The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Assessment of Platelet Function
3.2. Monitoring the Anticoagulant Effects
3.3. Bleeding
3.4. Surgical Procedures
3.5. Von Willebrand Factor
3.6. Other Uses of T-TAS
3.7. Summary
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaikita, K.; Hosokawa, K.; Dahlen, J.R.; Tsujita, K. Total Thrombus-Formation Analysis System (T-TAS): Clinical Application of Quantitative Analysis of Thrombus Formation in Cardiovascular Disease. Thromb. Haemost. 2019, 119, 1554–1562. [Google Scholar] [PubMed]
- Periayah, M.H.; Halim, A.S.; Saad, A.Z.M. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 319. [Google Scholar]
- Simurda, T.; Dobrotova, M.; Skornova, I.; Sokol, J.; Kubisz, P.; Stasko, J. Successful Use of a Highly Purified Plasma von Willebrand Factor Concentrate Containing Little FVIII for the Long-Term Prophylaxis of Severe (Type 3) von Willebrand’s Disease. Semin. Thromb. Hemost. 2017, 43, 639–664. [Google Scholar] [PubMed]
- Sakamoto, Y.; Koami, H.; Miike, T. Monitoring the coagulation status of trauma patients with viscoelastic devices. J. Intensive Care 2017, 5, 1–11. [Google Scholar] [CrossRef]
- Syska, K.; Golański, J. Laboratory methods for evaluating effectiveness of clopidogrel and other antiplatelet drugs blocking the P2Y12 receptor. J. Lab. Diagn. 2012, 48, 323–332. [Google Scholar]
- Minami, H.; Nogami, K.; Ogiwara, K.; Furukawa, S.; Hosokawa, K.; Shima, M. Use of a microchip flow-chamber system as a screening test for platelet storage pool disease. Int. J. Hematol. 2015, 102, 157–162. [Google Scholar] [CrossRef]
- Ghirardello, S.; Lecchi, A.; Artoni, A.; Panigada, M.; Aliberti, S.; Scalambrino, E.; La Marca, S.; Boscarino, M.; Gramegna, A.; Properzi, P.; et al. Assessment of Platelet Thrombus Formation under Flow Conditions in Adult Patients with COVID-19: An Observational Study. Thromb Haemost. 2021, 121, 1087–1096. [Google Scholar] [PubMed]
- Heijnen, H.; van der Sluijs, P. Platelet secretory behaviour: As diverse as the granules … or not? J. Thromb. Haemost. 2015, 13, 2141–2151. [Google Scholar] [CrossRef]
- Tsujii, N.; Nogami, K.; Yoshizawa, H.; Sakai, T.; Fukuda, K.; Ishiguro, A.; Shima, M. Assessment of Platelet Thrombus Formation under Flow Conditions in Patients with Acute Kawasaki Disease. J. Pediatr. 2020, 226, 266–273. [Google Scholar] [CrossRef]
- Idemoto, Y.; Miura, S.-I.; Norimatsu, K.; Suematsu, Y.; Hitaka, Y.; Shiga, Y.; Morii, J.; Imaizumi, S.; Kuwano, T.; Iwata, A.; et al. Evaluation of the antithrombotic abilities of non-vitamin K antagonist oral anticoagulants using the Total Thrombus-formation Analysis System. Heart Vessels 2017, 32, 309–316. [Google Scholar] [CrossRef]
- Ożegowska, K.; Mantaj, U.; Rojewska, P.; Osiński, M.; Pawelczyk, L. Can the Total Thrombus-formation Analysis System (T-TAS) better predict coagulation disorders than conventional laboratory measurements in patients with polycystic ovary syndrome? Pol. Arch. Intern. Med. 2020, 130, 1114–1117. [Google Scholar]
- Osiński, M.; Mantaj, U.; Kędzia, M.; Gutaj, P.; Wender-Ożegowska, E. Poor glycaemic control contributes to a shift towards prothrombotic and antifibrinolytic state in pregnant women with type 1 diabetes mellitus. PLoS ONE 2020, 15, e0237843. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ito, T.; Nagasato, T.; Shinnakasu, A.; Kurano, M.; Arimura, A.; Arimura, H.; Hashiguchi, H.; Deguchi, T.; Maruyama, I.; et al. Effects of glycemic control and hypoglycemia on Thrombus formation assessed using automated microchip flow chamber system: An exploratory observational study. Thromb. J. 2019, 17, 1–9. [Google Scholar] [CrossRef]
