Insights into the Host Specificity of a New Oomycete Root Pathogen, Pythium brassicum P1: Whole Genome Sequencing and Comparative Analysis Reveals Contracted Regulation of Metabolism, Protein Families, and Distinct Pathogenicity Repertoire
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genome Sequencing, Assembly, and Annotation
2.2. Annotation of Predicted Proteins
2.3. Classification of Gene Ontology (GO)
2.4. Over- and Under-Represented Gene Families
2.5. Core and Species-Specific Gene Families
2.6. Secretome
2.7. Ca2+-Dependent Cadherins
2.8. Effector Repertoire
- (i).
- YxSL[KR] effectors: P. brassicum P1 had much smaller proportions of the YxSL sequence motif in both secreted and non-secreted proteins, relative to other Pythium species. Pythium ultimum var. ultimum had the highest proportion of secreted proteins with YxSL motifs, while P. aphanidermatum had the highest proportion of non-secreted proteins with YxSL motifs. Pythium brassicum P1 had the lowest proportion of proteins with YxSL motifs in both secreted and non-secreted proteins (Figure 4a,b).
- (ii).
- CRN effectors: The Crinkler (crn) gene family encodes a large class of secreted proteins that share a conserved amino-terminal LFLAK domain involved in host translocation in Phytophthora spp. [23]. As seen with YxSL effectors, Pythium brassicum P1 had the fewest CRN effectors of all the Pythium species (Figure 5).
- LYLAR or LYLAK motifs: P. brassicum P1 was predicted to have three secreted proteins with the LYLA[R/K] motif, which was below the Pythium-wide average of 11.75 (Figure 5a). The genome was predicted to have 109 non-secreted proteins with the LYLA[R/K] motif, again below the Pythium-wide average of 240.25 (Figure 5b).
- LxLFLAK motif: We found no evidence for the LxFLAK motif in secreted proteins from any of the Pythium genomes, except for Pythium arrhenomanes, which had one (Figure 5c). There were similarly low numbers of non-secreted proteins in Pythium genomes with the LxLFLAK motif.
- (iii).
- RxLR effectors: Consistent with previous studies, we found no evidence of RxLR virulent effectors in the P. brassicum P1 genome. This is in contrast to Phytophthora spp., which contain hundreds of RxLR genes in their genomes. These effector proteins are known to have an amino-terminal cell-entry domain with the RxLR and dEER motifs [23,28] that mediate the entry of these effector proteins into host cells without requiring the presence of pathogen-encoded machinery [29]. The RxLR-dEER effectors are thought to be involved in manipulating host immunity and suppressing host defense responses, but a few are recognized by plant immune receptors, culminating in programmed cell death and disease resistance.
2.9. Carbohydrate Metabolism
2.10. Phylogenetic Position
2.11. Shared Gene Clusters of Oomycetes
2.12. Orthologous Gene Clusters of Oomycete and Fungal Taxa
2.13. Synteny with Other Oomycete Plant Pathogens
3. Conclusions
Key Points
- (i).
- Comprehensive bioinformatics analysis (e.g., comparison to 13 oomycete and 4 fungal outgroup species) revealed contracted regulation of metabolism, protein families, and distinct pathogenicity repertoire.
- (ii).
- Assembled genome size is 50.3 Mb contained in 5434 scaffolds and 13,232 putative protein-coding genes identified; a detailed annotation analysis was performed.
- (iii).
- Identified 175 species-specific gene families in P. brassicum, slightly below the normal average of other oomycetes, and a possible reason for the narrow host range of P. brassicum.
- (iv).
- In contrast to other fungal or oomycetes, P. brassicum genome did not encode any classical RxLR effectors or cutinases, suggesting a significant difference in virulence mechanisms.
- (v).
- A wide comparative analysis (e.g., over- and under-represented gene families, core specific gene families, secretome, Ca2+− dependent adherens, effector repertoire, carbohydrate metabolism analysis, phylogenetic position, identification of shared and orthologous gene clusters, and synteny analysis with other plant pathogens) led to the identification of diverse biological parameters or mechanisms responsible for P1’s narrow host range.
