A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae
Abstract
1. Introduction
2. Results
2.1. Stationary Growth Aids Resistance to Dehydration
2.2. Mitochondrial Network Exhibited Fragmented Morphology in Stationary Phase
2.3. Disrupted Mitochondrial Dynamics Impairs Resistance to Dehydration
2.4. Dynamic Processes Mediated mtDNA Maintenance Is Correlated with Dehydration Resistance
2.5. Disrupted Dynamic Processes Change Mitochondrial Activity
3. Discussion
3.1. Mitochondrial Dynamics Changes along with Growth and Nutrition Supply Conditions
3.2. Disrupted Fusion and Fission Balance Is Associated with mtDNA Loss and Lower Desiccation Tolerance
3.3. Desiccation Tolerance Relies on Well-Regulated Mitochondrial Dynamics to Maintain Organellar Integrity and Signaling
4. Materials and Methods
4.1. Yeast Strain Constructions and Growth Conditions
4.2. Desiccation and Rehydration
4.3. Cell Viability Assay
4.4. Microscopy
4.5. Quantitative PCR for mtDNA
4.6. High Resolution Respirometry
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rapoport, A.; Golovina, E.A.; Gervais, P.; Dupont, S.; Beney, L. Anhydrobiosis: Inside yeast cells. Biotechnol. Adv. 2019, 37, 51–67. [Google Scholar] [CrossRef]
- Rapoport, A. Anhydrobiosis and Dehydration of Yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A.A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 87–116. [Google Scholar]
- Rapoport, A.; Turchetti, B.; Buzzini, P. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals. World J. Microb. Biot. 2016, 32. [Google Scholar] [CrossRef]
- Tapia, H.; Young, L.; Fox, D.; Bertozzi, C.R.; Koshland, D. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2015, 112, 6122–6127. [Google Scholar] [CrossRef] [PubMed]
- Tapia, H.; Koshland, D.E. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr. Biol. 2014, 24, 2758–2766. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Rapoport, A.; Gervais, P.; Beney, L. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl. Microbiol. Biotechnol. 2014, 98, 8821–8834. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martinez, G.; Rodriguez-Porrata, B.; Margalef-Catala, M.; Cordero-Otero, R. The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance. PLoS ONE 2012, 7, e33324. [Google Scholar] [CrossRef] [PubMed]
- Khroustalyova, G.; Rapoport, A. Anhydrobiosis in Yeasts: Changes in Mitochondrial Membranes Improve the Resistance of Saccharomyces cerevisiae Cells to Dehydration-Rehydration. Fermentation 2019, 5, 82. [Google Scholar] [CrossRef]
- Kuliesiene, N.; Zukiene, R.; Khroustalyova, G.; Chang, C.R.; Rapoport, A.; Daugelavicius, R. Changes in Energy Status of Saccharomyces cerevisiae Cells during Dehydration and Rehydration. Microorganisms 2021, 9, 444. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Votta, S.; Guaragnella, N.; Zambuto, M.; Romaniello, R.; Romano, P. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance. FEMS Yeast Res. 2016, 16. [Google Scholar] [CrossRef]
- Picazo, C.; Gamero-Sandemetrio, E.; Orozco, H.; Albertin, W.; Marullo, P.; Matallana, E.; Aranda, A. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production. Lett. Appl. Microbiol. 2015, 60, 217–222. [Google Scholar] [CrossRef]
- Koshland, D.; Tapia, H. Desiccation tolerance: An unusual window into stress biology. Mol. Biol. Cell 2019, 30, 737–741. [Google Scholar] [CrossRef]
- Yapa, N.M.B.; Lisnyak, V.; Reljic, B.; Ryan, M.T. Mitochondrial dynamics in health and disease. FEBS Lett. 2021. [Google Scholar] [CrossRef]
- Loncke, J.; Kaasik, A.; Bezprozvanny, I.; Parys, J.B.; Kerkhofs, M.; Bultynck, G. Balancing ER-Mitochondrial Ca(2+) Fluxes in Health and Disease. Trends Cell Biol. 2021. [Google Scholar] [CrossRef]
- Wanderoy, S.; Hees, J.T.; Klesse, R.; Edlich, F.; Harbauer, A.B. Kill one or kill the many: Interplay between mitophagy and apoptosis. Biol. Chem. 2020, 402, 73–88. [Google Scholar] [CrossRef]
- Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef]
- Calahan, D.; Dunham, M.; DeSevo, C.; Koshland, D.E. Genetic analysis of desiccation tolerance in Sachharomyces cerevisiae. Genetics 2011, 189, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Brenner, R.; Boothby, T.C.; Zhang, Z. Membrane and lipid metabolism plays an important role in desiccation resistance in the yeast Saccharomyces cerevisiae. BMC Microbiol. 2020, 20, 338. [Google Scholar] [CrossRef]
- Ratnakumar, S.; Hesketh, A.; Gkargkas, K.; Wilson, M.; Rash, B.M.; Hayes, A.; Tunnacliffe, A.; Oliver, S.G. Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol. Biosyst. 2011, 7, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21, 204–224. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cheng, T.H.; Lin, W.L.; Chen, C.L.; Yang, W.Y.; Blackstone, C.; Chang, C.R. Srv2 Is a Pro-fission Factor that Modulates Yeast Mitochondrial Morphology and Respiration by Regulating Actin Assembly. iScience 2019, 11, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Moehlman, A.T.; Youle, R.J. Mitochondrial Quality Control and Restraining Innate Immunity. Annu. Rev. Cell Dev. Biol. 2020, 36, 265–289. [Google Scholar] [CrossRef] [PubMed]
