Highly Hydrophilic and Lipophilic Derivatives of Bile Salts
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Small, D.M. The Physical Chemistry of Cholanic Acids. In The Bile Acids, Chemistry, Physiology, and Metabolism; Nair, P.P., Kritchevski, D., Eds.; Plenum Press: New York, NY, USA, 1971; Chapter 8; pp. 249–356. [Google Scholar]
- Coello, A.; Meijide, F.; Núñez, E.R.; Tato, J.V. Aggregation Behavior of Bile Salts in Aqueous Solution. J. Pharm. Sci. 1996, 85, 9–15. [Google Scholar] [CrossRef]
- Kratohvil, J.P.; Hsu, W.P.; Kwok, D.I. How large are the micelles of di-α-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurodeoxycholate and sodium deoxycholate. Langmuir 1986, 2, 256–258. [Google Scholar] [CrossRef]
- Kawamura, H.; Murata, Y.; Yamaguchi, T.; Igimi, H.; Tanaka, M.; Sugihara, G.; Kratohvil, J.P. Spin-label studies of bile salt micelles. J. Phys. Chem. 1989, 93, 3321–3326. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Rutkowska, E.; Pajak, K.; Jóźwiak, K. Lipophilicity—Methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. 2013, 70, 3–18. [Google Scholar]
- Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
- Vadnere, M.; Lindenbaum, S. Distribution of Bile Salts Between 1-Octanol and Aqueous Buffer. J. Pharm. Sci. 1982, 71, 875–881. [Google Scholar] [CrossRef]
- Roda, A.; Minutello, A.; Angellotti, M.; Fini, A. Bile acid structure-activity relationship: Evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J. Lipid Res. 1990, 31, 1433–1443. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Carey, M.C. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J. Lipid Res. 1982, 23, 70–80. [Google Scholar] [CrossRef]
- Heuman, D.M. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J. Lipid Res. 1989, 30, 719–730. [Google Scholar] [CrossRef]
- Poole, S.K.P.; Colin, F. Separation methods for estimating octanol-water partition coefficients. J. Chromatogr. B 2003, 797, 3–19. [Google Scholar] [CrossRef]
- Sârbu, C.; Onişor, C.; Poša, M.; Kevrešan, S.; Kuhajda, K. Modeling and prediction (correction) of partition coefficients of bile acids and their derivatives by multivariate regression methods. Talanta 2008, 75, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Sârbu, C.; Kuhajda, K.; Kevrešan, S. Evaulation of the lipofilicity of bile acids and their derivatives by thin-layer chromatography and principal component analysis. J. Chromatogr. A 2001, 917, 361–366. [Google Scholar] [CrossRef]
- Posa, M.; Raseta, M.; Kuhajda, K. A contribution to the study of hydrophobicity (lipophilicity) of bile acids with an emphasis on oxo derivatives of 5β-cholanoic acid. Chem. Ind. 2011, 65, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Poša, M.; Farkaš, Z. Cholesterol solubilization by oxo derivatives of selected bile acids and their membranotoxicity. Collect. Czechoslov. Chem. Commun. 2010, 75, 767–784. [Google Scholar] [CrossRef]
- Posa, M. Hydrophobicity and Self-association of Bile Acids with a Special Emphasis on Oxo Derivatives of 5-β Cholanic Acid. Curr. Org. Chem. 2012, 16, 1876–1904. [Google Scholar] [CrossRef]
- Tellini, V.H.S.; Jover, A.; Galantini, L.; Pavel, N.V.; Meijide, F.; Tato, J.V. New Lamellar Structure Formed by an Adamantyl Derivative of Cholic Acid. J. Phys. Chem. B 2006, 110, 13679–13681. [Google Scholar] [CrossRef]