- Schuette, C.; Steffens, D.; Witkowski, M.; Stellbaum, C.; Bobbert, P.; Schultheiss, H.-P.; Rauch, U. The effect of clopidogrel on platelet activity in patients with and without type-2 diabetes mellitus: A comparative study. Cardiovasc. Diabetol. 2015, 14, 1–7. [Google Scholar] [CrossRef]
- Hosokawa, K.; Ohnishi, T.; Sameshima, H.; Miura, N.; Ito, T.; Koide, T.; Maruyama, I. Analysing responses to aspirin and clopidogrel by measuring platelet thrombus formation under arterial flow conditions. Thromb. Haemost. 2013, 109, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Moriki, T.; Igari, A.; Ohnishi, T.; Hosokawa, K.; Murata, M. Studies of a microchip flow-chamber system to characterize whole blood thrombogenicity in healthy individuals. Thromb. Res. 2013, 132, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Taune, V.; Wallén, H.; Ågren, A.; Gryfelt, G.; Sjövik, C.; Wintler, A.M.; Malmström, R.E.; Wikman, A. Whole blood coagulation assays ROTEM and T-TAS to monitor dabigatran treatment. Thromb. Res. 2017, 153, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi-Wada, T.; Sameshima-Kaneko, H.; Nagasato, T.; Miura, N.; Kikuchi, K.; Koide, T.; Maruyama, I.; Urano, T. Plasminogen activator inhibitor type 1 in platelets induces thrombogenicity by increasing thrombolysis resistance under shear stress in an in-vitro flow chamber model. Thromb. Res. 2016, 146, 69–75. [Google Scholar] [CrossRef]
- Miike, T.; Sakamoto, Y.; Narumi, S.; Yoshitake, K.; Sakurai, R.; Nakayama, K.; Inoue, S. Influence of high-dose antithrombin on platelet function and blood coagulation. Acute Med. Surg. 2021, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi, T.; Kondo, T.; Fukasawa, M.; Koide, T.; Maruyama, I.; Tanaka, K.A. A novel automated microchip flow-chamber system to quantitatively evaluate thrombus formation and antithrombotic agents under blood flow conditions. J. Thromb. Haemost. 2011, 9, 2029–2037. [Google Scholar] [CrossRef]
- . Sugihara, H.; Idemoto, Y.; Kuwano, T.; Nagata, Y.; Morii, J.; Sugihara, M.; Ogawa, M.; Miura, S.-I.; Saku, K. Evaluation of the Antithrombotic Effects of Rivaroxaban and Apixaban Using the Total Thrombus-Formation Analysis System®: In Vitro and Ex Vivo Studies. J. Clin. Med. Res. 2016, 8, 899–907. [Google Scholar] [CrossRef][Green Version]
- Yamazaki, M.; Ohnishi, T.; Hosokawa, K.; Yamaguchi, K.; Yoneyama, T.; Kawashima, A.; Okada, Y.; Kitagawa, K.; Uchiyama, S. Measurement of residual platelet thrombogenicity under arterial shear conditions in cerebrovascular disease patients receiving antiplatelet therapy. J. Thromb. Haemost. 2016, 14, 1788–1797. [Google Scholar] [CrossRef]
- Arima, Y.; Kaikita, K.; Ishii, M.; Ito, M.; Sueta, D.; Oimatsu, Y.; Sakamoto, K.; Tsujita, K.; Kojima, S.; Nakagawa, K.; et al. Assessment of platelet-derived thrombogenicity with the total thrombus-formation analysis system in coronary artery disease patients receiving antiplatelet therapy. J. Thromb. Haemost. 2016, 14, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.L.; Wallen, H.; Aradi, D.; Godschalk, T.C.; Hackeng, C.M.; Dahlen, J.R.; Ten Berg, J.M. The Total Thrombus Formation (T-TAS) platelet (PL) assay, a novel test that evaluates whole blood platelet thrombus formation under physiological conditions. Platelets 2021, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi, T.; Sameshima, H.; Miura, N.; Koide, T.; Maruyama, I.; Tanaka, K.A. Comparative evaluation of direct thrombin and factor Xa inhibitors with antiplatelet agents under flow and static conditions: An in vitro flow chamber model. PLoS ONE 2014, 9, e86491. [Google Scholar] [CrossRef]
