The Importance of Alpha-Actinin Proteins in Platelet Formation and Function, and Their Causative Role in Congenital Macrothrombocytopenia
Abstract
1. Introduction
2. Actinin Genes and Proteins
3. Actinin in Platelet Activation and Adhesion
4. Molecular Interactions of Actinin in Platelets
4.1. Integrins
4.2. GPIb-IX-V
4.3. CLP36
4.4. Regulation of Actinin Molecular Interactions
5. Involvement of Actinin-1 in Platelet Formation
5.1. Megakaryocyte Maturation
5.2. Proplatelet Formation and Platelet Release
5.3. Proplatelet Fission
6. Genetic Studies Linking Actinin-1 to Platelet Production
6.1. Discovery of CMTP-Causing Actinin-1 Mutations
6.2. Known Cellular and Molecular Consequences of CMTP-Linked Actinin-1 Mutation
6.3. Effects of Actinin-1 Expression Levels on Platelet Production
7. Unanswered Questions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cines, D.B.; Bussel, J.B.; McMillan, R.B.; Zehnder, J.L. Congenital and acquired thrombocytopenia. Hematology 2004, 2004, 390–406. [Google Scholar] [CrossRef]
- Terrell, D.R.; Beebe, L.A.; George, J.N.; Vesely, S.K.; Mold, J.W. Referral of patients with thrombocytopenia from primary care clinicians to hematologists. Blood 2009, 113, 4126–4127. [Google Scholar] [CrossRef]
- Sorrentino, S.; Studt, J.D.; Medalia, O.; Tanuj Sapra, K. Roll, adhere, spread and contract: Structural mechanics of platelet function. Eur. J. Cell Biol. 2015, 94, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Westbury, S.K.; Shoemark, D.K.; Mumford, A.D. ACTN1 variants associated with thrombocytopenia. Platelets 2017, 28, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Nurden, A.T.; Nurden, P. Inherited disorders of platelet function: Selected updates. J. Thromb. Haemost. 2015, 13, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, A.; Ohanian, V.; Critchley, D. The structure and function of alpha-actinin. J. Muscle Res. Cell Motil. 1989, 10, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Virel, A.; Backman, L. Molecular evolution and structure of α-actinin. Mol. Biol. Evol. 2004, 21, 1024–1031. [Google Scholar] [CrossRef]
- Otey, C.A.; Carpen, O. α-Actinin Revisited: A Fresh Look at an Old Player. Cell Motil. Cytoskelet. 2004, 111, 104–111. [Google Scholar] [CrossRef]
- Ribeiro, E.D.A., Jr.; Pinotsis, N.; Ghisleni, A.; Salmazo, A.; Konarev, P.V.; Kostan, J.; Sjöblom, B.; Schreiner, C.; Polyansky, A.A.; Gkougkoulia, E.A.; et al. The structure and regulation of human muscle α-actinin. Cell 2014, 159, 1447–1460. [Google Scholar] [CrossRef]
- Young, P.; Gautel, M. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J. 2000, 19, 6331–6340. [Google Scholar] [CrossRef]
- Prebil, S.D.; Slapšak, U.; Pavšič, M.; Ilc, G.; Puž, V.; Ribeiro, E.D.A.; Anrather, D.; Hartl, M.; Backman, L.; Plavec, J.; et al. Structure and calcium-binding studies of calmodulin-like domain of human non-muscle α-actinin-1. Sci. Rep. 2016, 6, 27383. [Google Scholar] [CrossRef] [PubMed]
- Golji, J.; Collins, R.; Mofrad, M.R.K. Molecular mechanics of the α-actinin rod domain: Bending, torsional, and extensional behavior. PLoS Comput. Biol. 2009, 5, e1000389. [Google Scholar] [CrossRef]
- Foley, K.S.; Young, P.W. An analysis of splicing, actin-binding properties, heterodimerization and molecular interactions of the non-muscle α-actinins. Biochem. J. 2013, 452, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.; Stracher, A.; Burridge, K. Isolation and characterization of a calcium-sensitive alpha-actinin-like protein from human platelet cytoskeletons. J. Biol. Chem. 1981, 256, 12986–12991. [Google Scholar] [CrossRef]
