Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Silica/CS/TCP Xerogels
2.2. Physical Characterization and Structural Properties
2.2.1. SiO2/CS Xerogels
2.2.2. SiO2/CS/TCP Xerogels
2.3. Thermal Characterization
2.4. FTIR Spectral Analysis
2.5. Biodegradation
2.6. Biomineralization
2.7. Osteoblast Behavior
2.8. Cell Morphology, Cytoskeletal
Organization and Focal Adhesions
2.9. Mineralization
3. Materials and Methods
3.1. Materials
3.2. Synthesis of SiO2/CS and SiO2/CS/TCP Xerogels
3.3. Materials Characterization
3.4. In Vitro Degradation: Determination of Ca and Si Release and Measurement of pH
3.5. In Vitro Biomineralization in SBF
3.6. Cell Culture
3.7. Live/Dead Cell Assay
3.8. Cell Morphology and Spreading
3.9. Actin Cytoskeletal Organization
3.10. Confocal Examination
3.11. Image Analysis
3.12. Mineralization
3.13. Detection of Mineralization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Gaharwar, A.K.; Schexnailder, P.J.; Schmidt, G. Development of Biomedical polymer-silicate nanocomposites: A materials science perspective. Materials 2010, 3, 2986–3005. [Google Scholar] [CrossRef]
- Abdulghani, S.; Mitchell, R. Biomaterials for in situ tissue regeneration: A Review. Biomolecules 2019, 9, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schottner, G. Hybrid sol-gel-derived polymers: Applications of multifunctional materials. Chem. Mater. 2001, 13, 3422–3435. [Google Scholar] [CrossRef]
- Arcos, D.; Vallet-Regí, M. Sol-Gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010, 6, 2874–2888. [Google Scholar] [CrossRef]
- Heinemann, S.; Heinemann, C.; Bernhardt, R.; Reinstorf, A.; Nies, B.; Meyer, M.; Worch, H.; Hanke, T. Bioactive silica-collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater. 2009, 5, 1979–1990. [Google Scholar] [CrossRef]
- Mahony, O.; Yue, S.; Hanna, J.V.; Smith, M.E.; Lee, P.D.; Jones, J.R. Silica-Gelatin hybrids for tissue regeneration: Inter-Relationships between the process variables. J. Sol-Gel Sci. Technol. 2014, 69, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Teng, S.; Jang, T.; Wang, P.; Yook, S.; Kim, H.; Koh, Y. Nanostructured poly (ε-caprolactone )–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomater. 2010, 6, 3557–3565. [Google Scholar] [CrossRef]
- Lucía, T.; Hern, A.C.; Rodríguez-Lorenzo, L.M. Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and sol-gel reactions. Carbohydr. Polym. 2021, 267. [Google Scholar] [CrossRef]
- Tiwari, N.; Nawale, L.; Sarkar, D.; Badiger, M.V. Carboxymethyl cellulose-grafted mesoporous silica hybrid nanogels for enhanced cellular uptake and release of curcumin. Gels 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Romer, F.; Connell, L.; Walter, C.; Saiz, E.; Yue, S.; Lee, P.D.; Mcphail, D.S.; Hanna, V.; Jones, J.R. Highly flexible silica/chitosan hybrid scaffoldswith oriented pores for tissue regeneration. J. Mater. Chem. B 2015, 3, 7560–7576. [Google Scholar] [CrossRef] [Green Version]
- Logithkumar, R.; Keshavnarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016, 151, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2010, 82, 227–232. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Watzke, H.; Dieschbourg, C. Novel silica-biopolymer nanocomposites: The silica sol-gel process in biopolymer organogel. Adv. Colloid Interface Sci. 1994, 50, 1–14. [Google Scholar] [CrossRef]