- Norimatsu, K.; Miura, S.; Suematsu, Y.; Shiga, Y.; Yano, M.; Hitaka, Y.; Kuwano, T.; Morii, J.; Yasuda, T.; Ogawa, M.; et al. Assessment of the circadian variation in the anticoagulant effect of rivaroxaban using a novel automated microchip flow-chamber system for the quantitative evaluation of thrombus formation. IJC Heart Vessels 2014, 4, 218–220. [Google Scholar] [CrossRef][Green Version]
- Ishii, M.; Kaikita, K.; Ito, M.; Sueta, D.; Arima, Y.; Takashio, S.; Izumiya, Y.; Yamamoto, E.; Yamamuro, M.; Kojima, S.; et al. Direct Oral Anticoagulants Form Thrombus Different From Warfarin in a Microchip Flow Chamber System. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.R.; Jung, R.G.; Hibbert, B.; Chong, A.Y.; Lordkipanidzé, M.; Tanguay, J.-F.; So, D.Y.F. Dual antiplatelet therapy (PEGASUS) vs. dual pathway (COMPASS): A head-to-head in vitro comparison. Platelets 2021, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Skalski, B.; Rywaniak, J.; Szustka, A.; Żuchowski, J.; Stochmal, A.; Olas, B. Anti-Platelet Properties of Phenolic and Nonpolar Fractions Isolated from Various Organs of Elaeagnus rhamnoides (L.) A. Nelson in Whole Blood. Int. J. Mol. Sci. 2021, 22, 3282. [Google Scholar] [CrossRef]
- Lis, B.; Rywaniak, J.; Jedrejek, D.; Szustka, A.; Stochmal, A.; Olas, B. Anti-platelet activity of phytocompounds in various dandelion organs in human whole blood model in vitro. J. Funct. Foods 2021, 80, 1–8. [Google Scholar] [CrossRef]
- Shimamura, M.; Kaikita, K.; Nakagami, H.; Kawano, T.; Ju, N.; Hayashi, H.; Nakamaru, R.; Yoshida, S.; Sasaki, T.; Mochizuki, H.; et al. Development of anti-thrombotic vaccine against human S100A9 in rhesus monkey. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Ogawa, S.; Slime, F.; Dunn, A.L.; Bolliger, D.; Ohnishi, T.; Hosokawa, K.; Tanaka, K.A. Evaluation of a novel flow chamber system to assess clot formation in factor VIII-deficient mouse and anti-factor IXa-treated human blood. Haemophilia 2012, 18, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Pasi, K.J.; Rangarajan, S.; Georgiev, P.; Mant, T.; Creagh, M.D.; Lissitchkov, T.; Bevan, D.; Austin, S.; Hay, C.R.; Hegemann, I.; et al. Targeting of Antithrombin in Hemophilia A or B with RNA i Therapy. NEJM 2017, 377, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Nogami, K.; Yada, K.; Kawamura, T.; Ogiwara, K.; Furukawa, S.; Shimonishi, N.; Takeyama, M.; Shima, M. Evaluation of clinical severity in patients with type 2N von Willebrand disease using microchip-based flow-chamber system. Int. J. Hematol. 2020, 111, 369–377. [Google Scholar] [CrossRef]
- Yaoi, H.; Shida, Y.; Ogiwara, K.; Hosokawa, K.; Shima, M.; Nogami, K. Role of red blood cells in the anemia-associated bleeding under high shear conditions. Haemophilia 2017, 23, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Takashio, S.; Kaikita, K.; Nishi, M.; Morioka, M.; Taiki Higo, T.; Shiose, A.; Doman, T.; Horiuchi, H.; Fukui, T.; Tsujita, K. Detection of acquired von Willebrand syndrome after ventricular assist device by total thrombus-formation analysis system. ESC Heart Fail. 2020, 7, 3235–3239. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Yada, K.; Ogiwara, K.; Furukawa, S.; Shimonishi, N.; Shima, M.; Nogami, K. A microchip flow-chamber assay screens congenital primary hemostasis disorders. Pediatr. Int. 2021, 63, 160–167. [Google Scholar] [CrossRef]
