You are currently viewing a new version of our website. To view the old version click .
International Journal of Molecular Sciences
  • Review
  • Open Access

29 June 2021

Neuroinflammation: A Signature or a Cause of Epilepsy?

,
,
,
and
1
National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy
2
Institute of Neuroscience CNR, 56127 Pisa, Italy
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Molecular and Cellular Mechanisms in Inflammatory Synaptopathy

Abstract

Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.

1. Introduction

Neuroinflammation is the process of inflammation that involves nervous tissues, and it can be originated by several exogenous or endogenous factors [,,]. Several factors can activate neuroinflammation, such as infection, traumatic brain injury, toxic metabolites, autoimmune diseases, aging, air pollution, passive smoke or spinal cord injury, and stimulate the production of cytokines and chemokines, which also act as a support for cell growth and survival. They include at least 40 types of interleukins (IL), first thought to be expressed only by leukocytes, but later found to be produced by different cell types []. Cytokines and chemokines activate microglia, as a primary immune response in the central nervous system (CNS). Continuous microglia activation causes the recruitment of peripheral immune cells [], such as macrophages and B and T lymphocytes, which are responsible for the innate and adaptive immune response. These immune cells can access the brain through a compromised blood brain barrier (BBB), amplifying the defense mechanism and bringing about widespread chronic inflammation, and possibly neurodegenerative effects []. Another cellular component activated during neuroinflammation is represented by astrocytes; they are strictly linked to the BBB structure and can be responsive to signals released by injured neurons or activated microglia. Their contribution to tissue repair can be substantial, as in the case of glial scar formation, which is retained to promote axonal regeneration []. However, prolonged chronic insults can favor the activation of molecular pathways that sustain the inflammatory properties from brain-resident cells, causing a maladaptive response that can be harmful to the CNS [].
Many studies have explored the interaction between neuroinflammation and neurological disorders, particularly with epilepsy [,]. Epilepsy can be a primary pathology, due to structural or genetic reasons, or a secondary effect. In the latter case, it can be a consequence of traumatic brain injuries and brain tumors; then, it can be related to an infectious, metabolic, immune or unknown etiology, as summarized in the last ILAE classification of the epilepsies []. Undoubtedly, the presence of certain chronic inflammatory diseases facilitates epilepsy or other neurological manifestations. Indeed, in most autoimmune diseases, there is a five-fold increased risk of epilepsy in children and a four-fold increased risk in non-elderly adults (aged < 65) [,]. Even though the impaired regulation of the inflammatory response in injured neuronal tissue is a critical factor to the development of epilepsy, it is still unclear how this unbalanced regulation of inflammation contributes to epilepsy []. On the other hand, several studies have shown that epileptogenesis produces long-term effects on neuroinflammation, worsening the progression and outcome of epilepsy [,,,,].
In these last years, common pathways relating epilepsy to neuroinflammation have been identified, starting from the pioneering study of Goddard [,,,]. Interestingly, different models of chemically and electrically induced seizures show upregulation of genes expressed in inflammatory cascades, as seen in patients []. In epileptic rodent models, a key role is played by IL-1β, its receptor (IL-1R), and the antagonist of its receptor (IL-1Ra) [18-19-20-21-22-44]. Epileptogenesis, as well as several other conditions that bring about secondary epileptic phenotype [,,], is also correlated to the activation of Toll-like receptors (TLRs). Indeed, TLRs are responsible for the innate immune response, as factors upstream of IL-1β. Once a pathogen enters the organism, transmembrane receptors that are especially present on the membrane of macrophage and dendritic cells, recognizes it, and triggers localized inflammation. Moreover, various hyperacetylated molecules, such as “high-mobility box 1 group protein” (HMGB), a chromatin component released during necrosis, are capable to amplify TLRs activation [], and are involved in ictogenesis in models of chronic epilepsy and in humans []. Further factors are tumor necrosis factor- alfa (TNF-α), transforming growth factor beta (TGF-β), cyclo-oxygenase 2, and thrombospondin (TSP-1) []. Recently, the pentraxin family (PTXs) has also been identified to be involved in the immune response promoting epilepsy. PTX3 is expressed in the brain, where it is secreted by several white blood cells in response to inflammatory signals []. It interacts with the extracellular matrix and participates in remodeling AMPA receptors, regulating circuit excitability. PTX3 activation has been shown to have a pivotal role in a mouse model of experimental autoimmune encephalitis []. Then, it has been shown that the upregulation of inflammation causes effects at the extracellular matrix level, increasing levels of the redox-sensitive matrix metalloproteinase MMP-9 inside the epileptic brain [] and in schizophrenia []. MMP9 stimulates the receptor for advanced glycation end-products (RAGE), eventually leading to the secretion of various cytokines; changes in the extracellular matrix can finally impinge on the balance between excitation and inhibition, and on synaptic plasticity [,]. Another novel mechanism reinforcing neuroinflammation is supported by the renin-angiotensin system (RAS), which reinforces immune system activation; blocking this pathway prevents neurobehavioral effects of neuroinflammation, induced by lipopolysaccharide (LPS) treatment [].
Considering this background, the goal of our review is to show some of the known aspects of the mechanistic relationship between neuroinflammation and epilepsy, mainly focusing on certain paradigmatic diseases as focal cortical dysplasia, PCDH19 epilepsy, glioblastoma multiforme (GBM), maternal immune activation, multiple sclerosis, autism spectrum disorders (ASD) associated with epilepsy, and SARS-COV-2 (Figure 1). Following this, we finally explore several therapies that are currently being employed in epileptic patients, targeting neuroinflammation.
Figure 1. Schematic diagram of the interaction between epilepsy and neuroinflammation. Epilepsy is related to neuroinflammation and neuroinflammation can induce epilepsy in a biunivocal interaction. Many molecular mechanisms have been described to be involved in this loop. Diverse mechanisms, here summarized in the diagram, can impinge by means of the interaction with environmental cues on damage-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs) or on neurotransmitters and neuromodulators. Dotted lines and question mark indicate the possible involvement of SARS-COV2 in this loop; studies about its mechanism of action are currently ongoing.

3. An Overview on Therapies Affecting Neuroinflammation with Possible Outcome in Epilepsy

Finally, on the basis of the interaction between epilepsy and neuroinflammation that we have illustrated in general, and for some exemplificative pathologies, in this section we summarize several therapeutic strategies directed to contrast neuroinflammation and impinging on amelioration of the epileptic phenotype (Figure 3). Many of these drugs have been selected on the basis of results from preclinical studies in different animal models of epilepsy [], and thanks to the discovery of several biomarkers in patients []. This section, far from being exhaustive on this issue, tries to recapitulate principal results in the treatment of epilepsy, also evidencing some problems related to the use of drugs that stop neuroinflammation.
Figure 3. Schematic representation of attempted therapeutic strategies targeting neuroinflammation and capable to ameliorate epilepsy. The diagram illustrates the interaction with specific families of drugs and their targets; their main function seems to interrupt the loop that reinforces neuroinflammation produced by epileptogenesis. The trace recorded from the left brain is a typical example of critical activity due to the localized treatment with the convulsive agent 4-AP in our experiments, as conducted in [].