- Suzuki, T.; MIzushima, Y. Characteristics of silica-chitosan complex membrane and their relationships to the characteristics of growth and adhesiveness of L-929 cells cultured on the biomembrane. J. Ferment. Bioeng. 1997, 84, 128–132. [Google Scholar] [CrossRef]
- Jun, S.; Lee, E.; Yook, S.; Kim, H.; Kim, H.; Koh, Y. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomater. 2010, 6, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Jun, S.-H.; Kim, H.-E.; Kim, H.-W.; Koh, Y.-H.; Jang, J.-H. Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. J. Mater. Sci. Mater. Med. 2010, 21, 207–214. [Google Scholar] [CrossRef]
- Trujillo, S.; Pérez-Román, E.; Kyritsis, A.; Gõmez Ribelles, J.L.; Pandis, C. Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. J. Polym. Sci. B Polym. Phys. 2015, 53, 1391–1400. [Google Scholar] [CrossRef]
- Connell, L.S.; Romer, F.; Suárez, M.; Valliant, E.M.; Zhang, Z.; Lee, P.D.; Smith, M.E.; Hanna, J.V.; Jones, J.R. Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J. Mater. Chem. B 2014, 2, 668–680. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Z.; Sheng, L.; Ma, M.; Xu, Q.; Jin, Y. Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydr. Polym. 2019, 215, 348–357. [Google Scholar] [CrossRef]
- Seo, S.; Kim, J.; Kim, J.; Lee, J.; Sang, U.; Lee, E.; Kim, H. Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation. Compos. Sci. Technol. 2014, 96, 31–37. [Google Scholar] [CrossRef]
- Shirosaki, Y.; Tsuru, K.; Hayakawa, S.; Osaka, A.; Ascens, M.; Santos, J.D.; Fernandes, M.H. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane. Biomaterials 2005, 26, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Shirosaki, Y.; Tsuru, K.; Moribayashi, H.; Hayakawa, S.; Nakamura, Y.; Gibson, I.R.; Osaka, A. Preparation of osteocompatible Si(IV)-enriched chitosan-silicate hybrids. J. Ceram. Soc. Jpn. 2010, 118, 989–992. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Miao, Y.; Shi, X.; Gao, H.; Wang, Y. Phosphorylated chitosan hydrogels inducing osteogenic differentiation of osteoblasts via JNK and p38 signaling pathways. Biomater. Sci. Eng. 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Datta, P.; Dhara, S.; Chatterjee, J. Hydrogels and electrospun nanofibrous scaffolds of N-methylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting. Carbohydr. Polym. 2012, 87, 1354–1362. [Google Scholar] [CrossRef]
- Heinemann, S.; Heinemann, C.; Wenisch, S.; Alt, V.; Worch, H.; Hanke, T. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013, 9, 4878–4888. [Google Scholar] [CrossRef]
- Sukul, M.; Sahariah, P.; Lauzon, L.; Mano, F.; Haugen, H.J.; Reseland, J.E. In vitro biological response of human osteoblasts in 3D chitosan sponges with controlled degree of deacetylation and molecular weight. Carbohydr. Polym. 2021, 254, 117437. [Google Scholar] [CrossRef] [PubMed]
- Stricker, J.; Aratyn-Schaus, Y.; Oakes, P.W.; Gardel, M.L. Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys. J. 2011, 100, 2883–2893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takadama, H.; Kim, H.M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Mechanism of apatite formation induced by silanol groups- TEM observation. J. Ceram. Soc. Jpn. 2000, 108, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wei, J.; Wu, X.; Shi, J.; Liu, C.; Jia, J.; Dai, C.; Gan, Q. The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro. J. Mater. Sci. Mater. Med. 2010, 21, 2175–2185. [Google Scholar] [CrossRef]