- Soto, V.H.; Jover, A.; Meijide, F.; Tato, J.V.; Galantini, L.; Pavel, N.V. Supramolecular structures generated by a p-tert-butylphenyl-amide derivative of cholic acid. From vesicles to molecular tubes. Adv. Mater. 2007, 19, 1752–1756. [Google Scholar] [CrossRef]
- Meijide, F.; Antelo, A.; Alcalde, M.A.; Jover, A.; Galantini, L.; Pavel, N.V.; Tato, J.V. Supramolecular Structures Generated by a p-tert-Butylphenylamide Derivative of Deoxycholic Acid. From Planar Sheets to Tubular Structures through Helical Ribbons. Langmuir 2010, 26, 7768–7773. [Google Scholar] [CrossRef]
- Galantini, L.; di Gregorio, M.C.; Gubitosi, M.; Travaglini, L.; Tato, J.V.; Jover, A.; Meijide, F.; Tellini, V.H.S.; Pavel, N.V. Bile salts and derivatives: Rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks. Curr. Opin. Colloid Interface Sci. 2015, 20, 170–182. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Gubitosi, M.; Travaglini, L.; Pavel, N.V.; Jover, A.; Meijide, F.; Tato, J.V.; Sennato, S.; Schillén, K.; Tranchini, F.; et al. Supramolecular assembly of a thermoresponsive steroidal surfactant with an oppositely charged thermoresponsive block copolymer. Phys. Chem. Chem. Phys. 2017, 19, 1504–1515. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Varenik, M.; Gubitosi, M.; Travaglini, L.; Pavel, N.V.; Jover, A.; Meijide, F.; Regev, O.; Galantini, L. Multi stimuli response of a single surfactant presenting a rich self-assembly behavior. RSC Adv. 2015, 5, 37800–37806. [Google Scholar] [CrossRef] [Green Version]
- Manghisi, N.; Leggio, C.; Jover, A.; Meijide, F.; Pavel, N.V.; Tellini, V.H.S.; Tato, J.V.; Agostino, R.G.; Galantini, L. Catanionic Tubules with Tunable Charge. Angew. Chem. Int. Ed. 2010, 49, 6604–6607. [Google Scholar] [CrossRef]
- Herraez, E.; Macias, R.I.; Vazquez-Tato, J.; Vicens, M.; Monte, M.J.; Marin, J.J. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives. Toxicol. Appl. Pharmacol. 2009, 239, 13–20. [Google Scholar] [CrossRef]
- Herraez, E.; Macias, R.I.; Vazquez-Tato, J.; Hierro, C.; Monte, M.J.; Marin, J.J. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity. Toxicol. Appl. Pharmacol. 2009, 239, 21–28. [Google Scholar] [CrossRef]
- Herraez, E.; Macias, R.; Vazquez-Tato, J.; Hierro, C.; Blázquez, A.G.; Martínez-Becerra, P.; Jiménez, F.; González-San Martin, F.; Marin, J.J.G. Protection against phalloidin hepatotoxicity using a semisynthetic cholic acid derivative, BALU-1. J. Hepatology 2007, 46 (Suppl. S1), S121–S122. [Google Scholar] [CrossRef]
- Vlahcevic, Z.; Gurley, E.; Heuman, D.; Hylemon, P. Bile salts in submicellar concentrations promote bidirectional cholesterol transfer (exchange) as a function of their hydrophobicity. J. Lipid Res. 1990, 31, 1063–1071. [Google Scholar] [CrossRef]
- Alcalde, M.D.L.M.Á. Estructuras Supramoleculares Generadas por Ácidos Biliares y Ciclodextrinas. Ph.D. Thesis, USC, Los Angeles, CA, USA, 2007. [Google Scholar]
- Moroi, Y. Mass action model of micelle formation: Its application to sodium dodecyl sulfate solution. J. Colloid Interface Sci. 1988, 122, 308–314. [Google Scholar] [CrossRef]