- Oimatsu, Y.; Kaikita, K.; Ishii, M.; Mitsuse, T.; Ito, M.; Arima, Y.; Sueta, D.; Takahashi, A.; Iwashita, S.; Yamamoto, E.; et al. Total Thrombus-formation Analysis System Predicts Periprocedural Bleeding Events in Patients With Coronary Artery Disease Undergoing Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2017, 6, 1–13. [Google Scholar] [CrossRef]
- Nakanishi, N.; Kaikita, K.; Ishii, M.; Kuyama, N.; Tabata, N.; Ito, M.; Yamanaga, K.; Fujisue, K.; Hoshiyama, T.; Kanazawa, H.; et al. Hemodialysis-related low thrombogenicity measured by total thrombus-formation analysis system in patients undergoing percutaneous coronary intervention. Thromb. Res. 2021, 200, 141–148. [Google Scholar] [CrossRef]
- Ito, M.; Kaikita, K.; Sueta, D.; Ishii, M.; Yu Oimatsu, Y.; Arima, Y.; Iwashita, S.; Takahashi, A.; Hoshiyama, T.; Hisanori Kanazawa, H.; et al. Total Thrombus-Formation Analysis System (T-TAS) Can Predict Periprocedural Bleeding Events in Patients Undergoing Catheter Ablation for Atrial Fibrillation. J. Am. Heart Assoc. 2016, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Kaikita, K.; Ishii, M.; Kuyama, N.; Tabata, N.; Ito, M.; Yamanaga, K.; Fujisue, K.; Hoshiyama, T.; Kanazawa, H.; et al. Development and assessment of total thrombus-formation analysis system-based bleeding risk model in patients undergoing percutaneous coronary intervention. Int. J. Cardiol. 2021, 325, 121–126. [Google Scholar] [CrossRef]
- Mitsuse, T.; Kaikita, K.; Ishii, M.; Oimatsu, Y.; Nakanishi, N.; Ito, M.; Arima, Y.; Sueta, D.; Iwashita, S.; Fujisue, K.; et al. Total Thrombus-Formation Analysis System can Predict 1-Year Bleeding Events in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2020, 27, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Al Ghaithi, R.; Mori, J.; Nagy, Z.; Maclachlan, A.; Hardy, L.; Philippou, H.; Hethershaw, E.; Morgan, N.V.; Senis, Y.A.; Harrison, P. Evaluation of the Total Thrombus-Formation System (T-TAS): Application to human and mouse blood analysis. Platelets 2019, 30, 893–900. [Google Scholar] [CrossRef]
- Atari, B.; Ito, T.; Nagasato, T.; Ohnishi, T.; Hosokawa, K.; Yasuda, T.; Maruyama, I.; Kakihana, Y. A modified microchip-based flow chamber system for evaluating thrombogenicity in patients with thrombocytopenia. Thromb. J. 2020, 18, 1–9. [Google Scholar] [CrossRef]
- Ichikawa, S.; Tsukahara, K.; Kikuchi, S.; Minamimoto, Y.; Kimura, Y.; Okada, K.; Matsuzawa, Y.; Konishi, M.; Maejima, N.; Iwahashi, N.; et al. Impact of Total Antithrombotic Effect on Bleeding Complications in Patients Receiving Multiple Antithrombotic Agents. Circ. J. 2019, 83, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Szlam, F.; Ohnishi, T.; Molinaro, R.J.; Hosokawa, K.; Tanaka, K.A. A comparative study of prothrombin complex concentrates and fresh frozen plasma for warfarin reversal under static and flow conditions. Thromb Haemost. 2011, 106, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Słojewski, M. Operacja czy zabieg—Dylemat semantyczny. Przegląd Urologiczny 2010, 62, 1–4. [Google Scholar]
- Sueta, D.; Kaikita, K.; Okamoto, N.; Arima, Y.; Ishii, M.; Ito, M.; Oimatsu, Y.; Iwashita, S.; Takahashi, A.; Nakamura, E.; et al. A novel quantitative assessment of whole blood thrombogenicity in patients treated with a non-vitamin K oral anticoagulant. Int. J. Cardiol. 2015, 197, 98–100. [Google Scholar] [CrossRef]
- Kikuchi, S.; Tsukahara, K.; Ichikawa, S.; Abe, T.; Minamimoto, Y.; Kimura, Y.; Akiyama, E.; Nakayama, N.; Okada, K.; Matsuzawa, Y.; et al. Platelet-Derived Thrombogenicity Measured by Total Thrombus-Formation Analysis System in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Circ. J. 2020, 84, 975–984. [Google Scholar] [CrossRef]