3.1. Inhibition of Immune Response

First of all, neuroinflammation involves complex interactions between innate and adaptive immunity, as seen in animal models []. The main goal of immunotherapy is to reduce acute inflammation and minimize irreversible neuronal dysfunction. People with autoimmune epilepsy may usually have clinical problems in addition to their seizures, including psychiatric difficulties, cognitive problems, balance impairment, sleep disorder, and autonomic (involuntary actions such as breathing or heartbeat) dysfunction, which should be treated apart. Interfering with these molecular cascades has been seen as beneficial in treating epilepsy with several of the following different drugs:
  • – Corticosteroids and especially adrenocorticotropic hormone (ACTH) have been used in various forms of childhood epilepsy, as in the case of PCDH19 female epilepsy ([]; see the previous paragraph);
  • – Antagonists of Toll-like receptor have been efficaciously used in convulsive epilepsy, as in the case of resveratrol, an anti-inflammatory stilbenoid. The application of resveratrol reduced the frequency of spontaneous seizures in KA-treated rats []. This effect was associated with a reduction in neuronal cell loss and an inhibition of mossy fiber sprouting in the hippocampus;
  • – Inhibition of the prostaglandin E2-PGE2- receptor subtype is neuroprotective in a pilocarpine model of SE [];
  • – Immunosuppressants, such as cyclosporine A, FK-506 (also known as tacrolimus), and rapamycin inhibiting T-lymphocyte activation, can stop seizures []. Indeed, daily systemic injection of cyclosporine A or FK-506 during electrical amygdala kindling prevented the acquisition of severe chronic seizures in rats []. However, long-term protection from crisis failed after drug withdrawal, showing limited anticonvulsant capacities []. Moreover, these data are quite controversial, since other authors showed opposite effects [];
  • – Immunoglobulins (IVIg) have been first employed in intractable epilepsy, starting from the empirical observation of its beneficial effect on seizures []. Indeed, immune system dysfunction could trigger, maintain or, unexpectedly, sustain intractable seizures [];
  • – In status epilepticus, minocycline represents a promising candidate for the anti-inflammatory treatment of epilepsy [,]. Despite often being referred to as an inhibitor of microglial activation, minocycline also affects—either directly or indirectly—other cell types, such as neurons, astrocytes, and oligodendrocytes. A similar drug, Minozac, blocks the production of pro-inflammatory cytokines and prevents the cognitive degenerative phenotype associated in a mouse ‘two-hit’ model of epilepsy []. Interestingly, an IL-1β inhibitor, VX-765, being used in psoriasis therapy, completed phase 2 clinical trials in 60 people with treatment-resistant partial-onset epilepsy [].

3.2. Antibody Antagonists

Monoclonal antibodies against immune cell membrane proteins, such as efalizumab and natalizumab, already used in autoimmune pathologies such as psoriasis, multiple sclerosis and Crohn’s disease [], have been used to target serum auto-antibodies in epileptogenesis []. Some ameliorations have been found after early treatment with immunomodulatory therapies, in autoimmune encephalitis and autoimmune epilepsies. Recently, autoantibodies against the IL-1 blockade are proposed for refractory epilepsy in an adolescent female with pharmaco-resistant epilepsy with a good outcome []. Then, tocilizumab, a humanized monoclonal antibody against the IL-6 receptor, has been found to be successful in a case report of two patients with pediatric refractory status epilepticus and acute epilepsy []. It is clear that there is the lack of standardized researches in this field, despite evidences emerging from basic research. The reason is that it is often difficult to find the right target of patients to be treated, due to the fact that the critical step is to intervene as early as possible [].

3.3. Probiotics

According to the results in animal models, the use of probiotics, prebiotics (as probiotic nutrients) and dietary manipulations, such as a ketogenic diet, could be promising to regulate homeostasis in brain excitability []. However, standardized studies with controlled administration of probiotics need to be done to better investigate this issue [,]. For example, a recent clinical trial reported a beneficial effect of probiotics in a pilot study, with a reduction in seizures to a 50% level in about 30% of the subjects, and a general amelioration of life quality [].

3.4. Cannabinoids

The endocannabinoid system (ECS) has been shown to contribute to neuroinflammation, and neuroinflammation can cause epilepsy; consequently, there is much evidence about the positive use of cannabinoids to treat chronic epilepsy []. Indeed, ECS can modulate the balance between excitation and inhibition, through the release of endogenous cannabinoids (endocannabinoids). Specifically, during neuroinflammation cannabidiols inhibit the activity of cyclooxygenase-2 (CO-X 2), 5-lipoxygenase and cytochrome P450, reducing the expression of inflammatory molecules, such as prostaglandins and leukotrienes []. Interestingly, a drug belonging to this class, Epidiolex, has been very recently approved by the FDA as a treatment for pharmaco-resistant epilepsy in Dravet syndrome []. Moreover, the use of phytocannabinoids, i.e., active molecules present in Cannabis sativa, has been effective in a wide range of pathologies with neurological correlates, among which are chronic pain, nausea, and multiple sclerosis. However, more studies are needed in this field, since cannabidiols and its derivatives are still considered illegal in several countries, and because a secondary collateral effect of phytocannabinoids cannot be neglected in many cases [].

3.5. Inhibitors of Voltage-Gated Potassium Channels Kv1.3

Another therapeutical strategy to block neuroinflammation is the use of inhibitors of voltage-gated potassium channels Kv1.3 []. Importantly, abnormal expression of Kv1.3 channels has been demonstrated to also be correlated with epilepsy []. Toxins produced by sea anemones, scorpions, spiders, snakes, and cone snails can target specific subsets of T lymphocytes as well as microglial cells, acting on their Kv1.3 channels and blocking neuroinflammation. Clinical trials to explore the efficacy of this treatment are currently ongoing, even if a problem could be the difficulty for these venoms to pass BBB.

4. Conclusions

Patients with drug-resistant epilepsy and many animal models of epilepsy show active inflammation []. So far, pediatric patients with refractory seizures that are resistant to common anti-epileptic drugs have been mostly treated with drugs counteracting neuroinflammation [,]. What appears evident is that drugs acting on various inflammatory pathways can mitigate the epileptic phenotype, but the response is both subject-based and dependent on the type of pathology causing epilepsy, as we have seen from this overview. Blocking neuroinflammation can be especially effective in counteracting the cascade mechanisms of recurrent seizures. As a future perspective, it would be important to explore if a pretreatment with anti-inflammatory drugs could block the emergence of seizures in subjects that are prone to epilepsy because of genetic diseases, brain trauma, tumors, infections, or SARS-COV2.
Further studies in this field are necessary in order to understand if neuroinflammation is a signature or a cause of epilepsy, or both, in order to better orient the time-course of therapies and to standardize protocols involving anti-inflammatory treatments.

Funding

This review study was supported by funding from] Fondazione Pisa, Project RST 148/16.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

We followed MDPI Research Data Policies.