- Carey, M.C.; Small, D.M. Micellar properties of dihydroxy and trihydroxy bile salts: Effects of counterion and temperature. J. Colloid Interface Sci. 1969, 31, 382–396. [Google Scholar] [CrossRef]
- Park, I.H.; Jang, H.W.; Baek, S.H. Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering. J. Korean Chem. Soc. 2015, 59, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Medoš, Ž.; Bešter-Rogač, M. Thermodynamics of the micellization process of carboxylates: A conductivity study. J. Chem. Thermodyn. 2015, 83, 117–122. [Google Scholar] [CrossRef]
- De Lisi, R.; Inglese, A.; Milioto, S.; Pellerito, A. Demixing of Mixed Micelles. Thermodynamics of Sodium Perfluorooctanoate-Sodium Dodecanoate Mixtures in Water. Langmuir 1997, 13, 192–202. [Google Scholar] [CrossRef]
- Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A. Thermodynamic Characterization of Bile Salt Aggregation as a Function of Temperature and Ionic Strength Using Isothermal Titration Calorimetry. Langmuir 2000, 16, 5267–5275. [Google Scholar] [CrossRef]
- Paula, S.; Sues, W.; Tuchtenhagen, J.; Blume, A. Thermodynamics of Micelle Formation as a Function of Temperature: A High Sensitivity Titration Calorimetry Study. J. Phys. Chem. 1995, 99, 11742–11751. [Google Scholar] [CrossRef]
- Olesen, N.E.; Holm, R.; Westh, P. Determination of the aggregation number for micelles by isothermal titration calorimetry. Thermochim. Acta 2014, 588, 28–37. [Google Scholar] [CrossRef]
- Kroflič, A.; Šarac, B.; Bešter-Rogač, M. Thermodynamic Characterization of 3-[(3-Cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) Micellization Using Isothermal Titration Calorimetry: Temperature, Salt, and pH Dependence. Langmuir 2012, 28, 10363–10371. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.J.; Wadso, I. An equation of state describing hydrophobic interactions. Proc. Natl. Acad. Sci. USA 1976, 73, 2955–2958. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Nichols, N.; Wadsö, I. Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J. Chem. Thermodyn. 1976, 8, 445–452. [Google Scholar] [CrossRef]
- Gill, S.J.; Dec, S.F.; Olofsson, G.; Wadsoe, I. Anomalous heat capacity of hydrophobic solvation. J. Phys. Chem. 1985, 89, 3758–3761. [Google Scholar] [CrossRef]
- Vethamuthu, M.S.; Almgren, M.; Mukhtar, E.; Bahadur, P. Fluorescence quenching studies of the aggregation behavior of the mixed micelles of bile salts and cetyltrimethylammonium halides. Langmuir 1992, 8, 2396–2404. [Google Scholar] [CrossRef]
- Hashimoto, S.; Thomas, J. Photophysical studies of pyrene in micellar sodium taurocholate at high salt concentrations. J. Colloid Interface Sci. 1984, 102, 152–163. [Google Scholar] [CrossRef]
- Davies, J.T. A quantitative kinetic theory of emulsion type. I. Physical chemistry of the emulsifying agent. Proc. Int. Congr. Surface Act. 1957, 1, 426–438. [Google Scholar]
- Wang, R.; Fu, Y.; Lai, L. A New Atom-Additive Method for Calculating Partition Coefficients. J. Chem. Inf. Comput. Sci. 1997, 37, 615–621. [Google Scholar] [CrossRef]
