Elastic Electron Scattering from Methane Molecule in the Energy Range from 50–300 eV
Abstract
:1. Introduction
2. Theory
3. Experiment
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
R. F. | radio frequency |
PECVD | plasma-enhanced chemical vapor deposition |
DCSs | differential cross-sections |
ICSs | integral cross-sections |
MTCSs | momentum transfer cross-sections |
SCAR | screen corrected additivity rule |
ELSEPA | Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules |
DCMA | double cylindrical mirror analyzer |
RFM | relative flow method |
TCS | total cross-section |
References
- Zhang, J.A.; Paige, D.A. Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins. Geophys. Res. Lett. 2009, 36, L16203. [Google Scholar] [CrossRef]
- Oyama, V.I.; Carle, G.C.; Woeller, F.; Pollack, J.B.; Reynolds, R.T.; Craig, R.A. Pioneer Venus gas chromatography of the lower atmosphere of Venus. J. Geophys. Res. 1980, 85, 7891–7902. [Google Scholar] [CrossRef]
- Krasnopolsky, V.A.; Maillard, J.P.; Owen, T.C. Detection of methane in the martian atmosphere: Evidence for life? Icarus 2004, 172, 537–547. [Google Scholar] [CrossRef]
- Teylor, F.W.; Atreya, S.K.; Encrenaz, T.; Hunter, D.M.; Irwin, P.G.J.; Owen, T.C. The composition of the atmosphere of Jupiter. In Jupiter: The Planet, Satellites and Magnetosphere, 1st ed.; Bagenal, F., Dowling, T., McKinnon, W.B., Eds.; Cambridge Univ. Press: Cambridge, UK, 2004; pp. 59–78. [Google Scholar]
- Fletcher, L.N.; Orton, G.S.; Teanby, N.A.; Irwin, P.G.J.; Bjoraken, G.I. Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 2009, 199, 351–367. [Google Scholar] [CrossRef]
- Bezard, B.; Romani, P.N.; Conrath, B.J.; Maguire, W.C. Hydrocarbons in Neptune’s stratosphere from Voyager infrared observations. J. Geophys. Res. 1991, 96, 18961–18975. [Google Scholar] [CrossRef]
- Karkoschka, E.; Tomasko, M.G. The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 2011, 211, 780–797. [Google Scholar] [CrossRef]
- Houghton, J. Global warming. Rep. Prog. Phys. 2005, 68, 1343–1403. [Google Scholar] [CrossRef]
- Yusuf, R.O.; Noor, Z.; Abba, A.H.; Hassan, M.A.; Din, M.F.M. Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renew. Sustain. Energy Rev. 2012, 16, 5059–5070. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Hall, B.D.; Montzka, S.A.; Dutton, G.; Muühle, J.; Elkins, J.W. Long-lived greenhouse gases. Bull. Am. Meteor. Soc. 2019, 100, S48–S50. [Google Scholar]
- Sharma, R.; Woehrl, N.; Vrućinić, M.; Timpner, M.; Buck, V.; Barhai, P.K. Effect of microwave power and C2 emission intensity on structural and surface properties of nanocrystalline diamond films. Thin Solid Films 2011, 519, 7632–7637. [Google Scholar] [CrossRef]
- Fraga, M.; Rodrigo Pessoa, R. Progresses in Synthesis and Application of SiC Films: From CVD to ALD and from MEMS to NEMS. Micromachines 2020, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Horton, L.D. Atomic and molecular data needs for fusion research. Phys. Scr. 1996, T65, 175–178. [Google Scholar] [CrossRef]