- Bleazard, W.; McCaffery, J.M.; King, E.J.; Bale, S.; Mozdy, A.; Tieu, Q.; Nunnari, J.; Shaw, J.M. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1999, 1, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Itoh, K.; Sesaki, H. SnapShot: Mitochondrial dynamics. Cell 2011, 145, 1158–1158.e1. [Google Scholar] [CrossRef]
- Blackstone, C.; Chang, C.R. Mitochondria unite to survive. Nat. Cell Biol. 2011, 13, 521–522. [Google Scholar] [CrossRef]
- Chang, C.R.; Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. N. Y. Acad. Sci. 2010, 1201, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Abrisch, R.G.; Gumbin, S.C.; Wisniewski, B.T.; Lackner, L.L.; Voeltz, G.K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 2020, 219. [Google Scholar] [CrossRef] [PubMed]
- Borovikova, D.; Teparic, R.; Mrsa, V.; Rapoport, A. Anhydrobiosis in yeast: Cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration. Yeast 2016, 33, 347–353. [Google Scholar] [CrossRef]
- Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8, e1000298. [Google Scholar] [CrossRef]
- Kondadi, A.K.; Anand, R.; Reichert, A.S. Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity. Int. J. Mol. Sci. 2019, 20, 4311. [Google Scholar] [CrossRef]
- Chen, H.; Vermulst, M.; Wang, Y.E.; Chomyn, A.; Prolla, T.A.; McCaffery, J.M.; Chan, D.C. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010, 141, 280–289. [Google Scholar] [CrossRef]
- Miyakawa, I. Organization and dynamics of yeast mitochondrial nucleoids. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 339–359. [Google Scholar] [CrossRef]
- Pesta, D.; Gnaiger, E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012, 810, 25–58. [Google Scholar]
- Leadsham, J.E.; Gourlay, C.W. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol. 2010, 11, 92. [Google Scholar] [CrossRef]
- Zambuto, M.; Romaniello, R.; Guaragnella, N.; Romano, P.; Votta, S.; Capece, A. Identification by phenotypic and genetic approaches of an indigenous Saccharomyces cerevisiae wine strain with high desiccation tolerance. Yeast 2017, 34, 417–426. [Google Scholar] [CrossRef]
- Weinhandl, K.; Winkler, M.; Glieder, A.; Camattari, A. Carbon source dependent promoters in yeasts. Microb. Cell Fact. 2014, 13, 5. [Google Scholar] [CrossRef]
- Kitagaki, H.; Araki, Y.; Funato, K.; Shimoi, H. Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 2007, 581, 2935–2942. [Google Scholar] [CrossRef]
- Knorre, D.A.; Ojovan, S.M.; Saprunova, V.B.; Sokolov, S.S.; Bakeeva, L.E.; Severin, F.F. Mitochondrial matrix fragmentation as a protection mechanism of yeast Saccharomyces cerevisiae. Biochemistry 2008, 73, 1254–1259. [Google Scholar] [CrossRef]
- Klecker, T.; Scholz, D.; Förtsch, J.; Westermann, B. The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J. Cell Sci. 2013, 126, 2924. [Google Scholar] [CrossRef]
- Mao, K.; Wang, K.; Liu, X.; Klionsky, D.J. The Scaffold Protein Atg11 Recruits Fission Machinery to Drive Selective Mitochondria Degradation by Autophagy. Dev. Cell 2013, 26, 9–18. [Google Scholar] [CrossRef]
- Abeliovich, H.; Zarei, M.; Rigbolt, K.T.G.; Youle, R.J.; Dengjel, J. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat. Commun. 2013, 4, 2789. [Google Scholar] [CrossRef]
- Osman, C.; Noriega, T.R.; Okreglak, V.; Fung, J.C.; Walter, P. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc. Natl. Acad. Sci. USA 2015, 112, E947–E956. [Google Scholar] [CrossRef]
- Goldring, E.S.; Grossman, L.I.; Marmur, J. Petite Mutation in Yeast. J. Bacteriol. 1971, 107, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Kwolek-Mirek, M.; Zadrag-Tecza, R. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 2014, 14, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Westermann, B.; Neupert, W. Mitochondria-targeted green fluorescent proteins: Convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 2000, 16, 1421–1427. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-L.; Chen, Y.-C.; Huang, W.-L.; Lin, S.; Daugelavičius, R.; Rapoport, A.; Chang, C.-R. A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. Int. J. Mol. Sci. 2021, 22, 4607. https://doi.org/10.3390/ijms22094607
Chen C-L, Chen Y-C, Huang W-L, Lin S, Daugelavičius R, Rapoport A, Chang C-R. A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. International Journal of Molecular Sciences. 2021; 22(9):4607. https://doi.org/10.3390/ijms22094607
Chicago/Turabian StyleChen, Chang-Lin, Ying-Chieh Chen, Wei-Ling Huang, Steven Lin, Rimantas Daugelavičius, Alexander Rapoport, and Chuang-Rung Chang. 2021. "A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae" International Journal of Molecular Sciences 22, no. 9: 4607. https://doi.org/10.3390/ijms22094607
APA StyleChen, C.-L., Chen, Y.-C., Huang, W.-L., Lin, S., Daugelavičius, R., Rapoport, A., & Chang, C.-R. (2021). A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 22(9), 4607. https://doi.org/10.3390/ijms22094607