- Izaguirre, G.; Aguirre, L.; Hu, Y.P.; Lee, H.Y.; Schlaepfer, D.D.; Aneskievich, B.J.; Haimovich, B. The cytoskeletal/non-muscle isoform of α-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J. Biol. Chem. 2001, 276, 28676–28685. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, J.M.; Vaudel, M.; Gambaryan, S.; Radau, S.; Walter, U.; Martens, L.; Geiger, J.; Sickmann, A.; Zahedi, R.P. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood J. Am. Soc. Hematol. 2012, 120, e73–e82. [Google Scholar] [CrossRef]
- Sorrentino, S.; Studt, J.; Bokstad, M.; Medalia, O.; Sapra, K.T. Toward correlating structure and mechanics of platelets. Cell Adh. Migr. 2016, 10, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Cahill, M.R.; Newland, A.C. Platelet activation in coronary artery disease. Br. J. Biomed. Sci. 1993, 50, 221–234. [Google Scholar]
- Rubenstein, D.A.; Yin, W. Platelet-activation mechanisms and vascular remodeling. Compr. Physiol. 2018, 8, 1117–1156. [Google Scholar]
- Schollmeyer, J.V.; Rao, G.H.R.; White, J.G. An actin-binding protein in human platelets. Interactions with α-actinin on gelatin of actin and the influence of cytochalasin B. Am. J. Pathol. 1978, 93, 433–446. [Google Scholar]
- Debus, E.; Weber, K.; Osborn, M. The cytoskeleton of blood platelets viewed by immunofluorescence microscopy. Eur. J. Cell Biol. 1981, 24, 45–52. [Google Scholar] [PubMed]
- Gonnella, P.A.; Nachmias, V.T. Platelet activation and microfilament bundling. J. Cell Biol. 1981, 89, 146–151. [Google Scholar] [CrossRef]
- Landon, F.; Gache, Y.; Touitou, H.; Olomucki, A. Properties of two isoforms of human blood platelet alpha-actinin. Eur. J. Biochem. 1985, 153, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Rotman, A. Receptor and non receptor-mediated activation of blood platelets. Effect on membrane-cytoskeleton interaction. Biochem. Biophys. Res. Commun. 1984, 120, 898–906. [Google Scholar] [CrossRef]
- Pho, D.B.; Desbruyeres, E.; Der Terrossian, E.; Olomucki, A. Cytoskeletons of ADP- and thrombin-stimulated platelets blood. FEBS 1986, 202, 117–121. [Google Scholar] [CrossRef]
- May, J.A.; Glenn, J.R.; Spangenberg, P.; Heptinstall, S. The composition of the platelet cytoskeleton following activation by ADP: Effects of various agents that modulate platelet function. Platelets 1996, 7, 159–168. [Google Scholar] [CrossRef]
- Jockusch, B.M.; Burger, M.M.; Da Prada, M.; Richards, J.G.; Chapponier, C.; Gabbiani, G. α-Actinin attached to membranes of secretory vesicles. Nature 1977, 270, 628–629. [Google Scholar] [CrossRef] [PubMed]
- Burn, P.; Rotman, A.; Meyer, R.K.; Burger, M.M. Diacylglycerol in large α-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature 1985, 314, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Billett, H.H.; Jenkins, C.S.; Maimon, J.J.; Spaet, T.H.; Puszkin, E.G. Platelet cytoskeleton: Immunofluorescence studies on ADP and collagen-activated platelets. J. Lab. Clin. Med. 1984, 103, 534–548. [Google Scholar] [PubMed]
- Takubo, T.; Hino, M.; Suzuki, K.; Tatsumi, N. Relative distribution of myosin, actin, and alpha-actinin in adherent monocytes. Eur. J. Histochem. 1999, 43, 71–77. [Google Scholar] [PubMed]