- Blanco, F.; Ellis-Gibbings, L.; García, G. Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules. Chem. Phys. Lett. 2016, 645, 71–75. [Google Scholar] [CrossRef]
- Allan, M. Improved techniques of measuring accurate electron-molecule cross sections near threshold and over a large angular range. AIP Conf. Proc. 2007, 901, 107–116. [Google Scholar] [CrossRef]
- Marinković, B.P.; Srećković, V.A.; Vujčić, V.; Ivanović, S.; Uskoković, N.; Nešić, M.; Ignjatović, L.M.; Jevremović, D.; Dimitrijević, M.S.; Mason, N.J. BEAMDB and MOLD–Databases at the Serbian Virtual Observatory for collisional and radiative processes. Atoms 2019, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Song, M.Y.; Yoon, J.S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross Sections for Electron Collisions with Methane. J. Phys. Chem. Ref. Data 2015, 44, 023101. [Google Scholar] [CrossRef] [Green Version]
- Bettega, M.H.F.; do Varella, M.T.N.; Lima, M.A. Polarization effects in the elastic scattering of low-energy electrons by XH4 X=(C, Si, Ge, Sn, Pb). Phys. Rev. A 2003, 68, 012706. [Google Scholar] [CrossRef] [Green Version]
- Bundschu, C.T.; Gibson, J.C.; Gulley, R.J.; Brunger, M.J.; Buckman, S.J.; Sanna, N.; Gianturco, F.A. Low-energy electron scattering from methane. J. Phys. B 1997, 30, 2239–2259. [Google Scholar] [CrossRef]
- Shyn, T.W.; Cravens, T.E. Angular distribution of electrons elastically scattered from CH4. J. Phys. B 1990, 23, 293–300. [Google Scholar] [CrossRef]
- Sohn, W.; Kochem, K.-H.; Scheuerlein, K.-M.; Jung, K.; Ehrhardt, H. Elastic electron scattering from CH4 for collision energies between 0.2 and 5 eV. J. Phys. B 1986, 19, 3625–3632. [Google Scholar] [CrossRef]
- Varambhia, H.N.; Munro, J.J.; Tennyson, J. R-matrix calculations of low-energy electron alkane collisions. Int. J. Mass Spectrom. 2008, 271, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tennyson, J. Electron–molecule collision calculations using the R-matrix method. Phys. Rep. 2010, 491, 29–76. [Google Scholar] [CrossRef]
- Brigg, W.J.; Tennyson, J.; Plummer, M. R-matrix calculations of low-energy electron collisions with methane. J. Phys. B 2014, 47, 185203. [Google Scholar] [CrossRef]
- Boesten, L.; Tanaka, H. Elastic DCS for e+CH4 collisions, 1.5–100 eV. J. Phys. B 1991, 24, 821–832. [Google Scholar] [CrossRef]
- Vušković, L.; Trajmar, S. Electron impact excitation of methane. J. Chem. Phys. 1983, 78, 4947–4951. [Google Scholar] [CrossRef]
- Tanaka, H.; Okada, T.; Boesten, L.; Suzuki, T.; Yamamoto, T.; Kubo, M. Differential cross sections for elastic scattering of electrons by CH4 in the energy range of 3 to 20 eV. J. Phys. B 1982, 15, 3305–3319. [Google Scholar] [CrossRef]
- Dhal, S.S.; Srivastava, B.B.; Shingal, R. Elastic scattering of electrons by methane molecules at intermediate energies. J. Phys. B 1979, 12, 2727–2734. [Google Scholar] [CrossRef]
- Cho, H.; Park, Y.S.; Castro, E.A.Y.; de Souza, G.L.C.; Iga, I.; Machado, L.E.; Brescansin, L.M.; Lee, M.-T. A comparative experimental–theoretical study on elastic electron scattering by methane. J. Phys. B 2008, 41, 045203. [Google Scholar] [CrossRef]