- Radin, S.; El-bassyouni, G.; Vresilovic, E.J.; Schepers, E.; Ducheyne, P. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials 2005, 26, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Elliot, J. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Ginebra, M.; Ferna, E.; Driessens, F.C.M.; Planell, J.A. modeling of the hydrolysis of alpha-tricalcium phosphate. J. Am. Ceram. Soc. 1999, 82, 2808–2812. [Google Scholar] [CrossRef]
- Carrodeguas, R.G.; De Aza, S. α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 2011, 7, 3536–3546. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Izquierdo-Barba, I.; Colilla, M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1400–1421. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.; Mahapatra, C.; Kim, H. Progress in Materials science sol-gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Menon, V.C.; Komarneni, S. Ethanol washing effect on textural properties of the sodium silicate-derived silica xerogel. J. Sol-Gel Sci. Technol. 1998, 12, 15–20. [Google Scholar] [CrossRef]
- Palla-Rubio, B.; Araújo-Gomes, N.; Fernández-Gutiérrez, M.; Rojo, L.; Suay, J.; Gurruchaga, M. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydr. Polym. 2019, 203, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Shin, D.; Kim, H.; Kim, H.; Koh, Y.; Jang, J. Biomaterials membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 2009, 30, 743–750. [Google Scholar] [CrossRef]
- Ghaith, E.; Kasuga, T.; Nogami, M. Preparation of β-Tricalcium phosphate containing silica by CO2-laser-irradiation. Key Eng. Mater. 2006, 311, 779–782. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Draenert, F.G.; Albert, O.; Schröder, H.C.; Mailänder, V.; Mitov, G.; Müller, W.E.G. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 2014, 67, 292–304. [Google Scholar] [CrossRef]
- Czechowska, J.; Zima, A.; Lis, J.; Anna, Ś. Physicochemical properties and biomimetic behaviour of α-TCP-chitosan based materials. Ceram. Int. 2014, 40, 5523–5532. [Google Scholar] [CrossRef]
- Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater. Sci. Eng. C 2015, 55, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Peces, M.V.; Pérez-Moreno, A.; de-los-Santos, D.M.; del Mar Mesa-Díaz, M.; Pinaglia-Tobaruela, G.; Vilches-Pérez, J.I.; Fernández-Montesinos, R.; Salido, M.; de la Rosa-Fox, N.; Piñero, M. Chitosan-GPTMS-silica hybrid mesoporous aerogels for bone tissue engineering. Polymers 2020, 12, 2723. [Google Scholar] [CrossRef]
- Lai, S.; Yang, A.J.; Chen, W.; Hsiao, J. The Properties and preparation of chitosan/silica hybrids using sol-gel process. Polym. Plast. Technol. Eng. 2006, 45, 37–41. [Google Scholar] [CrossRef]
- Chou, K.; Lee, B.I. Effect of ageing media on gel structure and monolithicity. J. Mater. Sci. 1992, 27, 520–526. [Google Scholar] [CrossRef]
- Durães, L.; Ochoa, M.; Rocha, N.; Patrício, R.; Duarte, N.; Redondo, V. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels. J. Nanosci. Nanotechnol. 2012, 12, 6828–6834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Romero, P.; Sanchez, C. (Eds.) Hybrid materials, functional applications. An introduction. In Functional Hybrid Materials; Wiley-VCH: Weinheim, Germany, 2005; pp. 1–14. ISBN 3527304843. [Google Scholar]