Acknowledgments

We thank Gian Michele Ratto, Laura Baroncelli, Elena Putignano and Gabriele Nardi for the critical reading of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016, 139, 136–153. [Google Scholar] [CrossRef] [PubMed]
  2. Gilhus, N.E.; Deuschl, G. Neuroinflammation—A common thread in neurological disorders. Nat. Rev. Neurol. 2019, 15, 429–430. [Google Scholar] [CrossRef]
  3. Cervellati, C.; Trentini, A.; Pecorelli, A.; Valacchi, G. Inflammation in Neurological Disorders: The Thin Boundary between Brain and Periphery. Antioxid. Redox Signal. 2020, 33, 191–210. [Google Scholar] [CrossRef] [PubMed]
  4. Vaillant, J.A.A.; Qurie, A. Interleukin; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
  5. Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020, 9, 1717. [Google Scholar] [CrossRef]
  6. Yang, Q.; Wang, G.; Zhang, F. Role of Peripheral Immune Cells-Mediated Inflammation on the Process of Neurodegenerative Diseases. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
  7. Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 2019, 15, 459–472. [Google Scholar] [CrossRef] [PubMed]
  8. Rana, A.; Musto, A.E. The role of inflammation in the development of epilepsy. J. Neuroinflamm. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
  9. Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed]
  10. Ong, M.S.; Kohane, I.S.; Cai, T.; Gorman, M.P.; Mandl, K.D. Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol. 2014, 71, 569–574. [Google Scholar] [CrossRef]
  11. Geis, C.; Planagumà, J.; Carreño, M.; Graus, F.; Dalmau, J. Autoimmune seizures and epilepsy. J. Clin. Investig. 2019, 129, 926–940. [Google Scholar] [CrossRef]
  12. Barker-Haliski, M.L.; Löscher, W.; White, H.S.; Galanopoulou, A.S. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia 2017, 58, 39–47. [Google Scholar] [CrossRef]
  13. Meng, F.; Yao, L. The role of inflammation in epileptogenesis. Acta Epileptol. 2020, 2, 15. [Google Scholar] [CrossRef]
  14. Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef]
  15. Goddard, G.V. Development of epileptic seizures through brain stimulation at low intensity. Nature 1967, 214, 1020–1021. [Google Scholar] [CrossRef]
  16. Pitkänen, A.; Löscher, W.; Vezzani, A.; Becker, A.J.; Simonato, M.; Lukasiuk, K.; Gröhn, O.; Bankstahl, J.P.; Friedman, A.; Aronica, E.; et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016, 15, 843–856. [Google Scholar] [CrossRef]
  17. Ravizza, T.; Vezzani, A. Pharmacological targeting of brain inflammation in epilepsy: Therapeutic perspectives from experimental and clinical studies. Epilepsia Open 2018, 3, 133–142. [Google Scholar] [CrossRef]
  18. Kim, I.; Mlsna, L.M.; Yoon, S.; Le, B.; Yu, S.; Xu, D.; Koh, S. A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers. Brain Behav. 2015, 5, 1–4. [Google Scholar] [CrossRef] [PubMed]
  19. Hanke, M.L.; Kielian, T. Toll-like receptors in health and disease in the brain: Mechanisms and therapeutic potential. Clin. Sci. 2011, 121, 367–387. [Google Scholar] [CrossRef] [PubMed]
  20. Xiang, W.; Chao, Z.-Y.; Feng, D.-Y. Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases. Rev. Neurosci. 2015, 26, 407–414. [Google Scholar] [CrossRef] [PubMed]
  21. Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
  22. Bianchi, M.E.; Manfredi, A.A. Dangers in and out. Science 2009, 323, 1683–1684. [Google Scholar] [CrossRef]
  23. Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Aronica, E.; Iyer, A.M.; Rossetti, C.; Molteni, M.; Casalgrandi, M.; Manfredi, A.A.; et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 2010, 16, 413–419. [Google Scholar] [CrossRef] [PubMed]
  24. Lin, Z.; Gu, Y.; Zhou, R.; Wang, M.; Guo, Y.; Chen, Y.; Ma, J.; Xiao, F.; Wang, X.; Tian, X. Serum Exosomal Proteins F9 and TSP-1 as Potential Diagnostic Biomarkers for Newly Diagnosed Epilepsy. Front. Neurosci. 2020, 14. [Google Scholar] [CrossRef] [PubMed]
  25. Pepys, M.B. The Pentraxins 1975–2018: Serendipity, Diagnostics and Drugs. Front. Immunol. 2018, 9, 2382. [Google Scholar] [CrossRef]
  26. Ummenthum, K.; Peferoen, L.A.N.; Finardi, A.; Baker, D.; Pryce, G.; Mantovani, A.; Bsibsi, M.; Bottazzi, B.; Peferoen-Baert, R.; van der Valk, P.; et al. Pentraxin-3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease. Eur. J. Immunol. 2016, 46, 701–711. [Google Scholar] [CrossRef] [PubMed]
  27. Bronisz, E.; Kurkowska-Jastrzȩbska, I. Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators Inflamm. 2016, 2016. [Google Scholar] [CrossRef]
  28. Dwir, D.; Giangreco, B.; Xin, L.; Tenenbaum, L.; Cabungcal, J.H.; Steullet, P.; Goupil, A.; Cleusix, M.; Jenni, R.; Chtarto, A.; et al. MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: A reverse translation study in schizophrenia patients. Mol. Psychiatry 2020, 25, 2889–2904. [Google Scholar] [CrossRef]
  29. De Vivo, L.; Landi, S.; Panniello, M.; Baroncelli, L.; Chierzi, S.; Mariotti, L.; Spolidoro, M.; Pizzorusso, T.; Maffei, L.; Ratto, G.M. Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. Nat. Commun. 2013, 4, 1484. [Google Scholar] [CrossRef]
  30. Faini, G.; Aguirre, A.; Landi, S.; Lamers, D.; Pizzorusso, T.; Ratto, G.M.; Deleuze, C.; Bacci, A. Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons. Elife 2018, 7, e41520. [Google Scholar] [CrossRef]
  31. Gong, X.; Hu, H.; Qiao, Y.; Xu, P.; Yang, M.; Dang, R.; Han, W.; Guo, Y.; Chen, D.; Jiang, P. The Involvement of Renin-Angiotensin System in Lipopolysaccharide-Induced Behavioral Changes, Neuroinflammation, and Disturbed Insulin Signaling. Front. Pharmacol. 2019, 10, 318. [Google Scholar] [CrossRef]
  32. Guerrini, R.; Duchowny, M.; Jayakar, P.; Krsek, P.; Kahane, P.; Tassi, L.; Melani, F.; Polster, T.; Andre, V.M.; Cepeda, C.; et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015, 56, 1669–1686. [Google Scholar] [CrossRef]