- Tetko, I.V.; Poda, G.I.; Ostermann, C.; Mannhold, R. Large-Scale Evaluation of log P Predictors: Local Corrections May Compensate Insufficient Accuracy and Need of Experimentally Testing Every Other Compound. Chem. Biodivers. 2009, 6, 1837. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Tsopelas, F.; Giaginis, C.; Tsantili-Kakoulidou, A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin. Drug Discov. 2017, 12, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, P.; Carrupff, P.-A.; Testa, B.; Boudon, A. Molecular Lipophilicity Potential, a tool in 3D QSAR: Method and applications. J. Comput. Mol. Des. 1994, 8, 83–96. [Google Scholar] [CrossRef]
- Roda, A.; Hofmann, A.F.; Mysels, K.J. The influence of bile salt structure on self-association in aqueous solutions. J. Biol. Chem. 1983, 258, 6362–6370. [Google Scholar] [CrossRef]
- Vázquez-Gómez, S.; Vázquez-Tato, M.P.; Seijas, J.A.; Meijide, F.; De Frutos, S.; Tato, J.V. Thermodynamics of the aggregation of the bile anions of obeticholic and chenodeoxycholic acids in aqueous solution. J. Mol. Liq. 2019, 296, 112092. [Google Scholar] [CrossRef]
- Katona, B.; Cummins, C.L.; Ferguson, A.D.; Li, T.; Schmidt, D.R.; Mangelsdorf, D.J.; Covey, D.F. Synthesis, Characterization, and Receptor Interaction Profiles of Enantiomeric Bile Acids. J. Med. Chem. 2007, 50, 6048–6058. [Google Scholar] [CrossRef]
- Rusanov, A.I. The Mass-Action-Law Theory of Micellization Revisited. Langmuir 2014, 30, 14443–14451. [Google Scholar] [CrossRef]
- Rusanov, A. The mass action law theory of micellar solutions. Adv. Colloid Interface Sci. 1993, 45, 1–78. [Google Scholar] [CrossRef]
- Tato, J.V.; Seijas, J.A.; Vázquez-Tato, M.P.; Meijide, F.; de Frutos, S.; Jover, A.; Fraga, F.; Soto, V.H. Introduction to Biosurfactants. In Biosurfactants for a Sustainable Future. Production and Applications in the Enviroment and Biomedicine; Sarma, H., Prasad, M.N.V., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 1–42. [Google Scholar]
- Tato, J.V.; Tellini, V.H.S.; Novo, J.V.T.; del Rio, F.M.; Alcalde, M.A.; Queijo, A.A.; Garcia, J.C.; Ramos, A.J. Nuevos Dimeros Derivados de Ácidos Biliares Funcionarizados en la Posición 3 del Anillo A. Métodos Para la Síntesis y Aplicaciones. Spain Patent ES2 318 922A311, 16 February 2009. [Google Scholar]
- Miragaya, J.; Jover, A.; Fraga, F.; Meijide, F.; Tato, J.V. Enantioresolution and Chameleonic Mimicry of 2-Butanol with an Adamantylacetyl Derivative of Cholic Acid. Cryst. Growth Des. 2010, 10, 1124–1129. [Google Scholar] [CrossRef]
- Tato, J.V.; Tellini, V.H.S.; Novo, J.V.T.; Alcalde, M.A.; Queijo, A.A.; García, J.G.; Ramos, A.J.; del Río, F.M. Nuevos Amidoderivados de Ácidos Biliares Funcionalizados en la Posición 3 del Anillo A. Procedimientos Para su Obtención y Aplicaciones. Spain Patent ES2296463A1, 13 July 2005. [Google Scholar]
- Jover, A.; Meijide, F.; Mosquera, V.; Tato, J.V. A step-by-step dilution-extraction method for laboratory experiments. J. Chem. Educ. 1990, 67, 530–532. [Google Scholar] [CrossRef]
- Phillips, J.N. The energetics of micelle formation. Trans. Faraday Soc. 1955, 51, 561–569. [Google Scholar] [CrossRef]