- Sueta, D.; Kaikita, K.; Okamoto, N.; Yamabe, S.; Ishii, M.; Arima, Y.; Ito, M.; Oimatsu 1, Y.; Mitsuse, T.; Iwashita, S.; et al. Edoxaban Enhances Thromboprophylaxis by Physiotherapy After Total Knee Arthroplasty—The Randomized Controlled ESCORT-TKA Trial. Circ. J. 2018, 82, 524–531. [Google Scholar] [CrossRef]
- Ishii, M.; Kaikita, K.; Mitsuse, T.; Nakanishi, N.; Oimatsu, Y.; Yamashita, T.; Nagamatsu, S.; Tabata, N.; Fujisue, K.; Sueta, D.; et al. Reduction in thrombogenic activity and thrombocytopenia after transcatheter aortic valve implantation—The ATTRACTIVE-TTAS study. Int. J. Cardiol. Heart Vasc. 2019, 23, 1–7. [Google Scholar] [CrossRef]
- Ogawa, S.; Ohnishi, T.; Hosokawa, K.; Szlam, F.; Chen, E.P.; Tanaka, K.A. Haemodilution-induced changes in coagulation and effects of haemostatic components under flow conditions. Br. J. Anaesth. 2013, 111, 1013–1023. [Google Scholar] [CrossRef]
- Ågren, A.; Holmström, M.; Schmidt, D.E.; Hosokawa, K.; Blombäck, M.; Hjemdahl, P. Monitoring of coagulation factor therapy in patients with von Willebrand disease type 3 using a microchip flow chamber system. Thromb. Haemost. 2017, 117, 75–85. [Google Scholar] [PubMed]
- Mazzeffi, M.; Hasan, S.; Abuelkasem, E.; Meyer, M.; Deatrick, K.; Taylor, B.; Kon, Z.; Herr, D.; Tanaka, K. Von Willebrand Factor-GP1bα Interactions in Venoarterial Extracorporeal Membrane Oxygenation Patients. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2125–2132. [Google Scholar] [CrossRef]
- Nogami, K.; Ogiwara, K.; Yada, K.; Shida, Y.; Takeyama, M.; Yaoi, H.; Minami, H.; Furukawa, S.; Hosokawa, K.; Shima, M. Assessing the clinical severity of type 1 von Willebrand disease patients with a microchip flow-chamber system. J. Thromb. Haemost. 2016, 14, 667–674. [Google Scholar] [CrossRef]
- Bykowska, K. Classification and diagnosis of von Willebrand disease. Hematologia 2013, 4, 24–34. [Google Scholar]
- Daidone, V.; Barbon, G.; Cattini, M.G.; Pontara, E.; Romualdi, C.; Di Pasquale, I.; Hosokawa, K.; Casonato, A. Usefulness of the Total Thrombus-Formation Analysis System (T-TAS) in the diagnosis and characterization of von Willebrand disease. Haemophilia 2016, 22, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Ogiwara, K.; Nogami, K.; Hosokawa, K.; Ohnishi, T.; Matsumoto, T.; Shima, M. Comprehensive evaluation of haemostatic function in von Willebrand disease patients using a microchip-based flow chamber system. Haemophilia 2015, 21, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Miike, T.; Sakamoto, Y.; Sakurai, R.; Ohta, M.; Goto, A.; Imahase, H.; Yahata, M.; Umeka, M.; Koami, H.; Yamada, K.C.; et al. Effects of hyperbaric exposure on thrombus formation. Undersea Hyperb. Med. 2016, 43, 233–238. [Google Scholar] [PubMed]
- Ono, Y.; Wang, Y.; Suzuki, H.; Okamoto, S.; Ikeda, Y.; Murata, M.; Poncz, M.; Matsubara, Y. Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 2012, 120, 3812–3821. [Google Scholar] [CrossRef]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer 4, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A novel nonsense mutation in FGB (c. 1421G> A; p. Trp474Ter) in the beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef] [PubMed]


| Study | Population | T-TAS Tests | Outcome |
|---|---|---|---|
| Minami, 2015 | patients with δ-SPD (n = 3), healthy people (n = 20) | PL-chip | T-TAS detecting functional disorders of platelets such as δ-SPD |
| Ghirardello, 2021 | patients with COVID-19 (n = 61), healthy people (n = 32) | PL-chip | The impaired clot formation in COVID-19 patients occurs in the early stages of the disease and correlates with the severity of the disease |