4. Materials and Methods
4.1. DNA Extraction and Purification
4.2. DNA Library Preparation and Sequencing
4.3. Genome Assembly and Gene Prediction
4.4. Identification of Orthologous Groups
4.5. Phylogenetic Analyses
4.6. Analysis of P. brassicum P1 Over- and Under-Represented Families
4.7. Identification of Putatively Secreted Proteins
4.8. Analyses of Carbohydrate-Active Enzymes
4.9. Identification of Candidate Effectors
4.10. Synteny Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beakes, G.W.; Glockling, S.L.; Sekimoto, S. The Evolutionary Phylogeny of the Oomycete “fungi”. Protoplasma 2012, 249, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.H. The Taxonomy and Biology of Phytophthora and Pythium. J. Bacteriol. Mycol. Open Access 2018, 6, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Lévesque, C.A.; de Cock, A.W.A.M. Molecular Phylogeny and Taxonomy of the Genus Pythium. Mycol. Res. 2004, 108, 1363–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Plaats-Niterink, A.J. Monograph of the Genus Pythium. Stud. Mycol. 1981, 21, 1–242. Available online: https://www.cabi.org/isc/abstract/19821379677 (accessed on 16 August 2020).
- Martin, F.N.; Loper, J.E. Soilborne Plant Diseases Caused by Pythium spp: Ecology, Epidemiology, and Prospects for Biological Control. Crit. Rev. Plant Sci. 1999, 18, 111–181. [Google Scholar] [CrossRef]
- Gold, S.E.; Stanghellini, M.E. Effects of Temperature on Pythium Rot of Spinach Spinacia oleracea Grown under Hydroponic Conditions. Phytopathology 1985, 75, 333–337. [Google Scholar] [CrossRef]
- Martin, F.N. Pythium Genetics. In Oomycete Genetics and Genomics: Diversity, Interactions and Research Tools; Lamour, K., Kamoun, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; p. 574. [Google Scholar]
- Bridge, P.D.; Newsham, K.K.; Denton, G.J. Snow Mould Caused by Pythium sp.: A Potential Vascular Plant Pathogen in the Maritime Antarctic. Plant Pathol. 2008, 57, 1066–1072. [Google Scholar] [CrossRef]
- de Cock, A.W.A.M.; Lodhi, A.M.; Rintoul, T.L.; Bala, K.; Robideau, G.P.; Abad, Z.G.; Coffey, M.D.; Shahzad, S.; Lévesque, C.A. Phytopythium: Molecular Phylogeny and Systematics. Persoonia Mol. Phylo. Evol. Fungi 2015, 34, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Vawdrey, L.L.; Langdon, P.; Martin, T. Incidence and Pathogenicity of Phytophthora palmivora and Pythium vexans Associated with Durian Decline in far Northern Queensland. Australas Plant Pathol. 2005, 34, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.C.; Ho, H.H.; Zheng, F.C. Pythium vexans Causing Patch Canker of Rubber Trees on Hainan Island, China. Mycopathologia 2005, 159, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.N.; Hamilton, J.P.; Zerillo, M.M.; Tisserat, N.; Lévesque, C.A.; Buell, C.R. Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes. PLoS ONE 2013, 8, e75072. [Google Scholar] [CrossRef]
- Ascunce, M.S.; Huguet-Tapia, J.C.; Braun, E.L.; Ortiz-Urquiza, A.; Keyhani, N.O.; Goss, E.M. Whole Genome Sequence of the Emerging Oomycete Pathogen Pythium insidiosum Strain CDC-B5653 Isolated from an Infected Human in the USA. Genom. Data 2016, 7, 60–61. Available online: https://core.ac.uk/download/pdf/82260744.pdf (accessed on 16 August 2020). [CrossRef] [PubMed] [Green Version]
- Rujirawat, T.; Patumcharoenpol, P.; Lohnoo, T.; Yingyong, W.; Kumsang, Y.; Payattikul, P.; Tangphatsornruang, S.; Suriyaphol, P.; Reamtong, O.; Garg, G.; et al. Probing the Phylogenomics and Putative Pathogenicity Genes of Pythium insidiosum by Oomycete Genome Analyses. Sci. Rep. 2018, 8, 4135. [Google Scholar] [CrossRef] [Green Version]
- McGowan, J.; Fitzpatrick, D.A. Recent Advances in Oomycete Genomics. Adv. Genet. 2020, 105, 175–228. [Google Scholar] [CrossRef] [PubMed]
- Stanghellini, M.E.; Mohammadi, M.; Förster, H.; Adaskaveg, J.E. Pythium brassicum sp. nov.: A Novel Plant Family-Specific Root Pathogen. Plant Dis. 2014, 98, 1619–1625. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An Empirically Improved Memory-Efficient Short Read De Novo Assembler. Gigascience 2012, 1, 1–6. [Google Scholar] [CrossRef]