  33. Guerrini, R.; Dobyns, W.B. Malformations of cortical development: Clinical features and genetic causes. Lancet Neurol. 2014, 13, 710–726. [Google Scholar] [CrossRef]
  34. D’Gama, A.M.; Walsh, C.A. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 2018, 21, 1504–1514. [Google Scholar] [CrossRef] [PubMed]
  35. Boer, K.; Spliet, W.G.M.; Van Rijen, P.C.; Redeker, S.; Troost, D.; Aronica, E. Evidence of activated microglia in focal cortical dysplasia. J. Neuroimmunol. 2006, 173, 188–195. [Google Scholar] [CrossRef] [PubMed]
  36. Crino, P.B. Focal cortical dysplasia. Semin. Neurol. 2015, 35, 201–208. [Google Scholar] [CrossRef]
  37. Sun, F.J.; Zhang, C.Q.; Chen, X.; Wei, Y.J.; Li, S.; Liu, S.Y.; Zang, Z.-l.; He, J.J.; Guo, W.; Yang, H. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J. Neuroinflamm. 2016, 13. [Google Scholar] [CrossRef]
  38. Zhang, Z.; Liu, Q.; Liu, M.; Wang, H.; Dong, Y.; Ji, T.; Liu, X.; Jiang, Y.; Cai, L.; Wu, Y. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type II. J. Neuroinflamm. 2018, 15. [Google Scholar] [CrossRef]
  39. He, J.J.; Li, S.; Shu, H.F.; Yu, S.X.; Liu, S.Y.; Yin, Q.; Yang, H. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J. Neuropathol. Exp. Neurol. 2013, 72, 152–163. [Google Scholar] [CrossRef]
  40. Berg, A.T.; Rychlik, K.; Levy, S.R.; Testa, F.M. Complete remission of childhood-onset epilepsy: Stability and prediction over two decades. Brain 2014, 137, 3213–3222. [Google Scholar] [CrossRef]
  41. Wong, M. Animal models of focal cortical dysplasia and tuberous sclerosis complex: Recent progress toward clinical applications. Epilepsia 2009, 50, 34–44. [Google Scholar] [CrossRef]
  42. Hsieh, L.S.; Wen, J.H.; Claycomb, K.; Huang, Y.; Harrsch, F.A.; Naegele, J.R.; Hyder, F.; Buchanan, G.F.; Bordey, A. Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
  43. Ribierre, T.; Deleuze, C.; Bacq, A.; Baldassari, S.; Marsan, E.; Chipaux, M.; Muraca, G.; Roussel, D.; Navarro, V.; Leguern, E.; et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J. Clin. Investig. 2018, 128, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
  44. Trovato, F.; Parra, R.; Pracucci, E.; Landi, S.; Cozzolino, O.; Nardi, G.; Cruciani, F.; Pillai, V.; Mosti, L.; Cwetsch, A.W.; et al. Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
  45. Dibbens, L.M.; Tarpey, P.S.; Hynes, K.; Bayly, M.A.; Scheffer, I.E.; Smith, R.; Bomar, J.; Sutton, E.; Vandeleur, L.; Shoubridge, C.; et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 2008, 40, 776–781. [Google Scholar] [CrossRef]
  46. Depienne, C.; Bouteiller, D.; Keren, B.; Cheuret, E.; Poirier, K.; Trouillard, O.; Benyahia, B.; Quelin, C.; Carpentier, W.; Julia, S.; et al. Correction: Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females. PLoS Genet. 2009, 5. [Google Scholar] [CrossRef]
  47. Higurashi, N.; Takahashi, Y.; Kashimada, A.; Sugawara, Y.; Sakuma, H.; Tomonoh, Y.; Inoue, T.; Hoshina, M.; Satomi, R.; Ohfu, M.; et al. Immediate suppression of seizure clusters by corticosteroids in PCDH19 female epilepsy. Seizure 2015, 27, 1–5. [Google Scholar] [CrossRef]
  48. Bertani, G.; Spagnoli, C.; Iodice, A.; Salerno, G.G.; Frattini, D.; Fusco, C. Steroids efficacy in the acute management of seizure clusters in one case of PCDH19 female epilepsy. Seizure 2015, 32, 45–46. [Google Scholar] [CrossRef] [PubMed]
  49. Lee, D.M.; Chung, H.J. A Case of Effective Treatment of a Patient with PCDH 19- Related Epilepsy using Corticosteroid. J. Korean Child Neurol. Soc. 2018, 26, 32–37. [Google Scholar] [CrossRef]
  50. Marchi, N.; Granata, T.; Freri, E.; Ciusani, E.; Ragona, F.; Puvenna, V.; Teng, Q.; Alexopolous, A.; Janigro, D. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS ONE 2011, 6, e18200. [Google Scholar] [CrossRef]
  51. Cooper, S.R.; Jontes, J.D.; Sotomayor, M. Structural determinants of adhesion by protocadherin-19 and implications for its role in epilepsy. Elife 2016, 5. [Google Scholar] [CrossRef]
  52. Taylor, O.G.; Brzozowski, J.S.; Skelding, K.A. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front. Oncol. 2019, 9, 963. [Google Scholar] [CrossRef] [PubMed]
  53. Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro. Oncol. 2019, 21, V1–V100. [Google Scholar] [CrossRef]
  54. Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef]
  55. Phillips, H.S.; Kharbanda, S.; Chen, R.; Forrest, W.F.; Soriano, R.H.; Wu, T.D.; Misra, A.; Nigro, J.M.; Colman, H.; Soroceanu, L.; et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006, 9, 157–173. [Google Scholar] [CrossRef]
  56. Arimappamagan, A.; Somasundaram, K.; Thennarasu, K.; Peddagangannagari, S.; Srinivasan, H.; Shailaja, B.C.; Samuel, C.; Patric, I.R.P.; Shukla, S.; Thota, B.; et al. A Fourteen Gene GBM Prognostic Signature Identifies Association of Immune Response Pathway and Mesenchymal Subtype with High Risk Group. PLoS ONE 2013, 8, e62042. [Google Scholar] [CrossRef] [PubMed]
  57. Liang, J.; Lv, X.; Lu, C.; Ye, X.; Chen, X.; Fu, J.; Luo, C.; Zhao, Y. Prognostic factors of patients with Gliomas—An analysis on 335 patients with Glioblastoma and other forms of Gliomas. BMC Cancer 2020, 20, 35. [Google Scholar] [CrossRef] [PubMed]
  58. Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef] [PubMed]
  59. Ertürk Çetin, Ö.; İşler, C.; Uzan, M.; Özkara, Ç. Epilepsy-related brain tumors. Seizure 2017, 44, 93–97. [Google Scholar] [CrossRef] [PubMed]
  60. Berendsen, S.; Spliet, W.G.M.; Geurts, M.; Van Hecke, W.; Seute, T.; Snijders, T.J.; Bours, V.; Bell, E.H.; Chakravarti, A.; Robe, P.A. Epilepsy Associates with Decreased HIF-1α/STAT5b Signaling in Glioblastoma. Cancers 2019, 11, 41. [Google Scholar] [CrossRef]
  61. Tremblay, P.; Beaudet, M.J.; Tremblay, E.; Rueda, N.; Thomas, T.; Vallières, L. Matrix metalloproteinase 2 attenuates brain tumour growth, while promoting macrophage recruitment and vascular repair. J. Pathol. 2011, 224, 222–233. [Google Scholar] [CrossRef]