- Davis, P.J.; Brinker, C.J.; Smith, D.M.; Assink, R.A. Pore structure evolution in silica gel during aging/drying II. Effect of pore fluids. J. Non-Cryst. Solids 1992, 142, 197–207. [Google Scholar] [CrossRef]
- Fidalgo, A.; Ilharco, L.M. The influence of the wet gels processing on the structure and properties of silica xerogels. Microporous Mesoporous Mater. 2005, 84, 229–235. [Google Scholar] [CrossRef]
- Ayers, M.R.; Hunt, A.J. Synthesis and properties of chitosan-silica hybrid aerogels. J. Non-Cryst. Solids 2001, 285, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Buckley, A.M.; Greenblatt, M. A comparison of the microstructural properties of silica aerogels and xerogels. J. Non-Cryst. Solids 1992, 143, 1–13. [Google Scholar] [CrossRef]
- Perez-Moreno, A.; Reyes-Peces, M.; de las Virtudes Reyes-Peces, M.; de los Santos, D.M.; Pinaglia-Tobaruela, G.; de la Orden, E.; Vilches-Pérez, J.I.; Salido, M.; Piñero, M.; de la Rosa-Fox, N. Hydroxyl groups induce bioactivity in silica/chitosan aerogels designed for bone tissue engineering. In vitro model for the assessment of osteoblasts behavior. Polymers 2020, 12, 2802. [Google Scholar] [CrossRef] [PubMed]
- Sing, K. Reporting physisorption data for gas/solid systems with Special reference to the determination of surface area and Porosity. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Experimental Confirmation of different mechanisms of evaporation from ink-bottle type pores: Equilibrium, pore blocking and cavitation. Langmuir 2002, 18, 9830–9837. [Google Scholar] [CrossRef]
- Voogd, P.; Scholten, J.J.F.; van Bekkum, H. Use of the t-plot—De Boer method in pore volume determinations of ZSM-5 type zeolites. Colloids Surf. 1991, 55, 163–171. [Google Scholar] [CrossRef]
- De Boer, J.H.; Lippens, B.C.; Linsen, B.G.; Broekhoff, J.C.P.; van den Heuvel, A.; Osinga, T.J. The t-curve of multimolecular N2-adsorption. J. Colloid. Interface Sci. 1966, 21, 405–414. [Google Scholar] [CrossRef]
- Moulijn, J.A.; van Leeuwen, P.W.N.M.; van Santen, R.A. (Eds.) The use of adsorption methods for the assessment of the surface area and pore size distribution of heterogeneous catalysts. In Studies in Surface Science and Catalysis; Elsevier Science & Technology: Amsterdam, The Netherlands, 1993; pp. 419–438. ISBN 0-444-89229-X. [Google Scholar]
- Kaneko, K.; Ishii, C. Superhigh surface area determination of microporous solids. Colloids Surf. 1992, 67, 203–212. [Google Scholar] [CrossRef]
- Schneider, P. Adsorption isotherms of microporous-mesoporous solids revisited. Appl. Catal. A 1995, 129, 157–165. [Google Scholar] [CrossRef]
- Galarneau, A.; Mehlhorn, D.; Guenneau, F.; Coasne, B.; Villemot, F.; Minoux, D.; Aquino, C.; Dath, J. Specific surface area determination for microporous/mesoporous materials: The case of mesoporous FAU-Y zeolites. Langmuir 2018, 34, 14134–14142. [Google Scholar] [CrossRef]
- Galarneau, A.; Rodriguez, J.; Coasne, B. Validity of the t-plot Method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 2014, 30, 13266–13274. [Google Scholar] [CrossRef] [PubMed]
- Dollimore, D.; Heal, G.R. The influence of pH on the surface characteristics of silica gel soaked in aqueous solutions. J. Appl. Chem. 2007, 12, 445–450. [Google Scholar] [CrossRef]
- Jinlong, N.; Zhenxi, Z.; Dazong, J. Investigation of phase evolution during the thermochemical synthesis of tricalcium phosphate. J. Mater. Synth. Process. 2002, 9, 235–240. [Google Scholar] [CrossRef]