- Huang, X.; Madan, A. CAP3: A DNA Sequence Assembly Program. Genome Res. 1999, 9, 868–877. Available online: https://genome.cshlp.org/content/9/9/868 (accessed on 16 August 2020). [CrossRef] [PubMed] [Green Version]
- Lévesque, C.A.; Brouwer, H.; Cano, L.; Hamilton, J.P.; Holt, C.; Huitema, E.; Raffaele, S.; Robideau, G.P.; Thines, M.; Win, J.; et al. Genome Sequence of the Necrotrophic Plant Pathogen Pythium ultimum Reveals Original Pathogenicity Mechanisms and Effector Repertoire. Genome Biol. 2010, 11, R73. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Korf, I.; Robb, S.M.C.; Parra, G.; Ross, E.; Moore, B.; Holt, C.; Alvarado, A.S.; Yandell, M. MAKER: An easy-to-use Annotation Pipeline Designed for Emerging Model Organism Genomes. Genome Res. 2008, 18, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Price, A.L.; Jones, N.C.; Pevzner, P.A. De novo Identification of Repeat Families in Large Genomes. Bioinformatics 2005, 21, i351–i358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Kamoun, S.; Zody, M.; Jiang, R.H.Y.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome Sequence and Analysis of the Irish Potato Famine Pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robels, M. Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Stoeckert, C.J., Jr.; Roos, D.S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Hulpiau, P.; van Roy, F. Molecular Evolution of the Cadherin Superfamily. Int. J. Biochem. Cell Biol. 2009, 41, 349–369. [Google Scholar] [CrossRef]
- Jiang, R.H.Y.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR Effector Reservoir in two Phytophthora species is Dominated by a Single Rapidly Evolving Superfamily with more than 700 Members. Proc. Natl. Acad. Sci. USA 2008, 105, 4874–4879. [Google Scholar] [CrossRef] [Green Version]
- Dou, D.; Kale, S.D.; Wang, X.; Jiang, R.H.Y.; Bruce, N.A.; Arredondo, F.D.; Zahng, X.; Tyler, B.M. RXLR-Mediated Entry of Phytophthora sojae Effector Avr1b into Soybean Cells does not Require Pathogen-Encoded Machinery. Plant Cell 2008, 20, 1930–1947. [Google Scholar] [CrossRef] [Green Version]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes Database (CAZy): An Expert Resource for Glucogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Zerillo, M.M.; Adhikari, B.N.; Hamilton, J.P.; Buell, C.R.; Lévesque, C.A.; Tisserat, N. Carbohydrate-Active Enzymes in Pythium and their Role in Plant Cell Wall and Storage Polysaccharide Degradation. PLoS ONE 2013, 8, e72572. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Tang, H.; Bowers, J.E.; Wang, X.; Ming, R.; Alam, M.; Paterson, A.H. Synteny and Collinearity in Plant Genomes. Science 2008, 320, 486–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, G.; Yang, K.; Ye, W.; Tian, Y.; Du, Y.; Zhu, H.; Li, T.; Xia, Q.; Shen, D.; Peng, H.; et al. Prediction and Characterization of RXLR Effectors in Pythium Species. Mol. Plant-Microbe Interact. 2020, 33, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Campion, C.; Massiot, P.; Rouxel, F. Aggressiveness and Production of Cell Wall Degrading Enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, Responsible for Cavity Spot on Carrots. Eur. J. Plant Pathol. 1997, 103, 725–735. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo Short Read Assembly Using de Bruijn Graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.T.; Durbin, R. Efficient De Novo Assembly of Large Genomes Using Compressed Data Structures. Genome Res. 2012, 22, 549–556. [Google Scholar] [CrossRef] [Green Version]
- van Dongen, S.M. Graph Clustering by Flow Simulation. Ph.D. Thesis, University of Utricht, Utricht, The Netherlands, 2000; p. 169. Available online: https://dspace.library.uu.nl/bitstream/handle/1874/848/full.pdf?sequence=1 (accessed on 16 August 2020).