  62. Van Tellingen, O.; Yetkin-Arik, B.; De Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; De Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
  63. Brown, N.F.; Carter, T.J.; Ottaviani, D.; Mulholland, P. Harnessing the immune system in glioblastoma. Br. J. Cancer 2018, 119, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
  64. Tian, T.; Li, X.; Zhang, J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int. J. Mol. Sci. 2019, 20, 755. [Google Scholar] [CrossRef] [PubMed]
  65. Di Virgilio, F.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018, 18, 601–618. [Google Scholar] [CrossRef] [PubMed]
  66. Charles, N.A.; Holland, E.C.; Gilbertson, R.; Glass, R.; Kettenmann, H. The brain tumor microenvironment. Glia 2012, 60, 502–514. [Google Scholar] [CrossRef] [PubMed]
  67. Curran, C.S.; Bertics, P.J. Eosinophils in glioblastoma biology. J. Neuroinflamm. 2012, 9. [Google Scholar] [CrossRef]
  68. Sowers, J.L.; Johnson, K.M.; Conrad, C.; Patterson, J.T.; Sowers, L.C. The role of inflammation in brain cancer. Adv. Exp. Med. Biol. 2014, 816, 75–105. [Google Scholar] [CrossRef] [PubMed]
  69. Waters, M.R.; Gupta, A.S.; Mockenhaupt, K.; Brown, L.S.N.; Biswas, D.D.; Kordula, T. RelB acts as a molecular switch driving chronic inflammation in glioblastoma multiforme. Oncogenesis 2019, 8. [Google Scholar] [CrossRef] [PubMed]
  70. Meini, A.; Sticozzi, C.; Massai, L.; Palmi, M. A nitric oxide/Ca 2+/calmodulin/ERK1/2 mitogen-activated protein kinase pathway is involved in the mitogenic effect of IL-1β in human astrocytoma cells. Br. J. Pharmacol. 2008, 153, 1706–1717. [Google Scholar] [CrossRef]
  71. Yeung, Y.T.; McDonald, K.L.; Grewal, T.; Munoz, L. Interleukins in glioblastoma pathophysiology: Implications for therapy. Br. J. Pharmacol. 2013, 168, 591–606. [Google Scholar] [CrossRef]
  72. Tanabe, K.; Kozawa, O.; Iida, H. Midazolam suppresses interleukin-1β-induced interleukin-6 release from rat glial cells. J. Neuroinflamm. 2011, 8, 68. [Google Scholar] [CrossRef]
  73. Hirano, T.; Ishihara, K.; Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000, 19, 2548–2556. [Google Scholar] [CrossRef]
  74. Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer 2005, 41, 2502–2512. [Google Scholar] [CrossRef] [PubMed]
  75. Hori, T.; Sasayama, T.; Tanaka, K.; Koma, Y.-I.; Nishihara, M.; Tanaka, H.; Nakamizo, S.; Nagashima, H.; Maeyama, M.; Fujita, Y.; et al. Tumor-associated macrophage related interleukin-6 in cerebrospinal fluid as a prognostic marker for glioblastoma. J. Clin. Neurosci. 2019, 68, 281–289. [Google Scholar] [CrossRef] [PubMed]
  76. Couto, M.; Coelho-Santos, V.; Santos, L.; Fontes-Ribeiro, C.; Silva, A.P.; Gomes, C.M.F. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J. Cell. Physiol. 2019, 234, 19750–19760. [Google Scholar] [CrossRef] [PubMed]
  77. Ryan, R.; Booth, S.; Price, S. Corticosteroid-use in primary and secondary brain tumour patients: A review. J. Neurooncol. 2012, 106, 449–459. [Google Scholar] [CrossRef]
  78. Papadopoulos, M.C.; Saadoun, S.; Binder, D.K.; Manley, G.T.; Krishna, S.; Verkman, A.S. Molecular mechanisms of brain tumor edema. Neuroscience 2004, 129, 1009–1018. [Google Scholar] [CrossRef]
  79. Dubois, L.G.; Campanati, L.; Righy, C.; D’Andrea-Meira, I.; de Sampaio e Spohr, T.C.L.; Porto-Carreiro, I.; Pereira, C.M.; Balça-Silva, J.; Kahn, S.A.; DosSantos, M.F.; et al. Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci. 2014, 8. [Google Scholar] [CrossRef]
  80. Solek, C.M.; Farooqi, N.; Verly, M.; Lim, T.K.; Ruthazer, E.S. Maternal immune activation in neurodevelopmental disorders. Dev. Dyn. 2018, 247, 588–619. [Google Scholar] [CrossRef]
  81. Glass, H.C.; Pham, T.N.; Danielsen, B.; Towner, D.; Glidden, D.; Wu, Y.W. Antenatal and Intrapartum Risk Factors for Seizures in Term Newborns: A Population-Based Study, California 1998–2002. J. Pediatr. 2009, 154. [Google Scholar] [CrossRef]
  82. Samuelsson, A.M.; Jennische, E.; Hansson, H.A.; Holmäng, A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, 1345–1356. [Google Scholar] [CrossRef]
  83. Zeraati, M.; Najdi, N.; Mosaferi, B.; Salari, A.A. Environmental enrichment alters neurobehavioral development following maternal immune activation in mice offspring with epilepsy. Behav. Brain Res. 2021, 399. [Google Scholar] [CrossRef]
  84. Washington, J.; Kumar, U.; Medel-Matus, J.S.; Shin, D.; Sankar, R.; Mazarati, A. Cytokine-dependent bidirectional connection between impaired social behavior and susceptibility to seizures associated with maternal immune activation in mice. Epilepsy Behav. 2015, 50, 40–45. [Google Scholar] [CrossRef][Green Version]
  85. Pineda, E.; Shin, D.; You, S.J.; Auvin, S.; Sankar, R.; Mazarati, A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann. Neurol. 2013, 74, 11–19. [Google Scholar] [CrossRef]
  86. Corradini, I.; Focchi, E.; Rasile, M.; Morini, R.; Desiato, G.; Tomasoni, R.; Lizier, M.; Ghirardini, E.; Fesce, R.; Morone, D.; et al. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol. Psychiatry 2018, 83, 680–691. [Google Scholar] [CrossRef] [PubMed]
  87. Ben-Ari, Y. Excitatory actions of gaba during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
  88. Ben-Ari, Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci. 2017, 40, 536–554. [Google Scholar] [CrossRef] [PubMed]
  89. Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Prim. 2018, 4, 43. [Google Scholar] [CrossRef] [PubMed]
  90. Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
  91. Baranzini, S.E.; Oksenberg, J.R. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet. 2017, 33, 960–970. [Google Scholar] [CrossRef]
  92. Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014, 45, 687–697. [Google Scholar] [CrossRef]