| Tsujii, 2020 | patients with acute KD (n = 33) | PL-chip | PTF has an early onset and exhibits poor stability in patients with acute KD |
| Indemoto, 2017 | patients with cardiovascular diseases treated AC (n = 78), non-AC (n = 25) | PL-chip and AR-chip | T-TAS enables efficient assessment of anticoagulant activity. |
| Ożegowska, 2020 | patients with PCOS (n = 39), healthy women (n = 11) | AR-chip | PCOS patients have higher AUC30 values |
| Osiński, 2020 | pregnant women with T1DM (n = 21), healthy pregnant women (n = 15) | AR-chip | MPV, D-dimer and T-TAS measurements can be used to diagnose the prothrombotic state |
| Yamamoto, 2019 | patients with type 2 diabetes (n = 10), people without diabetes (n = 10) | 1. PL-chip and AR-chip 2. PL-chip | T-TAS, determined the reduction of thrombogenicity associated with comprehensive diabetes care and the increase of thrombogenicity associated with hypoglycemia |
| Hosokawa, 2013 | patient with heart disease treated: aspirin (n = 20), aspirin and clopidogrel (n = 19), healthy people (n = 33) | PL-chip | T-TAS in conjunction with conventional platelet function tests and can be used to analyze residual thrombogenicity |
| Yamaguchi, 2013 | healthy people (n = 31) | PL-chip and AR-chip | T-TAS can be used to monitor the prevention of thrombotic diseases |
| Taune, 2017 | patients treated with dabigatran (n = 30) | AR-chip | T-TAS can be used to detect differences in haemostasis in patients treated with dabigatran |
| Hosokawa, 2016 | healthy people (n = 6), mice: WT (n = 47) and PAI-1 deficient (n = 47) | AR-chip | The arterial shear flow likely influences the anticoagulant efficacy of t-PA |
| Miike et al., 2021 | healthy people (n = 10) | PL-chip and AR-chip | Using the POCT methods (T-TAS and ROTEM) it was possible to determine the dose-dependent effect of antithrombin |
| Study | Population | T-TAS Tests | Outcome |
|---|---|---|---|
| Hosokawa, 2011 | healthy people (n = 33) | AR-chip | T-TAS quantifies white thrombus formation |
| Sugihara, 2016 | healthy people (n = 20) and patients with AF: treated with rivaroxaban (n = 6), apixaban (n = 10) | PL-chip and AR-chip | T-TAS is useful for monitoring anticoagulant therapy with FXa inhibitors |
| Yamazaki, 2016 | patients with cerebrovascular diseases treated with antiplatelet therapy (n = 94) | PL-chip | T-TAS allows the assessment of platelet inhibition in patients with cerebrovascular disease treated with antiplatelet drugs |
| Arima, 2015 | patients with CAD: not treated with antiplatelet drugs (n = 56), treated with aspirin (n = 69), aspirin and clopidogrel (n = 149) | PL-chip and AR-chip | The T-TAS parameter PL24-AUC10 can be used to evaluate antiplatelet therapy in patients with CAD |
| Zheng et al., 2021 | patients with CAD undergoing PCI treated DAPT with clopidogrel (n = 22), prasugrel (n = 15), ticagrelor (n = 20) | PL-chip | T-TAS can be used in patients treated with antiplatelet drugs to determine primary haemostatic capacity |
| Hosokawa, 2014 | healthy people (n = 15) | AR-chip | T-TAS can be used for dose adjustment and selection of the optimal therapy with anticoagulants |
| Norimatsu, 2014 | patient with PAF | PL-chip and AR-chip | T-TAS can be used to evaluate the effect of anticoagulants such as NOAC |
| Ishii, 2017 | patients with AF undergoing RFCA: treated with warfarin (n = 29), dabigatran (n = 19), rivaroxaban (n = 47), apixaban (n = 25) | AR-chip | The T-TAS parameter AR10-AUC30 can be used to monitor the effect of anticoagulants such as warfarin and DOACs |