- Sakae, T.; Sumiyoshi, S.; Murakami, E.; Matsumoto, Y.; Ishibashi, K.; Katase, A. Scattering of electrons by CH4, CF4 and SF6 in the 75-700 eV range. J. Phys. B 1989, 22, 1385–1394. [Google Scholar] [CrossRef]
- Iga, I.; Lee, M.-T.; Homem, M.G.P.; Machado, L.E.; Brescansin, L.M. Elastic cross sections for e--CH4 collisions at intermediate energies. Phys. Rev. A 2000, 61, 022708. [Google Scholar] [CrossRef]
- Jain, A. Total (elastic + absorption) cross sections for e-CH4 collisions in a spherical model at 0.10–500 eV. Phys. Rev. A 1986, 34, 3707–3722. [Google Scholar] [CrossRef]
- Mahato, D.; Sharma, L.; Stauffer, A.D.; Srivastava, R. Electron impact elastic scattering from methane and silane molecules. Eur. Phys. J. D 2019, 73, 189. [Google Scholar] [CrossRef]
- Fuss, M.C.; Muñoz, A.; Oller, J.C.; Blanco, F.; Hubin-Franskin, M.-J.; Almeida, D.; Limão-Vieira, P.; García, G. Electron–methane interaction model for the energy range 0.1–10,000 eV. Chem. Phys. Lett. 2010, 486, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Furness, J.B.; McCarthy, I.E. Semiphenomenological optical model for electron scattering on atoms. J. Phys. B 1973, 6, 2280–2291. [Google Scholar] [CrossRef]
- Salvat, F. Optical-model potential for electron and positron elastic scattering by atoms. Phys. Rev. A 2003, 68, 012708. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 79th ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Perdew, J.P.; Zunger, A. Self interaction correction to density functional approximations for many electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Mott, N.F. The scattering of fast electrons by atomic nuclei. Proc. R. Soc. Lond. Ser. A 1929, 124, 425–442. [Google Scholar] [CrossRef]
- Salvat, F.; Jablonski, A.; Powell, C.J. ELSEPA Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 2005, 165, 157–190. [Google Scholar] [CrossRef]
- Lucas, B.C. Atomic and Molecular Beams Production and Collimation; CRC Press: Boca Raton, FL, USA, 2012; pp. 217–223. [Google Scholar]
- Ranković, M.; Maljković, J.B.; Tökési, K.; Marinković, B.P. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV. Eur. Phys. J. D 2018, 72, 30. [Google Scholar] [CrossRef]
- Williams, J.F.; Willis, B.A. The scattering of electrons from inert gases I. Absolute differential elastic cross sections for argon atoms. J. Phys. B 1975, 8, 1670–1682. [Google Scholar] [CrossRef]
- Maljković, J.B.; Blanco, F.; García, G.; Marinković, B.P.; Milosavljević, A.R. Absolute cross sections for elastic electron scattering from methylformamide. Phys. Rev. A 2012, 85, 042723. [Google Scholar] [CrossRef] [Green Version]
- Olander, D.R.; Kruger, V. Molecular Beam Sources Fabricated from Multichannel Arrays. III. The Exit Density Problem. J. Appl. Phys. 1970, 41, 2769–2776. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Ishikawa, T.; Masai, T.; Sagara, T.; Boesten, L.; Takekawa, M.; Itikawa, Y.; Kimura, M. Elastic collisions of low- to intermediate-energy electrons from carbon dioxide: Experimental and theoretical differential cross sections. Phys. Rev. A 1998, 57, 1798–1808. [Google Scholar] [CrossRef]