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acid Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Han, M.V.; Thomas, G.W.C.; Lugo-Martinez, J.; Hahn, M.W. Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE3. Mol. Biol. Evol. 2013, 30, 1987–1997. [Google Scholar] [CrossRef]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A. The Pfam Protein Families Database: Towards a More Sustainable Future. Nucleic Acid Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded Annotation Data from Gene Ontology and Reactome Pathways, and Data Analysis Tool Enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [Google Scholar] [CrossRef] [Green Version]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.H.; Karpinets, T.V.; Syed, M.H.; Leuze, M.R.; Uberbacher, E. CAZymes Analysis Toolkit (CAT): Web Service for Searching and Analyzing Carbohydrate-Active Enzymes in a Newly Sequenced Organism using CAZy Database. Glycobiology 2010, 20, 1574–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Merged Assembly | Merged Reassembly | Sga_Processed Data | Sga_Raw Data | Soap_Processed Data | Soap_Raw Data | Velvet_Processed Data | |
---|---|---|---|---|---|---|---|
# contigs (≥0 bp) a | 8759 | 9191 | 23,698 | 32,489 | 5437 | 5434 | 8420 |
# contigs (≥1000 bp) | 4917 | 7631 | 5413 | 6977 | 3161 | 3074 | 6690 |
# contigs (≥5000 bp) | 3454 | 4468 | 2336 | 36 | 2052 | 2020 | 3302 |
# contigs (≥10,000 bp) | 2594 | 2661 | 1391 | 0 | 1468 | 1456 | 1569 |
# contigs (≥250,000 bp) | 1161 | 852 | 420 | 0 | 624 | 631 | 207 |
# contigs (≥50,000 bp) | 300 | 190 | 48 | 0 | 179 | 184 | 4 |
Total length (≥0 bp) b | 86,486,191 | 86,588,769 | 49,749,428 | 22,192,922 | 50,166,055 | 50,256,276 | 49,506,384 |
Total length (≥1000 bp) | 85,411,003 | 85,824,021 | 44,743,758 | 12,211,453 | 49,404,430 | 49,485,932 | 48,588,674 |
Total length (≥5000 bp) | 81,590,182 | 77,200,690 | 37,494,792 | 210,549 | 46,532,065 | 46,759,275 | 39,463,530 |
Total length (≥10,000 bp) | 75,284,912 | 64,184,486 | 30,706,745 | 0 | 42,312,012 | 42,673,554 | 27,132,574 |
Total length (≥25,000 bp) | 51,913,458 | 35,988,051 | 15,559,417 | 0 | 28,470,025 | 29,136,472 | 6,563,575 |
Total length (≥50,000 bp) | 21,977,981 | 13,602,359 | 2,999,251 | 0 | 12,999,233 | 13,636,629 | 219,978 |
# contigs | 5514 | 8341 | 7482 | 14,369 | 3629 | 3525 | 7543 |
Largest contig | 169,369 | 168,160 | 108,107 | 8673 | 168,160 | 168,309 | 58,392 |
Total length | 85,839,345 | 86,347,227 | 46,193,713 | 17,504,468 | 49,739,698 | 49,811,232 | 49,223,359 |
GC (%) c | 59.81 | 59.63 | 59.95 | 59.94 | 59.59 | 59.61 | 59.59 |