| Clifford et al., 2021 | healthy people (n = 24) | PL-chip and AR-chip | The T-TAS technology made it possible to compare the therapies of the PEGASUS and COMPASS in vitro trials with each other |
| Skalski et al., 2021 | healthy people (n = 8) | PL-chip | Using the PL-chip (T-TAS), it was possible to demonstrate the anticoagulant potential of four fractions isolated from sea buckthorn |
| Lis et al., 2021 | healthy people (n = ?) | PL-chip | T-TAS and flow cytometry enabled the identification of the fraction (C) with the greatest antiplatelet properties |
| Shimamura et al., 2021 | rhesus monkeys (n = 4) | PL-chip | The use of T-TAS in this study made it possible to demonstrate the anticoagulant activity of the vaccine in monkeys |
| Study | Population | T-TAS Tests | Outcome |
|---|---|---|---|
| Ogawa et al., 2012 | mice FVIII-deficient/wild-type healthy people (n = 6) | AR-chip | Observed dense networks of fibrin fibres surrounding platelets in normal blood and coarse fibrin structures with large pores in FIX-inhibited blood. |
| Nakajima et al., 2020 | patients with type 2N vWD (n = 5) healthy people (n = 20) | PL-chip, AR-chip | The AR-chip enables the prediction of bleeding tendency and the determination of the effectiveness of therapy in patients with type 2N vWD. |
| Yaoi et al., 2017 | patient with type 1 vWD (n = 5) healthy people (n = 10) | PL-chip | PL-chip enables the identification of impaired haemostasis in the presence of anemia |
| Takashio et al., 2020 | patients with end-stage HF (n = 4) patients treated with aspirin and warfarin (n = 8) | PL-chip, AR-chip | AR10-AUC30 may apply to stratify the risk of bleeding or thromboembolic disease |
| Nakajima et al., 2021 | patients with VWD (n = 22) and PFDs (n = 4) healthy people (n = 20) | PL-chip, AR-chip | T-TAS may be useful in detecting patients with primary hemostatic disorders |
| Oimatsu et al., 2017 | patients with CAD undergoing PCI (n = 313) | PL-chip, AR-chip | PL24-AUC10 may be a marker for perioperative bleeding in patients with CAD undergoing PCI |
| Ito et al., 2016 | patients with AF (n = 128) | AR-chip | AR10-AUC30 measured enables the assessment of the efficacy of warfarin and NOAC in patients with AF after catheter ablation |
| Nakanishi et al., 2021 | patients underwent PCI (n = 300) | AR-chip | AR10-AUC30 with ARC-HBR allows better prediction of bleeding risk in patients undergoing PCI |
| Nakanishi et al., 2021 | hemodialysis patients undergoing PCI (n = 33), patients with eGFR <60 mL/min/1.73 m2 undergoing PCI (n = 124) and patients with eGFR ≥60 undergoing PCI (n = 143) | PL-chip, AR-chip | T-TAS can be used to monitor thrombogenicity to predict the risk of bleeding in hemodlialised patients undergoing PCI |
| Mitsuse et al., 2020 | patients with CAD undergoing CAG or PCI (n = 561) | PL-chip, AR-chip | AR10-AUC30 may be useful in predicting 1-year bleeding episodes in CAD patients |
| Al Ghaithi et al., 2019 | patients with coagulation disorders (n = 37), healthy people (n = 22) and wild-type mice (n = 5) | PL-chip, AR-chip | T-TAS can be used to monitor anticoagulant therapy and to test platelet function in patients |
| Ichikawa et al., 2019 | patients with CAD (n = 145) | PL-chip, AR-chip | AR4-AUC30 can be used to predict bleeding complications in stable CAD patients receiving oral anticoagulants and antiplatelet agents |
| Ogawa et al., 2011 | patients treated warfarin (n = 6), healthy people (n = 7) | AR-chip | T-TAS probably illustrates the overall hemostatic activity |