- Buckman, S.J.; Gulley, R.J.; Moghbelalhossein, M.; Bennett, S.J. Spatial profiles of effusive molecular beams and their dependence on gas species. Meas. Sci. Technol. 1993, 4, 1143–1153. [Google Scholar] [CrossRef]
- Maljković, J.B.; Vuković, J.; Tökési, K.; Predojević, B.; Marinković, B.P. Elastic electron scattering cross sections for triethyl phosphate molecule at intermediate electron energies from 50 to 250 eV. Eur. Phys. J. D 2019, 73, 27. [Google Scholar] [CrossRef]
- Bartschat, K.; Tennyson, J.; Zatsarinny, O. Quantum-Mechanical Calculations of Cross Sections for Electron Collisions with Atoms and Molecules. Plasma Process. Polym. 2017, 14, 1600093. [Google Scholar] [CrossRef] [Green Version]
- Djurić, N.; Cadež, I.; Kurepa, M. Electron impact total ionization cross-sections for methane, ethane and propane. Int. J. Mass Spectrom. Ion Process. 1991, 108, R1–R10. [Google Scholar] [CrossRef]
- Zecca, A.; Karwasz, G.; Brusa, R.S.; Szmytkowski, C. Absolute total cross sections for electron scattering on CH4 molecules in the 1-4000 eV energy range. J. Phys. B 1991, 24, 2747–2754. [Google Scholar] [CrossRef]
- García, G.; Manero, F. Electron scattering by CH4 molecules at intermediate energies (400–5000 eV). Phys. Rev. A 1998, 57, 1069–1073. [Google Scholar] [CrossRef]
Authors | Experiment Type with Normalization Method/Theoretical Approach | Energy Range (eV) | Angular Range (°) |
---|---|---|---|
Boesten and Tanaka [25] | Crossed beams, simultaneous measurements of DCS of He | 1.5–100 | 10–130 |
Vušković and Trajmar [26] | Crossed beams, normalized to other authors results | 20–200 | 8–130 |
Cho et al. [29] | Crossed beams, relative flow (He)/Schwinger variational method | 5–100 | 10–180 |
Sakae et al. [30] | Crossed beams, relative flow (He) | 75–700 | 5–135 |
Iga et al. [31] | Crossed beams, relative flow (Ne)/Schwinger variational method | 100–500/ | 10–135 |
1–500 | |||
Jain [32] | Spherical optical complex potential model | 0.1–500 | 0–180 |
Mahato et al. [33] | Gaussian wave functions | 10–500 | 0–180 |
Fuss et al. [34] | Optical potential method and the independent atom approximation including the screen corrected additivity rule (SCAR) | 0.7–10,000 | 0–180 |
θ (°) | DCS (10−20 m2sr−1) | |||||
---|---|---|---|---|---|---|
50 (eV) | 100 (eV) | 150 (eV) | 200 (eV) | 250 (eV) | 300 (eV) | |
0 | 17.5(5.3) | 19.3(5.9) | 25.1(7.9) | 24.0(7.4) | 24.5(7.0) | 23.4(6.6) |
5 | 13.8(4.1) | 13.2(4.0) | 15.8(4.7) | 13.5(4.1) | 12.9(3.9) | 11.0(3.3) |
10 | 9.8(2.9) | 7.9(2.5) | 7.9(2.5) | 6.1(1.9) | 5.0(1.4) | 3.9(1.1) |
15 | 6.3(1.9) | 3.9(1.2) | 3.2(1.0) | 2.43(0.76) | 1.50(43) | 1.07(30) |
20 | 3.7(1.1) | 1.70(53) | 1.09(35) | 0.83(0.26) | 0.43(12) | 0.435(78) |
25 | 1.96(60) | 0.98(30) | 0.45(14) | 0.39(12) | 0.325(93) | 0.277(78) |
30 | 1.30(40) | 0.61(19) | 0.277(87) | 0.246(76) | 0.200(57) | 0.181(51) |
35 | 0.73(22) | 0.40(12) | 0.194(61) | 0.175(54) | 0.136(39) | 0.128(36) |
40 | 0.50(12) | 0.288(89) | 0.162(51) | 0.132(41) | 0.106(22) | 0.100(20) |
45 | 0.384(88) | 0.230(55) | 0.127(31) | 0.105(25) | 0.072(15) | 0.058(12) |