- Poulter, N.S.; Pollitt, A.Y.; Davies, A.; Malinova, D.; Nash, G.B.; Hannon, M.J.; Pikramenou, Z.; Rappoport, J.Z.; Hartwig, J.H.; Owen, D.M.; et al. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat. Commun. 2015, 6, 7254. [Google Scholar] [CrossRef] [PubMed]
- Gremmel, T.; Frelinger, A.L., III; Michelson, A.D. Platelet physiology. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2016. [Google Scholar]
- Otey, C.A.; Pavalko, F.M.; Burridge, K. An interaction between α-actinin land the β1 integrin subunit in vitro. J. Cell Biol. 1990, 111, 721–729. [Google Scholar] [CrossRef]
- Lin, S.Y.; Raval, S.; Zhang, Z.; Deverill, M.; Siminovitch, K.A.; Branch, D.R.; Haimovich, B. The protein-tyrosine phosphatase SHP-1 regulates the phosphorylation of α-actinin. J. Biol. Chem. 2004, 279, 25755–25764. [Google Scholar] [CrossRef]
- Sprague, C.R.; Fraley, T.S.; Hyo, S.J.; Lal, S.; Greenwood, J.A. Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain. J. Biol. Chem. 2008, 283, 9217–9223. [Google Scholar] [CrossRef] [PubMed]
- Corgan, A.M.; Singleton, C.; Santoso, C.B.; Greenwood, J.A. Phosphoinositides differentially regulate α-actinin flexibility and function. Biochem. J. 2004, 378, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Fraley, T.S.; Pereira, C.B.; Tran, T.C.; Singleton, C.A.; Greenwood, J.A. Phosphoinositide binding regulates α-actinin dynamics: Mechanism for modulating cytoskeletal remodeling. J. Biol. Chem. 2004, 280, 15479–15482. [Google Scholar] [CrossRef]
- Tadokoro, S.; Nakazawa, T.; Kamae, T.; Kiyomizu, K.; Kashiwagi, H.; Honda, S.; Kanakura, Y.; Tomiyama, Y. Apotential role for α-actinin in inside-out αIIbβ3 signaling. Blood 2011, 117, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Roca-Cusachs, P.; Del Rio, A.; Puklin-Faucher, E.; Gauthier, N.C.; Biais, N.; Sheetz, M.P. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. USA 2013, 110, E1361–E1370. [Google Scholar] [CrossRef]
- Shams, H.; Mofrad, M.R.K. α-Actinin Induces a Kink in the Transmembrane Domain of β3-Integrin and Impairs Activation via Talin. Biophys. J. 2017, 113, 948–956. [Google Scholar] [CrossRef]
- Simon, D.I.; Chen, Z.; Xu, H.; Li, C.Q.; Dong, J.-f.; McIntire, L.V.; Ballantyne, C.M.; Zhang, L.; Furman, M.I.; Berndt, M.C.; et al. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Exp. Med. 2000, 192, 193–204. [Google Scholar] [CrossRef]
- Boeckelmann, D.; Hengartner, H.; Greinacher, A.; Nowak-Göttl, U.; Sachs, U.; Peter, K.; Sandrock-Lang, K.; Zieger, B. Patients with Bernard-Soulier syndrome and different severity of the bleeding phenotype. Blood Cells. Mol. Dis. 2017, 67, 69–74. [Google Scholar] [CrossRef]
- Reséndiz, J.C.; Feng, S.; Ji, G.; Kroll, M.H. von Willebrand factor binding to platelet glycoprotein Ib-IX-V stimulates the assembly of an alpha-actinin-based signaling complex. J. Thromb. Haemost. 2004, 2, 161–169. [Google Scholar] [CrossRef]
- Feng, S.; Reséndiz, J.C.; Christodoulides, N.; Lu, X.; Arboleda, D.; Berndt, M.C.; Kroll, M.H. Pathological shear stress stimulates the tyrosine phosphorylation of α-actinin associated with the glycoprotein Ib-IX complex. Biochemistry 2002, 41, 1100–1108. [Google Scholar] [CrossRef]
- Bauer, K.; Kratzer, M.; Otte, M.; de Quintara, K.L.; Hagmann, J.; Arnold, G.J.; Eckerskorn, C.; Lottspeich, F.; Siess, W. Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000, 96, 4236–4245. [Google Scholar] [CrossRef]
- Bozulic, L.; Malik, M.; Powell, D.; Nanez, A.; Link, A.; Ramos, D. Plasma membrane Ca2+-ATPaseassociates withCLP36, α-actinin andactin in human platelets. Thromb. Haemost. 2007, 97, 587–597. [Google Scholar] [CrossRef]