- Andrade-Espinosa, G.; Escobar-Barrios, V.; Rangel-Mendez, R. Synthesis and characterization of silica xerogels obtained via fast sol-gel process. Colloid Polym. Sci. 2010, 288, 1697–1704. [Google Scholar] [CrossRef]
- Capeletti, L.B.; Zimnoc, J.H. Fourier transform fourier infrared and raman characterization of silica-based materials. In Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences; Stauffer, M., Ed.; Intechopen: London, UK, 2016; pp. 3–22. ISBN 978-953-51-2681-2. [Google Scholar]
- Budnyak, T.M.; Pylypchuk, I.V.; Tertykh, V.A.; Yanovska, E.S.; Kolodynska, D. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res. Lett. 2015, 10, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Hudson, S.M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res. 2004, 339, 313–319. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Jeong, E.; Fischer, B.; Zhang, Y.; Xu, H.; Angelica, E.; Risen, W.M.; Suggs, J.W.; Koebel, M.M. Facile one-pot synthesis of mechanically robust biopolymer-silica nanocomposite aerogel by cogelation of silicic acid with chitosan in aqueous media. ACS Sustain. Chem. Eng. 2016, 4, 5674–5683. [Google Scholar] [CrossRef]
- Chang, X.; Chen, D.; Jiap, X. Chitosan-Based aerogels with high adsorption performance. J. Phys. Chem. B 2008, 112, 7721–7725. [Google Scholar] [CrossRef]
- Habelitz, S.; Pascual, L.; Durán, A. Transformation of tricalcium phosphate into apatite by ammonia treatment. J. Mater. Sci. 2016, 36, 4131–4135. [Google Scholar] [CrossRef]
- Lu, J.; Descamps, M.; Dejou, J.; Koubi, G.; Hardouin, P.; Lemaitre, J.; Proust, J. The Biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. 2002, 63, 408–412. [Google Scholar] [CrossRef]
- Mohamed, A.; El-aziz, A.M.; Breitinger, H. Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications. J. Magnes. Alloys 2019, 7, 249–257. [Google Scholar] [CrossRef]
- Kim, H.; Himeno, T.; Kawashita, M.; Kokubo, T.; Nakamura, T. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment. J. R. Soc. Interface 2004, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Bacáková, L.; Filová, E.; Ripáček, F.; Švorčík, V.; Starý, V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004, 53, 35–45. [Google Scholar]
- Terriza, A.; Vilches-Pérez, J.I.; González-Caballero, J.L.; de la Orden, E.; Yubero, F.; Barranco, A.; Gonzalez-Elipe, A.R.; Vilches, J.; Salido, M. Osteoblasts interaction with PLGA membranes functionalized with titanium film nanolayer by PECVD. Materials 2014, 7, 1687–1708. [Google Scholar] [CrossRef] [Green Version]
- Coyer, S.R.; Singh, A.; Dumbauld, D.W.; Calderwood, D.A.; Craig, S.W.; Delamarche, E.; García, A.J. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 2012, 125, 5110–5123. [Google Scholar] [CrossRef] [Green Version]
- Bays, J.L.; Demali, K.A. Vinculin in cell-cell and cell-matrix adhesions. Cell. Mol. Life Sci. 2017, 74, 2999–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, L.E.; Sjöström, T.; Burgess, K.E.V.; Kim, J.J.W.; Liu, E.; Gordonov, S.; Moghe, P.V.; Meek, R.M.D.; Oreffo, R.O.C.; Su, B.; et al. Skeletal stem cell physiology on functionally distinct titania nanotopographies. Biomaterials 2011, 32, 7403–7410. [Google Scholar] [CrossRef] [PubMed]
- Zonderland, J.; Wieringa, P.; Moroni, L. A quantitative method to analyse F-actin distribution in cells. MethodsX 2019, 6, 2562–2569. [Google Scholar] [CrossRef]