| Atari et al., 2020 | patients who required platelet transfusions (n = 10) | PL-chip, AR-chip, HD chip | The new HD chip can determine the risk of bleeding as well as detect recovery of haemostasis after platelet transfusion |
| Study | Population | T-TAS Tests | Outcome |
|---|---|---|---|
| Sueta, 2015 | patients undergoing TKA (n = 20) | PL-chip, AR-chip | The T-TAS parameter AR10-AUC30 can be used to determine the efficacy of the edoxaban |
| Sueta, 2018 | patients undergoing TKA (n = 38) | AR-chip | T-TAS parameter–AR10-AUC30 in determining the haemorrhagic risk after TKA surgery |
| Ishii, 2019 | patients undergoing TAVI (n = 21) | AR-chip | T-TAS may be useful in analyzing post-TAVI hemorrhagic complications |
| Kikuchi, 2020 | patients undergoing PPCI (n = 127) | PL-chip | The T-TAS parameter which is PL18-AUC10 during PPCI reached high values which was associated with impaired reperfusion and large infarct size |
| Ogawa, 2013 | patients before and after CPB (n = 15), healthy people (n = 12) | AR-chip | The hemodilution procedure causes the blood flow to influence the formation of a thrombus and the subsequent therapy with the use of hemostatic ingredients |
| Study | Population | T-TAS Tests | Outcome |
|---|---|---|---|
| Ågren, 2017 | patient with vWD-3 (n = 10), healthy people (n = 10) | AR-chip | T-TAS revealed abnormalities in thrombus formation that depends on platelets in vWD-3 |
| Mazzeffi, 2019 | patients with VA ECMO (n = 20), healthy people (n = 20) | PL-chip | Reduced platelet adhesion and aggregation in VA ECMO patients may be due to the loss or dysfunction of the vWF GP1ba receptor |
| Nogami, 2016 | patients with vWD-1 (n = 50), healthy people (n = 30) | PL-chip, AR-chip | T-TAS enables the discrimination and prediction of BS in patients with vWD type 1 |
| Daidone, 2016 | patients with vWD (n = 30), healthy people (n = 20) | PL-chip, AR-chip | T-TAS may be a global pretest for vWD |
| Ogiwara, 2015 | patients with vWD (n = 5), healthy people (n = 20) | PL-chip, AR-chip | Analysis with PL-chip and AR-chip can be used to assess the clinical symptoms of vWD and to monitor the effectiveness of treatment |
| Study | Population | T-TAS Tests | Outcome |
|---|---|---|---|
| Mikke, 2016 | healthy people (n = 10) | PL-chip | T-TAS made it possible to determine the decrease in thrombus formation capacity in samples subjected to hyperbaric pressure |
| Ono, 2012 | cell cultures | PL-chip | IMKs can be made from fibroblasts, paving the way for further research into the mechanisms of MK differentiation and the production of platelets in this way |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, J.; Karczmarska-Wódzka, A.; Bugieda, J.; Sobczak, P. The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 8605. https://doi.org/10.3390/ijms22168605
Sikora J, Karczmarska-Wódzka A, Bugieda J, Sobczak P. The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review. International Journal of Molecular Sciences. 2021; 22(16):8605. https://doi.org/10.3390/ijms22168605
Chicago/Turabian StyleSikora, Joanna, Aleksandra Karczmarska-Wódzka, Joanna Bugieda, and Przemysław Sobczak. 2021. "The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review" International Journal of Molecular Sciences 22, no. 16: 8605. https://doi.org/10.3390/ijms22168605
APA StyleSikora, J., Karczmarska-Wódzka, A., Bugieda, J., & Sobczak, P. (2021). The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review. International Journal of Molecular Sciences, 22(16), 8605. https://doi.org/10.3390/ijms22168605