- Shao, H.; Wu, C.; Wells, A. Phosphorylation of α-actinin 4 upon epidermal growth factor exposure regulates its interaction with actin. J. Biol. Chem. 2010, 285, 2591–2600. [Google Scholar] [CrossRef]
- Travers, T.; Shao, H.; Wells, A.; Camacho, C.J. Modeling the assembly of the multiple domains of α-actinin-4 and its role in actin cross-linking. Biophys. J. 2013, 104, 705–715. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Travers, T.; Shao, H.; Joughin, B.A.; Lauffenburger, D.A.; Wells, A.; Camacho, C.J. Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function. Sci. Signal. 2015, 8, ra51. [Google Scholar] [CrossRef]
- Shao, H.; Wang, A.; Lauffenburger, D.; Wells, A. Tyro3-mediated phosphorylation of ACTN4 at tyrosines is FAK-dependent and decreases susceptibility to cleavage by m-Calpain. Int. J. Biochem. Cell Biol. 2018, 95, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Travers, T.; Camacho, C.; Wells, A. The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading. Int. J. Biochem. Cell Biol. 2013, 45, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.S.; Young, P.W. The non-muscle functions of actinins: An update. Biochem. J. 2014, 459, 1–13. [Google Scholar] [CrossRef]
- Redondo, P.C.; Harper, A.G.S.; Harper, M.T.; Brownlow, S.L.; Rosado, J.A.; Sage, S.O. hTRPC1-associated α-actinin, and not hTRPC1 itself, is tyrosine phosphorylated during human platelet activation. J. Thromb. Haemost. 2007, 5, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, S.; Cardoso, M.H.M.; Morganti, R.P.; Thomazzi, S.; Lilla, S.; Murad, F.; De Nucci, G.; Antunes, E. Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: A role for -actinin nitration. Proc. Natl. Acad. Sci. USA 2006, 103, 3434–3439. [Google Scholar] [CrossRef] [PubMed]
- Poulter, N.S.; Thomas, S.G. Cytoskeletal regulation of platelet formation: Coordination of F-actin and microtubules. Int. J. Biochem. Cell Biol. 2015, 66, 69–74. [Google Scholar] [CrossRef]
- Machlus, K.R.; Thon, J.N.; Italiano, J.E. Interpreting the developmental dance of the megakaryocyte: A review of the cellular and molecular processes mediating platelet formation. Br. J. Haematol. 2014, 165, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Mukhina, S.; li Wang, Y.; Murata-Hori, M. α-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev. Cell 2007, 13, 554–565. [Google Scholar] [CrossRef]
- Elagib, K.E.; Rubinstein, J.D.; Delehanty, L.L.; Ngoh, V.S.; Greer, P.A.; Li, S.; Lee, J.K.; Li, Z.; Orkin, S.H.; Mihaylov, I.S.; et al. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev. Cell 2013, 607–620. [Google Scholar] [CrossRef][Green Version]
- Raslova, H.; Kauffmann, A.; Sekkaï, D.; Ripoche, H.; Larbret, F.; Robert, T.; Le Roux, D.T.; Kroemer, G.; Debili, N.; Dessen, P.; et al. Interrelation between polyploidization and megakaryocyte differentiation: A gene profiling approach. Blood 2007, 109, 3225–3234. [Google Scholar] [CrossRef]
- Machlus, K.R.; Italiano, J.E. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 2013, 201, 785–796. [Google Scholar] [CrossRef]
- Bender, M.; Thon, J.N.; Ehrlicher, A.J.; Wu, S.; Mazutis, L.; Deschmann, E. Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 2015, 125, 860–868. [Google Scholar] [CrossRef]