- Bittig, A.T.; Matschegewski, C.; Nebe, J.B.; Stählke, S.; Uhrmacher, A.M. Membrane related dynamics and the formation of actin in cells growing on micro-topographies: A spatial computational model. BNC Syst. Biol. 2014, 8, 106–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salido, M.; Vilches, J.I.; Gutiérrez, J.L.; Vilches, J. Actin cytoskeletal organization in human osteoblasts grown on different dental titanium implant surfaces. Histol. Histopathol. 2007, 22, 1355–1364. [Google Scholar] [CrossRef]
- Salido, M.; Vilches-perez, J.I.; Gonzalez, J.L.; Vilches, J. Mitochondrial bioenergetics and distribution in living human osteoblasts grown on implant surfaces. Histol. Histopathol. 2009, 24, 1275–1286. [Google Scholar] [PubMed]
- Lamers, E.; van Horssen, R.; te Riet, J.; van Delft, F.C.M.J.M.; Luttge, R.; Walboomers, X.; Jansen, J. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur. Cells Mater. 2010, 20, 329–343. [Google Scholar] [CrossRef]
- Jonathan, M.; Biggs, P.; Richards, R.G.; Dalby, M.J. Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomedicine 2010, 6, 619–633. [Google Scholar] [CrossRef]
- Giacomino, C.M.; Wealleans, J.A.; Kuhn, N. Comparative biocompatibility and osteogenic potential of two bioceramic sealers. Basis Res. Biol. 2019, 45, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.; Barba, M.; Di Pietro, L.; Conti, C.; De Spirito, M.; Lattanzi, W.; Papi, M. Graphene oxide induced osteogenesis quantification by in-situ 2D-fluorescence spectroscopy. Int. J. Mol. Sci. 2018, 19, 3336. [Google Scholar] [CrossRef] [Green Version]
- Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014, 14, 15–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresguerres, F.G.F.; Torres, J.; López-Quiles, J.; Hernández, G.; Vega, J.A. The osteocyte: A multifunctional cell within the bone. Ann. Anat. 2020, 227, 151422. [Google Scholar] [CrossRef] [PubMed]
- Ciobanasu, C.; Faivre, B.; Le Clainche, C. Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions. Eur. J. Cell Biol. 2013, 92, 339–348. [Google Scholar] [CrossRef]
- Brunauer, B.S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; ISBN 1402023022. [Google Scholar]
- Jaroniec, M.; Fulvio, P.F. Standard nitrogen adsorption data for α-alumina and their use for characterization of mesoporous alumina-based materials. Adsorption 2013, 19, 475–481. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
Xerogel Samples | Unwashed (U) | Ethanol-Washed_1 Day (E1) | Ethanol-Washed_7 Days (E7) | Water-Washed_30 Days (W30) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C (wt%) | N (wt%) | C/N | Chitosan (wt%) | C (wt%) | N (wt%) | C/N | Chitosan (wt%) | C (wt%) | N (wt%) | C/N | Chitosan (wt%) | C (wt%) | N (wt%) | |
Pure SiO2 | 0.74 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 0.07 | |
SCS4 | 1.92 | --- | --- | --- | 4.11 | 0.07 | 58.7 | 0.89 | 3.71 | --- | --- | --- | 0.35 | --- |
SCS8 | 3.11 | 0.12 | 25.9 | 1.53 | 4.46 | 0.21 | 21.2 | 2.67 | 4.73 | 0.05 | 89.2 | 0.67 | 0.17 | --- |
SCS12 | 4.55 | 0.38 | 12.0 | 2.44 | 4.60 | 0.27 | 17.0 | 3.43 | -- | -- | -- | -- | 0.31 | --- |
SCS16 | 5.35 | 0.54 | 9.9 | 6.87 | 4.85 | 0.32 | 15.1 | 4.08 | 5.73 | 0.24 | 23.9 | 3.05 | 0.40 | --- |
SCS20 | 4.98 | 0.45 | 11.1 | 5.73 | 5.80 | 0.48 | 12.1 | 6.11 | 5.41 | 0.19 | 28.5 | 2.40 | 0.34 | --- |
SCS40 | 8.81 | 1.21 | 7.6 | 15.40 | -- | -- | -- | -- | -- | -- | -- | -- | 0.80 | --- |