50 | 0.302(70) | 0.174(41) | 0.090(22) | 0.072(17) | 0.053(11) | 0.0423(85) |
55 | 0.249(57) | 0.128(30) | 0.061(15) | 0.055(13) | 0.0413(85) | 0.0347(70) |
60 | 0.206(47) | 0.091(22) | 0.047(12) | 0.044(10) | 0.0324(67) | 0.0264(53) |
65 | 0.173(40) | 0.068(16) | 0.0398(99) | 0.0362(88) | 0.0271(57) | 0.0214(43) |
70 | 0.144(33) | 0.055(13) | 0.0340(84) | 0.0306(74) | 0.0229(48) | 0.0186(38) |
75 | 0.111(26) | 0.0451(11) | 0.0305(76) | 0.0291(71) | 0.0211(44) | 0.0154(31) |
80 | 0.092(21) | 0.0409(98) | 0.0283(70) | 0.0252(61) | 0.0181(38) | 0.0120(25) |
85 | 0.072(17) | 0.0381(93) | 0.0284(71) | 0.0244(59) | 0.0145(31) | 0.0107(22) |
90 | 0.067(16) | 0.0403(96) | 0.0263(66) | 0.0212(52) | 0.0121(26) | 0.0096(20) |
95 | 0.062(14) | 0.043(10) | 0.0274(68) | 0.0195(48) | 0.0120(26) | 0.0088(18) |
100 | 0.061(14) | 0.047(11) | 0.0256(64) | 0.0183(45) | 0.0118(26) | 0.0088(18) |
105 | 0.066(15) | 0.049(12) | 0.0252(63) | 0.0185(45) | 0.0106(23) | 0.0085(18) |
110 | 0.078(18) | 0.051(12) | 0.0250(62) | 0.0160(39) | 0.0099(22) | 0.0078(16) |
115 | 0.087(20) | 0.057(14) | 0.0250(62) | 0.0154(38) | 0.0094(21) | 0.0078(16) |
120 | 0.102(24) | 0.061(15) | 0.0260(65) | 0.0155(38) | 0.0092(20) | 0.0073(15) |
125 | 0.118(27) | 0.063(15) | 0.0264(66) | 0.0141(35) | 0.0092(20) | 0.0075(16) |
130 | 0.136(31) | 0.066(16) | 0.0258(63) | 0.0139(35) | 0.0092(20) | 0.0072(15) |
140 | 0.176(41) | 0.071(17) | 0.0249(61) | 0.0140(35) | 0.0091(20) | 0.0066(14) |
150 | 0.230(53) | 0.074(18) | 0.0244(61) | 0.0142(35) | 0.0089(20) | 0.0061(13) |
160 | 0.311(72) | 0.077(18) | 0.0243(61) | 0.0144(36) | 0.0086(19) | 0.0059(12) |
170 | 0.44(10) | 0.079(19) | 0.0243(61) | 0.0144(36) | 0.0084(19) | 0.0058(12) |
180 | 0.67(15) | 0.079(19) | 0.0243(61) | 0.0145(36) | 0.0083(19) | 0.0057(12) |
ICS’s | 6.1(1.8) | 3.8(1.2) | 2.95(0.92) | 2.37(0.74) | 1.89(0.55) | 1.56(0.47) |
MTCS’s | 2.09(0.53) | 0.98(0.26) | 0.45(0.13) | 0.33(0.10) | 0.222(0.054) | 0.177(0.043) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukalović, J.; Maljković, J.B.; Tökési, K.; Predojević, B.; Marinković, B.P. Elastic Electron Scattering from Methane Molecule in the Energy Range from 50–300 eV. Int. J. Mol. Sci. 2021, 22, 647. https://doi.org/10.3390/ijms22020647
Vukalović J, Maljković JB, Tökési K, Predojević B, Marinković BP. Elastic Electron Scattering from Methane Molecule in the Energy Range from 50–300 eV. International Journal of Molecular Sciences. 2021; 22(2):647. https://doi.org/10.3390/ijms22020647
Chicago/Turabian StyleVukalović, Jelena, Jelena B. Maljković, Karoly Tökési, Branko Predojević, and Bratislav P. Marinković. 2021. "Elastic Electron Scattering from Methane Molecule in the Energy Range from 50–300 eV" International Journal of Molecular Sciences 22, no. 2: 647. https://doi.org/10.3390/ijms22020647
APA StyleVukalović, J., Maljković, J. B., Tökési, K., Predojević, B., & Marinković, B. P. (2021). Elastic Electron Scattering from Methane Molecule in the Energy Range from 50–300 eV. International Journal of Molecular Sciences, 22(2), 647. https://doi.org/10.3390/ijms22020647