N50 | 31,156 | 20,060 | 16,383 | 1400 | 30,050 | 30,476 | 11,201 |
N75 | 16,898 | 9789 | 7080 | 907 | 15,561 | 15,907 | 5942 |
L50 | 841 | 1176 | 799 | 4050 | 493 | 478 | 1330 |
L75 | 1772 | 2720 | 1860 | 7938 | 1073 | 1044 | 2837 |
# N’s per 100 kb | 1386.58 | 345.10 | 2036.02 | 4612.90 | 613.35 | 560.43 | 0.00 |
predicted genes (unique) | 24,973 | 26,049 | 12,908 | - | 14,305 | 14,423 | - |
# predicted genes (≥0 bp) | 88,235 | 90,798 | 59,287 | - | 52,918 | 51,696 | - |
# predicted genes (≥300 bp) | 31,133 | 32,154 | 18,350 | - | 18,234 | 17,990 | - |
# predicted genes (≥1500 bp) | 5790 | 5744 | 1714 | - | 3191 | 3321 | - |
# predicted genes (≥3000 bp) | 1383 | 1271 | 209 | - | 703 | 789 | - |
Scaffolds | Contigs | |
---|---|---|
Number of sequences | 5434 | 64,712 |
Maximum sequence length (bp) | 168,309 | 56,387 |
Average length (bp) | 9248.49 | 879.7 |
N50(bp) | 30,235 | 6705 |
N90 (bp) | 6892 | 207 |
Sequences > 500 bp | ||
Number of sequences | 3525 | 11,344 |
Average length (bp) | 14,130.85 | 4279.21 |
N50(bp) | 30,476 | 8290 |
N90 (bp) | 7473 | 1811 |
Sequences > 1 Kb | ||
Number of sequences | 3074 | 8364 |
Average length (bp) | 16,098.22 | 5551.03 |
N50(bp) | 30,985 | 8732 |
N90 (bp) | 7803 | 2396 |
Sequences > 5 Kb | ||
Number of sequences | 2020 | 3090 |
Average length (bp) | 23,148.16 | 10,840.34 |
N50(bp) | 33,000 | 12,061 |
N90 (bp) | 10,751 | 6102 |
Sequences > 10 Kb | ||
Number of sequences | 1456 | 1273 |
Average length (bp) | 29,308.76 | 16,327.77 |
N50(bp) | 35,695 | 16,489 |
N90 (bp) | 14,907 | 11,104 |
Total number of assembled bases | 50,256,276 |
Description | Multi_Hits | Single_Hits |
---|---|---|
ABC transporter transmembrane region | 0 | 17 |
Transmembrane amino acid transporter protein | 0 | 5 |
ABC transporter | 0 | 5 |
Major facilitator superfamily | 0 | 4 |
Sugar (and other) transporter | 0 | 4 |
Sulfatase | 0 | 2 |
Alcohol dehydrogenase GroES-like domain | 0 | 2 |
Zinc Binding dehydrogenase | 0 | 2 |
AMP-binding enzyme | 0 | 1 |
Uncharacterized protein family UPF0565 | 0 | 1 |
RecF/RecN/SMC N terminal domain | 0 | 1 |
HECT–domain (ubiquitin–transferase) | 0 | 1 |
Putative transposase DNA-binding domain | 0 | 1 |
Tc5 transposase DNAbinding domain | 0 | 1 |
AAA domain, putative AbiEii Toxin, type IV TA System | 0 | 1 |
Reverse transcriptase-like | 0 | 1 |
Pap a | Par | Pbr | Pir | Piw | Pus | Puu | Pve | Phi | Phr | Phs | Har | Sap | Fgr | Mor | Uma | Ror | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABC transporters | 171 | 165 | 90 | 205 | 246 | 177 | 247 | 243 | 214 | 253 | 241 | 73 | 223 | 106 | 87 | 70 | 79 |