- Italiano, J.E., Jr.; Lecine, P.; Shivdasani, R.A.; Hartwig, J.H. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J. Cell Biol 1999, 147, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Kunishima, S.; Okuno, Y.; Yoshida, K.; Shiraishi, Y.; Sanada, M.; Muramatsu, H.; Chiba, K.; Tanaka, H.; Miyazaki, K.; Sakai, M.; et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am. J. Hum. Genet. 2013, 92, 431–438. [Google Scholar] [CrossRef]
- Hauschner, H.; Mor-Cohen, R.; Messineo, S.; Mansour, W.; Seligsohn, U.; Savoia, A.; Rosenberg, N. Abnormal cytoplasmic extensions associated with active αIIbβ3 are probably the cause for macrothrombocytopenia in Glanzmann thrombasthenia-like syndrome. Blood Coagul. Fibrinolysis 2015, 26, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Kunishima, S.; Tomiyama, Y.; Saito, H. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 2011, 117, 5479–5484. [Google Scholar] [CrossRef]
- Rosa, J.P.; Raslova, H.; Bryckaert, M. Filamin A: Key actor in platelet biology. Blood 2019, 134, 1279–1288. [Google Scholar] [CrossRef]
- Eckly, A.; Scandola, C.; Oprescu, A.; Michel, D.; Rinckel, J.-Y.; Proamer, F.; Hoffmann, D.; Receveur, N.; Léon, C.; Bear, J.E.; et al. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. J. Thromb. Haemost. 2020, 18, 2987–3001. [Google Scholar] [CrossRef]
- Schachtner, H.; Calaminus, S.D.J.; Sinclair, A.; Monypenny, J.; Blundell, M.P.; Leon, C.; Holyoake, T.L.; Thrasher, A.J.; Michie, A.M.; Machesky, L.M.; et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 2013, 121, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.; Rosten, E.; Monypenny, J.; Jovanovic-Talisman, T.; Burnette, D.T.; Lippincott-Schwartz, J.; Jones, G.E.; Heintzmann, R. Bayesian localisation microscopy reveals nanoscale podosome dynamics. Nat. Methods 2012, 9, 195–200. [Google Scholar] [CrossRef]
- van den Dries, K.; Schwartz, S.L.; Byars, J.; Meddens, M.B.M.; Bolomini-Vittori, M.; Lidke, D.S.; Figdor, C.G.; Lidke, K.A.; Cambi, A. Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Mol. Biol. Cell 2013, 24, 2112–2123. [Google Scholar] [CrossRef]
- van den Dries, K.; Nahidiazar, L.; Slotman, J.A.; Meddens, M.B.M.; Pandzic, E.; Joosten, B.; Ansems, M.; Schouwstra, J.; Meijer, A.; Steem, R.; et al. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat. Commun. 2019, 10, 5171. [Google Scholar] [CrossRef]
- Massaad, M.J.; Ramesh, N.; Geha, R.S. Wiskott-Aldrich syndrome: A comprehensive review. Ann. N. Y. Acad. Sci. 2013, 1285, 26–43. [Google Scholar] [CrossRef]
- Sabri, S.; Foudi, A.; Boukour, S.; Franc, B.; Charrier, S.; Jandrot-Perrus, M.; Farndale, R.W.; Jalil, A.; Blundell, M.P.; Cramer, E.M.; et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006, 108, 134–140. [Google Scholar] [CrossRef]
- Becker, I.C.; Scheller, I.; Wackerbarth, L.M.; Beck, S.; Heib, T.; Aurbach, K.; Manukjan, G.; Gross, C.; Spindler, M.; Nagy, Z.; et al. Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1. Blood Adv. 2020, 4, 2124–2134. [Google Scholar] [CrossRef]
- Thon, J.N.; Montalvo, A.; Patel-Hett, S.; Devine, M.T.; Richardson, J.L.; Ehrlicher, A.; Larson, M.K.; Hoffmeister, K.; Hartwig, J.H.; Italiano, J.E., Jr.; et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J. Cell Biol. 2010, 191, 861–874. [Google Scholar] [CrossRef]
- Thon, J.N.; Macleod, H.; Begonja, A.J.; Zhu, J.; Lee, C.-K.; Mogilner, A.; Hartwig, J.H.; Italiano, J.E., Jr. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat. Commun. 2012, 3, 852. [Google Scholar] [CrossRef]