  93. Lapato, A.S.; Thompson, S.M.; Parra, K.; Tiwari-Woodruff, S.K. Astrocyte Glutamate Uptake and Water Homeostasis Are Dysregulated in the Hippocampus of Multiple Sclerosis Patients with Seizures. ASN Neuro 2020, 12, 1759091420979604. [Google Scholar] [CrossRef]
  94. Dagiasi, I.; Vall, V.; Kumlien, E.; Burman, J.; Zelano, J. Treatment of epilepsy in multiple sclerosis. Seizure 2018, 58, 47–51. [Google Scholar] [CrossRef]
  95. Chou, I.J.; Kuo, C.F.; Tanasescu, R.; Tench, C.R.; Tiley, C.G.; Constantinescu, C.S.; Whitehouse, W.P. Epilepsy and associated mortality in patients with multiple sclerosis. Eur. J. Neurol. 2019, 26, 342–e23. [Google Scholar] [CrossRef]
  96. Langenbruch, L.; Krämer, J.; Güler, S.; Möddel, G.; Geßner, S.; Melzer, N.; Elger, C.E.; Wiendl, H.; Budde, T.; Meuth, S.G.; et al. Seizures and epilepsy in multiple sclerosis: Epidemiology and prognosis in a large tertiary referral center. J. Neurol. 2019, 266, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
  97. Poser, C.M.; Brinar, V. V Epilepsy and multiple sclerosis. Epilepsy Behav. 2003, 4, 6–12. [Google Scholar] [CrossRef]
  98. Pack, A. Is There a Relationship Between Multiple Sclerosis and Epilepsy? If So What Does It Tell Us About Epileptogenesis? Epilepsy Curr. 2018, 18, 95–96. [Google Scholar] [CrossRef]
  99. Neuß, F.; von Podewils, F.; Wang, Z.I.; Süße, M.; Zettl, U.K.; Grothe, M. Epileptic seizures in multiple sclerosis: Prevalence, competing causes and diagnostic accuracy. J. Neurol. 2021, 268, 1721–1727. [Google Scholar] [CrossRef]
  100. DePaula-Silva, A.B.; Hanak, T.J.; Libbey, J.E.; Fujinami, R.S. Theiler’s murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: Models for multiple sclerosis and epilepsy. J. Neuroimmunol. 2017, 308, 30–42. [Google Scholar] [CrossRef]
  101. Mahamud, Z.; Burman, J.; Zelano, J. Prognostic impact of epilepsy in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 38, 101497. [Google Scholar] [CrossRef]
  102. Steardo, L.; Steardo, L.; Zorec, R.; Verkhratsky, A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. 2020, 229. [Google Scholar] [CrossRef]
  103. Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368. [Google Scholar] [CrossRef]
  104. Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef]
  105. Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef]
  106. Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. [Google Scholar] [CrossRef]
  107. Azhideh, A. COVID-19 Neurological Manifestations. Int. Clin. Neurosci. J. 2020, 7, 54. [Google Scholar] [CrossRef]
  108. Niazkar, H.R.; Zibaee, B.; Nasimi, A.; Bahri, N. The neurological manifestations of COVID-19: A review article. Neurol. Sci. 2020, 41, 1667–1671. [Google Scholar] [CrossRef]
  109. Najjar, S.; Najjar, A.; Chong, D.J.; Pramanik, B.K.; Kirsch, C.; Kuzniecky, R.I.; Pacia, S.V.; Azhar, S. Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 2020, 17, 17. [Google Scholar] [CrossRef]
  110. Murray, R.S.; Brown, B.; Brain, D.; Cabirac, G.F. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann. Neurol. 1992, 31, 525–533. [Google Scholar] [CrossRef]
  111. Hung, E.C.W.; Chim, S.S.C.; Chan, P.K.S.; Tong, Y.K.; Ng, E.K.O.; Chiu, R.W.K.; Leung, C.B.; Sung, J.J.Y.; Tam, J.S.; Lo, Y.M.D. Detection of SARS Coronavirus RNA in the Cerebrospinal Fluid of a Patient with Severe Acute Respiratory Syndrome. Clin. Chem. 2003, 49, 2108–2109. [Google Scholar] [CrossRef]
  112. Morfopoulou, S.; Brown, J.R.; Davies, E.G.; Anderson, G.; Virasami, A.; Qasim, W.; Chong, W.K.; Hubank, M.; Plagnol, V.; Desforges, M.; et al. Human Coronavirus OC43 Associated with Fatal Encephalitis. N. Engl. J. Med. 2016, 375, 497–498. [Google Scholar] [CrossRef]
  113. Desforges, M.; Le Coupanec, A.; Dubeau, P.; Bourgouin, A.; Lajoie, L.; Dubé, M.; Talbot, P.J. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 2019, 12, 14. [Google Scholar] [CrossRef] [PubMed]
  114. Nilsson, A.; Edner, N.; Albert, J.; Ternhag, A. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect. Dis. 2020, 52, 419–422. [Google Scholar] [CrossRef]
  115. Skinner, D.; Marro, B.S.; Lane, T.E. Chemokine CXCL10 and Coronavirus-Induced Neurologic Disease. Viral Immunol. 2019, 32, 25–37. [Google Scholar] [CrossRef] [PubMed]
  116. Serrano-Castro, P.J.; Estivill-Torrús, G.; Cabezudo-García, P.; Reyes-Bueno, J.A.; Ciano Petersen, N.; Aguilar-Castillo, M.J.; Suárez-Pérez, J.; Jiménez-Hernández, M.D.; Moya-Molina, M.; Oliver-Martos, B.; et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: A delayed pandemic? Neurologia 2020, 35, 245–251. [Google Scholar] [CrossRef] [PubMed]
  117. Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef] [PubMed]
  118. Rhea, E.M.; Logsdon, A.F.; Hansen, K.M.; Williams, L.M.; Reed, M.J.; Baumann, K.K.; Holden, S.J.; Raber, J.; Banks, W.A.; Erickson, M.A. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat. Neurosci. 2020. [Google Scholar] [CrossRef]
  119. Kubota, T.; Gajera, P.K.; Kuroda, N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. 2021, 115, 107682. [Google Scholar] [CrossRef]
  120. Lu, L.; Xiong, W.; Liu, D.; Liu, J.; Yang, D.; Li, N.; Mu, J.; Guo, J.; Li, W.; Wang, G.; et al. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: A retrospective multicenter study. Epilepsia 2020, 61, e49–e53. [Google Scholar] [CrossRef]
  121. Hwang, S.T.; Ballout, A.A.; Mirza, U.; Sonti, A.N.; Husain, A.; Kirsch, C.; Kuzniecky, R.; Najjar, S. Acute Seizures Occurring in Association With SARS-CoV-2. Front. Neurol. 2020, 11, 576329. [Google Scholar] [CrossRef]
  122. Asadi-Pooya, A.A.; Simani, L.; Shahisavandi, M.; Barzegar, Z. COVID-19, de novo seizures, and epilepsy: A systematic review. Neurol. Sci. 2021, 42, 415–431. [Google Scholar] [CrossRef]
