetin and Cr(III) ion by Density Functional Theory (DFT) method. J. Mol. Struct. 2008, 860, 40–44. [Google Scholar] [CrossRef]
- Bruker Analytical X-ray Systems, Inc. Apex2, Version 2 User Manual; M86-E01078; Bruker: Madison, WI, USA, 2006. [Google Scholar]
- Siemens Industrial Automation, Inc. SADABS: Area-Detector Absorption Correction; Siemens Industrial Automation, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. Software for guided crystal structure analysis. J. Appl. Cryst. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Crystal Impact. DIAMOND—Crystal and Molecular Structure Visualization; Version 3.2e2; Crystal Impact: Bonn, Germany, 2010. [Google Scholar]
- Wang, Y.; McGivern, D.R.; Cheng, L.; Li, G.; Lemon, S.M.; Niu, J.; Su, L.; Reszka-Blanco, N.J. Ribavirin Contributes to Hepatitis C Virus Suppression by Augmenting pDC Activation and Type 1 IFN Production. PLoS ONE 2015, 10, e0135232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaveroux, C.; Bruhat, A.; Carraro, V.; Jousse, C.; Averous, J.; Maurin, A.C.; Parry, L.; Mesclon, F.; Muranishi, Y.; Cordelier, P.; et al. Regulating the expression of therapeutic transgenes by controlled intake of dietary essential amino acids. Nat. Biotechnol. 2016, 34, 746–751. [Google Scholar] [CrossRef]
Bond Distances (Å) | |||
---|---|---|---|
Compound 1 | Compound 2 | ||
Cr(1)—O(1) | 1.9172(18) | Cr(1)—O(1) | 1.8911(14) |
Cr(1)—O(2) | 1.8924(17) | Cr(1)—O(2) | 1.9488(14) |
Cr(1)—O(5) | 1.973(2) | Cr(1)—O(5) | 1.9957(18) |
Cr(1)—O(6) | 1.986(2) | Cr(1)—O(6) | 1.9447(18) |
Cr(1)—N(1) | 2.065(2) | Cr(1)—N(1) | 2.0528(18) |
Cr(1)—N(2) | 2.061(2) | Cr(1)—N(2) | 2.0838(17) |
Angles (°) | |||
Compound 1 | Compound 2 | ||
O(1)—Cr(1)—O(2) | 93.08(7) | O(1)—Cr(1)—O(2) | 94.17(6) |
O(1)—Cr(1)—O(5) | 88.76(9) | O(1)—Cr(1)—O(5) | 91.97(7) |
O(2)—Cr(1)—O(5) | 91.64(9) | O(2)—Cr(1)—O(5) | 89.39(7) |
O(1)—Cr(1)—O(6) | 91.30(9) | O(1)—Cr(1)—O(6) | 93.05(7) |
O(2)—Cr(1)—O(6) | 89.60(8) | O(2)—Cr(1)—O(6) | 89.62(7) |
O(5)—Cr(1)—O(6) | 178.76(8) | O(5)—Cr(1)—O(6) | 174.95(7) |
O(1)—Cr(1)—N(1) | 94.30(8) | O(1)—Cr(1)—N(1) | 94.34(7) |
O(2)—Cr(1)—N(1) | 172.59(8) | O(2)—Cr(1)—N(1) | 171.39(7) |
O(5)—Cr(1)—N(1) | 89.21(9) | O(5)—Cr(1)—N(1) | 88.99(8) |
O(6)—Cr(1)—N(1) | 89.54(8) | O(6)—Cr(1)—N(1) | 91.25(8) |
O(1)—Cr(1)—N(2) | 172.88(8) | O(1)—Cr(1)—N(2) | 173.96(7) |
O(2)—Cr(1)—N(2) | 93.91(8) | O(2)—Cr(1)—N(2) | 91.87(6) |
O(5)—Cr(1)—N(2) | 89.68(9) | O(5)—Cr(1)—N(2) | 88.01(7) |
O(6)—Cr(1)—N(2) | 90.11(8) | O(6)—Cr(1)—N(2) | 87.07(7) |
N(1)—Cr(1)—N(2) | 78.73(9) | N(1)—Cr(1)—N(2) | 79.62(7) |
Crystal Data | Compound 1 | Compound 2 |
---|---|---|
Chemical formula | C25H24CrN4O13.50 | C27H21CrN4O12 |
Mr | 648.48 | 645.48 |
Crystal system | Triclinic | Monoclinic |
Space group | Pī | P21/n |
Temperature (K) | 295 | 295 |
a (Å) | 8.3924 (8) | 12.5502 (17) |
b (Å) | 11.1091 (11) | 18.337 (2) |
c (Å) | 16.7214 (15) | 13.5063 (18) |
α (°) | 91.576 (3) | 90 |
β (°) | 101.702 (3) | 103.644 (4) |
γ (°) | 92.931 (3) | 90 |
V (Å3) | 1523.4 (3) | 3020.6 (7) |
Z | 2 | 4 |
Radiation type | Mo Kα | Mo Kα |
μ (mm−1) | 0.45 | 0.45 |
Crystal size (mm) | 0.15 × 0.12 × 0.08 | 0.24 × 0.22 × 0.10 |
Data Collection | ||
Diffractometer | Bruker Kappa Apex2 | |
Absorption correction | Numerical | |
Tmin, Tmax | 0.95, 0.96 | 0.91, 0.96 |
Reflections, number of | ||
measured | 26,395 | 37,384 |
independent | 5916 | 5729 |
observed [I > 2.0σ(I)] | 4343 | 4584 |
Rint | 0.022 | 0.018 |
(sin θ/λ)max (Å−1) | 0.617 | 0.611 |
Refinement | ||
R[F2 > 2σ(F2)] | 0.043 | 0.043 |
Rw(F2) | 0.103 | 0.062 |
S | 1 | 1 |
No. of reflections | 4343 | 4584 |
No. of parameters | 404 | 393 |
No. of restraints | 6 | 17 |
H-atom treatment | H-atom parameters constrained | |
Δρmax, Δρmin (e Å−3) | 0.38, −0.90 | 0.43, −0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsia, S.; Tsave, O.; Hatzidimitriou, A.; Salifoglou, A. Chromium Flavonoid Complexation in an Antioxidant Capacity Role. Int. J. Mol. Sci. 2022, 23, 7171. https://doi.org/10.3390/ijms23137171
Matsia S, Tsave O, Hatzidimitriou A, Salifoglou A. Chromium Flavonoid Complexation in an Antioxidant Capacity Role. International Journal of Molecular Sciences. 2022; 23(13):7171. https://doi.org/10.3390/ijms23137171
Chicago/Turabian StyleMatsia, Sevasti, Olga Tsave, Antonios Hatzidimitriou, and Athanasios Salifoglou. 2022. "Chromium Flavonoid Complexation in an Antioxidant Capacity Role" International Journal of Molecular Sciences 23, no. 13: 7171. https://doi.org/10.3390/ijms23137171
APA StyleMatsia, S., Tsave, O., Hatzidimitriou, A., & Salifoglou, A. (2022). Chromium Flavonoid Complexation in an Antioxidant Capacity Role. International Journal of Molecular Sciences, 23(13), 7171. https://doi.org/10.3390/ijms23137171