- Spinler, K.R.; Shin, J.-W.; Lambert, M.P.; Discher, D.E. Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia. Blood 2015, 125, 525. [Google Scholar] [CrossRef][Green Version]
- Schiffhauer, E.S.; Luo, T.; Mohan, K.; Srivastava, K.; Qian, X.; Griffis, E.R.; Iglesias, P.A.; Robinson, D.N. Mechanoaccumulative elements of the mammalian actin cytoskeleton. Curr. Biol. 2016, 26, 1473–1479. [Google Scholar] [CrossRef]
- Thomas, D.G.; Robinson, D.N. The fifth sense: Mechanosensory regulation of alpha-actinin-4 and its relevance for cancer metastasis. Semin. Cell Dev. Biol. 2017, 71, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Meacci, G.; Wolfenson, H.; Liu, S.; Stachowiak, M.R.; Iskratsch, T.; Mathur, A.; Ghassemi, S.; Gauthier, N.; Tabdanov, E.; Lohner, J.; et al. α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 2016, 27, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Weins, A.; Schlondorff, J.S.; Nakamura, F.; Denker, B.M.; Hartwig, J.H.; Stossel, T.P.; Pollak, M.R. Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc. Natl. Acad. Sci. USA 2007, 104, 16080–16085. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.C.H.; Young, P.W. The actinin family of actin cross-linking proteins—A genetic perspective. Cell Biosci. 2015, 5, 49. [Google Scholar] [CrossRef]
- Kaplan, J.M.; Kim, S.H.; North, K.N.; Rennke, H.; Correia, L.A.; Tong, H.-Q.; Mathis, B.J.; Rodríguez-Pérez, J.-C.; Allen, P.G.; Beggs, A.H.; et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 2000, 24, 251–256. [Google Scholar] [CrossRef]
- Kos, C.H.; Le, T.C.; Sinha, S.; Henderson, J.M.; Kim, S.H.; Sugimoto, H.; Kalluri, R.; Gerszten, R.E.; Pollak, M.R. Mice deficient in α-actinin-4 have severe glomerular disease. J. Clin. Investig. 2003, 111, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, P.; Rouault, K.; Chen, J.-M.; Raguénès, O.; Fichou, Y.; Hardy, E.; Gobin, E.; Pan-petesch, B.; Kerbiriou, M.; Trouvé, P.; et al. A missense mutation in the alpha-actinin 1 gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS ONE 2013, 8, e74728. [Google Scholar] [CrossRef]
- Faleschini, M.; Melazzini, F.; Marconi, C.; Giangregorio, T.; Pippucci, T.; Cigalini, E.; Pecci, A.; Bottega, R.; Ramneghi, U.; Siitonen, T.; et al. ACTN1 mutations lead to a benign form of platelet macrocytosis not always associated with thrombocytopenia. Br. J. Haematol. 2018, 183, 276–288. [Google Scholar] [CrossRef]
- Kanhai, D.; Mulder, R.; Ploos van Amstel, H.K.; Schutgens, R.; Lukens, M.; Tamminga, R.Y. Familial macrothrombocytopenia due to a double mutation in cis in the alpha-actinin 1 gene (ACTN1), previously considered to be chronic immune thrombocytopenic purpura. Pediatric Blood Cancer 2018, 65, e27418. [Google Scholar] [CrossRef] [PubMed]
- Vincenot, A.; Saultier, P.; Kunishima, S.; Poggi, M.; Hurtaud-Roux, M.-F.; Roussel, A.; ACTN1 study coinvestigators; Schlegel, N.; Alessi, M.-C. Novel ACTN1 variants in cases of thrombocytopenia. Hum. Mutat. 2019, 40, 2258–2269. [Google Scholar] [CrossRef]
- Andres, O.; König, E.M.; Klopocki, E.; Schulze, H. Use of targeted high-throughput sequencing for genetic classification of patients with bleeding diathesis and suspected platelet disorder. Hämostaseologie 2019, 39, S1–S92. [Google Scholar]
- Luo, F.M.; Fan, L.L.; Sheng, Y.; Dong, Y.; Liu, L. Case report: Exome sequencing identified a novel frameshift mutation of α-actin 1 in a chinese family with macrothrombocytopenia and mild bleeding. Front. Pediatrics 2021, 9, 679279. [Google Scholar] [CrossRef]