SCS8T10 | 2.71 | 0.13 | 20.8 | 1.65 | 4.02 | 0.25 | 16.1 | 3.18 | 4.25 | 0.12 | 35.4 | 1.50 | 0.12 | --- |
SCS8T20 | 2.44 | 0.08 | 24.4 | 1.27 | 4.38 | 0.23 | 19.0 | 2.93 | 4.47 | 0.12 | 37.2 | 1.52 | 0.10 | --- |
Sample | Unwashed | Ethanol-Washed | Water-Washed | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(U) | 1 Day Ethanol-Soaking (E1) | 7 Days Ethanol-Soaking (E7) | 30 Days Water-Soaking (W30) | |||||||||||||
ρ (g/cm3) | SBET (m2/g) | Vp (cm3/g) | D (nm) | ρ (g/cm3) | SBET (m2/g) | Vp (cm3/g) | D (nm) | ρ (g/cm3) | SBET (m2/g) | Vp (cm3/g) | D (nm) | ρ (g/cm3) | SBET (m2/g) | Vp (cm3/g) | D (nm) | |
SCS8 | 1.04 ± 0.03 | 653.0 | 0.58 | 3.3 | 0.36 ± 0.05 | 826.7 | 1.47 | 6.7 | 0.24 ± 0.05 | 815.1 | 1.64 | 7.1 | 1.38 ± 0.05 | 741.0 | 0.40 | 2.5 |
SCS8T10 | 1.20 ± 0.03 | 485.5 | 0.43 | 3.3 | 0.58 ± 0.01 | 821.2 | 1.23 | 5.5 | 0.53 ± 0.02 | 870.0 | 1.49 | 6.3 | 1.43 ± 0.01 | 662.2 | 0.39 | 2.7 |
SCS8T20 | 1.53 ± 0.03 | 360.8 | 0.28 | 3.0 | 0.63 ± 0.02 | 728.4 | 0.91 | 4.7 | 0.56 ± 0.01 | 887.6 | 1.40 | 6.0 | 1.48 ± 0.03 | 663.7 | 0.42 | 2.7 |
Sample | BET | t-Plot | r1/r2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SBET (m2/g) | Vp (g/cm−3) | D (nm) | Stot (m2/g) | Smeso (m2/g) | Smic (m2/g) | SExt (m2/g) | VTot (cm3/g) | Vmicro (cm3/g) | r1/r2 | |
SCS8_W30 | 741.0 | 0.40 | 2.5 | 537.0 | 531.6 | 204.0 | 5.4 | 0.39 | 0.10 | 0.9971/0.9929 |
SCS8T10_W30 | 662.2 | 0.39 | 2.7 | 529.8 | 525.2 | 132.4 | 4.6 | 0.38 | 0.06 | 0.9989/0.9913 |
SCS8T20_W30 | 663.7 | 0.42 | 2.7 | 623.8 | 620.9 | 39.9 | 2.9 | 0.41 | 0.02 | 0.9997/0.9919 |
Sample | Ca (at %) | P (at %) | O (at %) | Ca/P Ratio | |
---|---|---|---|---|---|
As prepared | SCS8T10_(w) | -- | -- | 35.98 | -- |
SCS8T10_(u) | 3.57 | 2.60 | 67.12 | 1.37 | |
4 weeks soaking in SBF | SCS8_(w) | 6.48 | 3.44 | 22.90 | 1.88 |
SCS8T20_(w) | 5.20 | 3.64 | 45.82 | 1.43 | |
SCS8T10_(e1d) | 8.52 | 4.61 | 42.21 | 1.85 | |
SCS8T20_(e1d) | 9.23 | 5.85 | 38.48 | 1.58 | |
SCS8T10_(e7d) | 11.45 | 8.38 | 46.59 | 1.37 | |
SCS8T20_(e7d) | 17.60 | 7.80 | 42.08 | 2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Moreno, A.; Reyes-Peces, M.V.; Vilches-Pérez, J.I.; Fernández-Montesinos, R.; Pinaglia-Tobaruela, G.; Salido, M.; de la Rosa-Fox, N.; Piñero, M. Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration. Int. J. Mol. Sci. 2021, 22, 8321. https://doi.org/10.3390/ijms22158321
Pérez-Moreno A, Reyes-Peces MV, Vilches-Pérez JI, Fernández-Montesinos R, Pinaglia-Tobaruela G, Salido M, de la Rosa-Fox N, Piñero M. Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration. International Journal of Molecular Sciences. 2021; 22(15):8321. https://doi.org/10.3390/ijms22158321
Chicago/Turabian StylePérez-Moreno, Antonio, María Virtudes Reyes-Peces, José Ignacio Vilches-Pérez, Rafael Fernández-Montesinos, Gonzalo Pinaglia-Tobaruela, Mercedes Salido, Nicolás de la Rosa-Fox, and Manuel Piñero. 2021. "Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration" International Journal of Molecular Sciences 22, no. 15: 8321. https://doi.org/10.3390/ijms22158321
APA StylePérez-Moreno, A., Reyes-Peces, M. V., Vilches-Pérez, J. I., Fernández-Montesinos, R., Pinaglia-Tobaruela, G., Salido, M., de la Rosa-Fox, N., & Piñero, M. (2021). Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration. International Journal of Molecular Sciences, 22(15), 8321. https://doi.org/10.3390/ijms22158321