  123. D’Orsi, G.; Mazzeo, F.; Ravidà, D.; Di Claudio, M.T.; Sabetta, A.; Lalla, A.; Sbrizzi, S.; Avolio, C. The effect of quarantine due to Covid-19 pandemic on seizure frequency in 102 adult people with epilepsy from Apulia and Basilicata regions, Southern Italy. Clin. Neurol. Neurosurg. 2021, 203, 106592. [Google Scholar] [CrossRef] [PubMed]
  124. Nikbakht, F.; Mohammadkhanizadeh, A.; Mohammadi, E. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult. Scler. Relat. Disord. 2020, 46, 102535. [Google Scholar] [CrossRef]
  125. Novi, G.; Rossi, T.; Pedemonte, E.; Saitta, L.; Rolla, C.; Roccatagliata, L.; Inglese, M.; Farinini, D. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7. [Google Scholar] [CrossRef]
  126. Alberti, P.; Beretta, S.; Piatti, M.; Karantzoulis, A.; Piatti, M.L.; Santoro, P.; Viganò, M.; Giovannelli, G.; Pirro, F.; Montisano, D.A.; et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol. Neuroimmunol. NeuroInflamm. 2020, 7. [Google Scholar] [CrossRef]
  127. Bossù, P.; Toppi, E.; Sterbini, V.; Spalletta, G. Implication of aging related chronic neuroinflammation on covid-19 pandemic. J. Pers. Med. 2020, 10, 102. [Google Scholar] [CrossRef]
  128. Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014, 20, 509–518. [Google Scholar] [CrossRef]
  129. Fan, Y.; Wang, H.; Liu, X.; Zhang, J.; Liu, G. Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediat. Inflamm. 2019, 2019, 8373060. [Google Scholar] [CrossRef]
  130. De Caro, C.; Iannone, L.F.; Citraro, R.; Striano, P.; De Sarro, G.; Constanti, A.; Cryan, J.F.; Russo, E. Can we “seize” the gut microbiota to treat epilepsy? Neurosci. Biobehav. Rev. 2019, 107, 750–764. [Google Scholar] [CrossRef]
  131. Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741.e13. [Google Scholar] [CrossRef]
  132. Lum, G.R.; Olson, C.A.; Hsiao, E.Y. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis. 2020, 135, 104576. [Google Scholar] [CrossRef]
  133. Vendrik, K.E.W.; Ooijevaar, R.E.; de Jong, P.R.C.; Laman, J.D.; van Oosten, B.W.; van Hilten, J.J.; Ducarmon, Q.R.; Keller, J.J.; Kuijper, E.J.; Contarino, M.F. Fecal Microbiota Transplantation in Neurological Disorders. Front. Cell. Infect. Microbiol. 2020, 10, 98. [Google Scholar] [CrossRef] [PubMed]
  134. Srikantha, P.; Mohajeri, M.H. The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Int. J. Mol. Sci. 2019, 20, 2115. [Google Scholar] [CrossRef] [PubMed]
  135. Sherwin, E.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs 2016, 30, 1019–1041. [Google Scholar] [CrossRef]
  136. Groer, M.W.; Luciano, A.A.; Dishaw, L.J.; Ashmeade, T.L.; Miller, E.; Gilbert, J.A. Development of the preterm infant gut microbiome: A research priority. Microbiome 2014, 2. [Google Scholar] [CrossRef] [PubMed]
  137. Gibson, M.K.; Wang, B.; Ahmadi, S.; Burnham, C.A.D.; Tarr, P.I.; Warner, B.B.; Dantas, G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 2016, 1, 16024. [Google Scholar] [CrossRef]
  138. Dickerson, F.; Severance, E.; Yolken, R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain. Behav. Immun. 2017, 62, 46–52. [Google Scholar] [CrossRef] [PubMed]
  139. Hagan, C.C.; Graham, J.M.E.; Wilkinson, P.O.; Midgley, N.; Suckling, J.; Sahakian, B.J.; Goodyer, I.M. Neurodevelopment and ages of onset in depressive disorders. Lancet Psychiatry 2015, 2, 1112–1116. [Google Scholar] [CrossRef]
  140. Mangiola, F.; Ianiro, G.; Franceschi, F.; Fagiuoli, S.; Gasbarrini, G.; Gasbarrini, A. Gut microbiota in autism and mood disorders. World J. Gastroenterol. 2016, 22, 361–368. [Google Scholar] [CrossRef]
  141. Tatti, R.; Haley, M.S.; Swanson, O.K.; Tselha, T.; Maffei, A. Neurophysiology and Regulation of the Balance between Excitation and Inhibition in Neocortical Circuits. Biol. Psychiatry 2017, 81, 821–831. [Google Scholar] [CrossRef]
  142. Sauer, A.K.; Bockmann, J.; Steinestel, K.; Boeckers, T.M.; Grabrucker, A.M. Altered intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int. J. Mol. Sci. 2019, 20, 2134. [Google Scholar] [CrossRef] [PubMed]
  143. Pfaender, S.; Sauer, A.K.; Hagmeyer, S.; Mangus, K.; Linta, L.; Liebau, S.; Bockmann, J.; Huguet, G.; Bourgeron, T.; Boeckers, T.M.; et al. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
  144. Tabouy, L.; Getselter, D.; Ziv, O.; Karpuj, M.; Tabouy, T.; Lukic, I.; Maayouf, R.; Werbner, N.; Ben-Amram, H.; Nuriel-Ohayon, M.; et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain. Behav. Immun. 2018, 73, 310–319. [Google Scholar] [CrossRef]
  145. De Magistris, L.; Familiari, V.; Pascotto, A.; Sapone, A.; Frolli, A.; Iardino, P.; Carteni, M.; De Rosa, M.; Francavilla, R.; Riegler, G.; et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 418–424. [Google Scholar] [CrossRef]
  146. Möhle, L.; Mattei, D.; Heimesaat, M.M.; Bereswill, S.; Fischer, A.; Alutis, M.; French, T.; Hambardzumyan, D.; Matzinger, P.; Dunay, I.R.; et al. Ly6C (hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep. 2016, 15, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
  147. Medel-Matus, J.-S.; Shin, D.; Dorfman, E.; Sankar, R.; Mazarati, A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 2018, 3, 290–294. [Google Scholar] [CrossRef]
  148. Şafak, B.; Altunan, B.; Topçu, B.; Eren Topkaya, A. The gut microbiome in epilepsy. Microb. Pathog. 2020, 139, 103853. [Google Scholar] [CrossRef]
  149. Dahlin, M.; Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine 2019, 44, 741–746. [Google Scholar] [CrossRef]
  150. Aronica, E.; Bauer, S.; Bozzi, Y.; Caleo, M.; Dingledine, R.; Gorter, J.A.; Henshall, D.C.; Kaufer, D.; Koh, S.; Löscher, W.; et al. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 2017, 58, 27–38. [Google Scholar] [CrossRef]
  151. Kobylarek, D.; Iwanowski, P.; Lewandowska, Z.; Limphaibool, N.; Szafranek, S.; Labrzycka, A.; Kozubski, W. Advances in the potential biomarkers of epilepsy. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