- Bottega, R.; Marconi, C.; Faleschini, M.; Baj, G.; Cagioni, C.; Pecci, A.; Pippucci, T.; Ramenghi, U.; Pardini, S.; Ngu, L.; et al. ACTN1-related thrombocytopenia: Identification of novel families for phenotypic characterization. Blood 2015, 125, 869–872. [Google Scholar] [CrossRef]
- Yasutomi, M.; Kunishima, S.; Okazaki, S.; Tanizawa, A.; Tsuchida, S.; Ohshima, Y. ACTN1 rod domain mutation associated with congenital macrothrombocytopenia. Ann. Hematol. 2016, 95, 141–144. [Google Scholar] [CrossRef]
- Murphy, A.C.; Lindsay, A.J.; McCaffrey, M.W.; Djinović-Carugo, K.; Young, P.W. Congenital macrothrombocytopenia-linked mutations in the actin-binding domain of α-actinin-1 enhance F-actin association. FEBS Lett. 2016, 590, 685–695. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, L.R.; Ajaykumar, A.P.; Dembicka, K.M.; Murphy, A.; Grennan, E.P.; Young, P.W. Investigation of calmodulin-like and rod domain mutations suggests common molecular mechanism for α-actinin-1-linked congenital macrothrombocytopenia. FEBS Lett. 2020, 594, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Schick, U.M.; Jain, D.; Hodonsky, C.J.; Morrison, J.V.; Davis, J.P.; Brown, L.; Sofer, T.; Conomos, M.P.; Schurmann, C.; McHugh, C.P.; et al. Genome-wide association study of platelet count identifies ancestry-specific loci in Hispanic/Latino Americans. Am. J. Hum. Genet. 2016, 98, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Astle, W.J.; Elding, H.; Jiang, T.; Allen, D.; Ruklisa, D.; Mann, A.L.; Mead, D.; Bouman, H.; Riveros-Mckay, F.; Kostadima, M.A.; et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016, 167, 1415–1429. [Google Scholar] [CrossRef]
- O’Brien, K.T.; Golla, K.; Kranjc, T.; O’Donovan, D.; Allen, S.; Maguire, P.; Simpson, J.C.; O’Connel, D.; Moran, N.; Shields, D.C. Computational and experimental analysis of bioactive peptide linear motifs in the integrin adhesome. PLoS ONE 2019, 14, e021033. [Google Scholar] [CrossRef] [PubMed]
Isoform | Site | Effect of Phosphorylation | Reference |
---|---|---|---|
Actinin-1 | Tyr 12 |
| [15,38,44] |
Actinin-4 | Tyr 4 |
| [47,48,49] |
Tyr 11 |
| [50] | |
Tyr13 |
| [50] | |
Tyr 31 |
| [48,49] | |
Tyr 265 |
| [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Sullivan, L.R.; Cahill, M.R.; Young, P.W. The Importance of Alpha-Actinin Proteins in Platelet Formation and Function, and Their Causative Role in Congenital Macrothrombocytopenia. Int. J. Mol. Sci. 2021, 22, 9363. https://doi.org/10.3390/ijms22179363
O’Sullivan LR, Cahill MR, Young PW. The Importance of Alpha-Actinin Proteins in Platelet Formation and Function, and Their Causative Role in Congenital Macrothrombocytopenia. International Journal of Molecular Sciences. 2021; 22(17):9363. https://doi.org/10.3390/ijms22179363
Chicago/Turabian StyleO’Sullivan, Leanne R., Mary R. Cahill, and Paul W. Young. 2021. "The Importance of Alpha-Actinin Proteins in Platelet Formation and Function, and Their Causative Role in Congenital Macrothrombocytopenia" International Journal of Molecular Sciences 22, no. 17: 9363. https://doi.org/10.3390/ijms22179363
APA StyleO’Sullivan, L. R., Cahill, M. R., & Young, P. W. (2021). The Importance of Alpha-Actinin Proteins in Platelet Formation and Function, and Their Causative Role in Congenital Macrothrombocytopenia. International Journal of Molecular Sciences, 22(17), 9363. https://doi.org/10.3390/ijms22179363