Aspartyl proteases | 33 | 36 | 25 | 28 | 24 | 24 | 49 | 20 | 15 | 58 | 65 | 10 | 16 | 26 | 22 | 14 | 150 |
Cutinases | 9 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 15 | 20 | 0 | 12 | 18 | 4 | 0 |
Cysteine proteases | 29 | 35 | 37 | 36 | 39 | 32 | 37 | 28 | 33 | 35 | 33 | 22 | 79 | 6 | 7 | 5 | 1 |
Cytochrome P450s | 31 | 60 | 12 | 53 | 66 | 32 | 39 | 27 | 26 | 29 | 38 | 14 | 44 | 110 | 134 | 22 | 48 |
Elicitin-like proteins | 37 | 41 | 24 | 45 | 34 | 27 | 43 | 30 | 42 | 77 | 56 | 16 | 23 | 0 | 0 | 0 | 0 |
Glycoside hydrolases | 117 | 163 | 133 | 133 | 118 | 110 | 168 | 162 | 273 | 271 | 294 | 98 | 198 | 259 | 266 | 125 | U b |
Lipases | 26 | 26 | 22 | 15 | 11 | 10 | 21 | 24 | 31 | 26 | 47 | 11 | 49 | 40 | 30 | 11 | 37 |
NPP1-like proteins | 4 | 5 | 3 | 4 | 4 | 4 | 7 | 4 | 28 | 58 | 80 | 32 | 0 | 4 | 5 | 0 | 0 |
Carbohydrate esterases | 68 | 75 | 43 | 56 | 41 | 29 | 63 | 51 | 76 | 92 | 129 | 34 | 73 | 130 | 125 | 61 | U |
Polysaccharide lyases | 22 | 7 | 12 | 14 | 7 | 16 | 29 | 22 | 66 | 53 | 76 | 15 | 5 | 21 | 5 | 2 | U |
Phospholipases | 20 | 23 | 15 | 16 | 15 | 11 | 18 | 19 | 31 | 28 | 31 | 16 | 18 | 41 | 26 | 14 | 17 |
Protease inhibitors | 27 | 23 | 21 | 28 | 19 | 22 | 31 | 14 | 60 | 25 | 59 | 2 | 14 | 0 | 0 | 0 | 0 |
RxLR effectors | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 563 | 350 | 350 | 7 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, M.; Smith, E.A.; Stanghellini, M.E.; Kaundal, R. Insights into the Host Specificity of a New Oomycete Root Pathogen, Pythium brassicum P1: Whole Genome Sequencing and Comparative Analysis Reveals Contracted Regulation of Metabolism, Protein Families, and Distinct Pathogenicity Repertoire. Int. J. Mol. Sci. 2021, 22, 9002. https://doi.org/10.3390/ijms22169002
Mohammadi M, Smith EA, Stanghellini ME, Kaundal R. Insights into the Host Specificity of a New Oomycete Root Pathogen, Pythium brassicum P1: Whole Genome Sequencing and Comparative Analysis Reveals Contracted Regulation of Metabolism, Protein Families, and Distinct Pathogenicity Repertoire. International Journal of Molecular Sciences. 2021; 22(16):9002. https://doi.org/10.3390/ijms22169002
Chicago/Turabian StyleMohammadi, Mojtaba, Eric A. Smith, Michael E. Stanghellini, and Rakesh Kaundal. 2021. "Insights into the Host Specificity of a New Oomycete Root Pathogen, Pythium brassicum P1: Whole Genome Sequencing and Comparative Analysis Reveals Contracted Regulation of Metabolism, Protein Families, and Distinct Pathogenicity Repertoire" International Journal of Molecular Sciences 22, no. 16: 9002. https://doi.org/10.3390/ijms22169002