  152. Sulis Sato, S.; Artoni, P.; Landi, S.; Cozzolino, O.; Parra, R.; Pracucci, E.; Trovato, F.; Szczurkowska, J.; Luin, S.; Arosio, D.; et al. Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc. Natl. Acad. Sci. USA 2017, 114, E8770–E8779. [Google Scholar] [CrossRef]
  153. Vitaliti, G.; Pavone, P.; Mahmood, F.; Nunnari, G.; Falsaperla, R. Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies: An update of new immune-modulating approaches. Hum. Vaccines Immunother. 2014, 10, 868–875. [Google Scholar] [CrossRef] [PubMed]
  154. Matsuo, M.; Sasaki, K.; Ichimaru, T.; Nakazato, S.; Hamasaki, Y. Increased IL-1β Production From dsRNA-stimulated Leukocytes in Febrile Seizures. Pediatr. Neurol. 2006, 35, 102–106. [Google Scholar] [CrossRef]
  155. Jiang, J.; Ganesh, T.; Du, Y.; Quan, Y.; Serrano, G.; Qui, M.; Speigel, I.; Rojas, A.; Lelutiu, N.; Dingledine, R. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc. Natl. Acad. Sci. USA 2012, 109, 3149–3154. [Google Scholar] [CrossRef]
  156. Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; et al. Fk-506, A Novel Immunosuppressant Isolated From A Streptomyces Ii. Immunosuppressive Effect of Fk-506 In Vitro. J. Antibiot. 1987, 40, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
  157. Chwiej, J.; Janeczko, K.; Marciszko, M.; Czyzycki, M.; Rickers, K.; Setkowicz, Z. Neuroprotective action of FK-506 (tacrolimus) after seizures induced with pilocarpine: Quantitative and topographic elemental analysis of brain tissue. J. Biol. Inorg. Chem. 2010, 15, 283–289. [Google Scholar] [CrossRef]
  158. Setkowicz, Z.; Ciarach, M. Neuroprotectants FK-506 and cyclosporin A ameliorate the course of pilocarpine-induced seizures. Epilepsy Res. 2007, 73, 151–155. [Google Scholar] [CrossRef] [PubMed]
  159. Suzuki, K.; Omura, S.; Ohashi, Y.; Kawai, M.; Iwata, Y.; Tani, K.; Sekine, Y.; Takei, N.; Mori, N. Fk506 facilitates chemical kindling induced by pentylenetetrazole in rats. Epilepsy Res. 2001, 46, 279–282. [Google Scholar] [CrossRef]
  160. Villani, F.; Avanzini, G. The use of immunoglobulins in the treatment of human epilepsy. Neurol. Sci. 2002, 23, S33–S37. [Google Scholar] [CrossRef]
  161. Tan, T.H.-L.; Perucca, P.; O’Brien, T.J.; Kwan, P.; Monif, M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2021, 62, 303–324. [Google Scholar] [CrossRef]
  162. Möller, T.; Bard, F.; Bhattacharya, A.; Biber, K.; Campbell, B.; Dale, E.; Eder, C.; Gan, L.; Garden, G.A.; Hughes, Z.A.; et al. Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 2016, 64, 1788–1794. [Google Scholar] [CrossRef]
  163. Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 2017, 58, 181–221. [Google Scholar] [CrossRef]
  164. Chrzaszcz, M.; Venkatesan, C.; Dragisic, T.; Watterson, D.M.; Wainwright, M.S. Minozac treatment prevents increased seizure susceptibility in a mouse “two-hit” model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J. Neurotrauma 2010, 27, 1283–1295. [Google Scholar] [CrossRef]
  165. Maroso, M.; Balosso, S.; Ravizza, T.; Iori, V.; Wright, C.I.; French, J.; Vezzani, A. Interleukin-1β Biosynthesis Inhibition Reduces Acute Seizures and Drug Resistant Chronic Epileptic Activity in Mice. Neurotherapeutics 2011, 8, 304–315. [Google Scholar] [CrossRef]
  166. Reichert, J.M. Marketed therapeutic antibodies compendium. MAbs 2012, 4, 413–415. [Google Scholar] [CrossRef]
  167. Bakpa, O.D.; Reuber, M.; Irani, S.R. Antibody-associated epilepsies: Clinical features, evidence for immunotherapies and future research questions. Seizure 2016, 41, 26–41. [Google Scholar] [CrossRef]
  168. DeSena, A.D.; Do, T.; Schulert, G.S. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflamm. 2018, 15, 38. [Google Scholar] [CrossRef]
  169. Cantarín-Extremera, V.; Jiménez-Legido, M.; Duat-Rodríguez, A.; García-Fernández, M.; Ortiz-Cabrera, N.V.; Ruiz-Falcó-Rojas, M.L.; González-Gutiérrez-Solana, L. Tocilizumab in pediatric refractory status epilepticus and acute epilepsy: Experience in two patients. J. Neuroimmunol. 2020, 340, 577142. [Google Scholar] [CrossRef]
  170. Tognini, P. Gut microbiota: A potential regulator of neurodevelopment. Front. Cell. Neurosci. 2017, 11. [Google Scholar] [CrossRef]
  171. Ansari, F.; Pourjafar, H.; Tabrizi, A.; Homayouni, A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr. Pharm. Biotechnol. 2020, 21, 555–565. [Google Scholar] [CrossRef]
  172. Abdellatif, B.; McVeigh, C.; Bendriss, G.; Chaari, A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. Int. J. Mol. Sci. 2020, 21, 4159. [Google Scholar] [CrossRef] [PubMed]
  173. Gómez-Eguílaz, M.; Ramón-Trapero, J.L.; Pérez-Martínez, L.; Blanco, J.R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef. Microbes 2018, 9, 875–881. [Google Scholar] [CrossRef]
  174. Cheung, K.A.K.; Peiris, H.; Wallace, G.; Holland, O.J.; Mitchell, M.D. The interplay between the endocannabinoid system, epilepsy and cannabinoids. Int. J. Mol. Sci. 2019, 20, 6079. [Google Scholar] [CrossRef] [PubMed]
  175. White, C.M. A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential. J. Clin. Pharmacol. 2019, 59, 923–934. [Google Scholar] [CrossRef] [PubMed]
  176. Wang, X.; Li, G.; Guo, J.; Zhang, Z.; Zhang, S.; Zhu, Y.; Cheng, J.; Yu, L.; Ji, Y.; Tao, J. Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. Front. Neurosci. 2019, 13, 1393. [Google Scholar] [CrossRef]
  177. Koh, S. Role of Neuroinflammation in Evolution of Childhood Epilepsy. J. Child Neurol. 2018, 33, 64–72. [Google Scholar] [CrossRef]
  178. Veggiotti, P.; Pera, M.C.; Teutonico, F.; Brazzo, D.; Balottin, U.; Tassinari, C.A. Therapy of encephalopathy with status epilepticus during sleep (ESES/CSWS syndrome): An update. Epileptic Disord. 2012, 14, 1–11. [Google Scholar] [CrossRef]
  179. Kelley, S.A.; Hartman, A.L. Metabolic Treatments for Intractable Epilepsy. Semin. Pediatr. Neurol. 2011, 18, 179–185. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.