- Meijide, F.; De Frutos, S.; Soto, V.H.; Jover, A.; Seijas, J.A.; Vázquez-Tato, M.P.; Fraga, F.; Tato, J.V. A Standard Structure for Bile Acids and Derivatives. Crystals 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Klopman, G.; Zhu, H. Recent Methodologies for the Estimation of N-Octanol/Water Partition Coefficients and their Use in the Prediction of Membrane Transport Properties of Drugs. Mini-Reviews Med. Chem. 2005, 5, 127–133. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, A.Y.; Wang, R.; Lai, L. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Wildman, S.A.; Crippen, G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple Method of Calculating Octanol/Water Partition Coefficient. Chem. Pharm. Bull. 1992, 40, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Moriguchi, I.; Hirono, S.; Nakagome, I.; Hirano, H. Comparison of Reliability of log P Values for Drugs Calculated by Several Methods. Chem. Pharm. Bull. 1994, 42, 976–978. [Google Scholar] [CrossRef] [Green Version]
- SILICOS-IT: Hybrid Fragmental/Topological Method Calculated by FILTER-IT Program, v., Courtesy of SILICOS-IT. Available online: http://www.silicos-it.com (accessed on 21 June 2021).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pedretti, A.; Villa, L.; Vistoli, G. VEGA: A Versatile Program to Convert, Handle and Visualize Molecular Structure on WNDOWS-based PCs. J. Mol. Graph 2002, 21, 47–49. [Google Scholar] [CrossRef]
- Pedretti, A.; Mazzolari, A.; Gervasoni, S.; Fumagalli, L.; Vistoli, G. The VEGA suite of programs: An versatile platform for cheminformatics and drug design projects. Bioinformatics 2021, 37, 1174–1175. [Google Scholar] [CrossRef]
- Broto, P.; Moreau, G.; Vandycke, C. Molecular structures: Perception, autocorrelation descriptor and SAR studies. System of atomic contributions for the calculation of the n-octanol/water partition coefficients. Eur. J. Med. Chem. 1984, 19, 71–78. [Google Scholar]
Surfactant | cmc/mM | 106xcmc | T/K | n | ΔGdemic kJ mol−1 | ΔHdemic kJ mol−1 | ΔSdemic J mol−1K−1 |
---|---|---|---|---|---|---|---|
NaAdC | 0.323 | 5.82 | 283.15 | 6.16 | 25.1 | −8.2 | −118 |
0.433 | 7.81 | 288.15 | 6.53 | 25.2 | −6.5 | −110 | |
0.296 | 5.33 | 293.15 | 5.88 | 25.9 | −5.4 | −107 | |
0.336 | 6.06 | 298.15 | 7.38 | 27.3 | −2.9 | −101 | |
NaAdCH2C | 0.488 | 8.79 | 288.15 | 8.56 | 27.2 | −6.4 | −117 |
0.473 | 8.53 | 293.15 | 10.5 | 28.5 | −5.3 | −115 | |
0.438 | 7.89 | 298.15 | 11.3 | 28.8 | −3.2 | −107 | |
0.442 | 7.96 | 303.15 | 10.3 | 29.2 | −1.5 | −101 | |
0.343 | 6.18 | 313.15 | 11.1 | 31.0 | 1.5 | −94 | |
0.378 | 6.81 | 318.15 | 13.2 | 32.3 | 2.1 | −95 | |
NatButPhC | 0.182 | 3.28 | 298.15 | 48.1 | 34.4 | 3.1 | −105 |
0.220 | 3.95 | 303.15 | 39.3 | 34.4 | 5.6 | −95 | |
0.201 | 3.62 | 308.15 | 49.7 | 35. 4 | 8.4 | −88 | |
0.220 | 3.95 | 313.15 | 53.4 | 35.8 | 10.9 | −80 | |
0.256 | 4.61 | 318.15 | 33.9 | 35.5 | 12.0 | −74 |
Compound | Log P (iLOGP) | Log P (XLOGP3) | Log P (WLOGP) | Log P (MLOGP) | Log P (SILICOS-IT) | Virtual logP | log P exp, Roda et al. |
---|---|---|---|---|---|---|---|
NaC, I, | 2.84 | 2.022 | 2.11 | 3.05 | 2.53 | 1.3768 | 1.1 |
NaHC, XIV | 3.06 | 2.8 | 2.11 | 3.05 | 2.53 | 1.5761 | 1.84 |
NaDC, II, | 3.07 | 3.5 | 3.14 | 3.88 | 3.42 | 2.3453 | 2.65 |
NaCheno, VIII | 3.21 | 3.08 | 3.14 | 3.88 | 3.42 | 2.2348 | 2.25 |
NaUDC, XIII | 3.14 | 3.08 | 3.14 | 3.88 | 3.42 | 2.346 | 2.2 |
NaHDC, XV | 3.15 | 2.8 | 3.14 | 3.88 | 3.42 | 2.2667 | 2.28 |
1.209 | 0.7046 | 0.6247 | 2.470 | 1.212 | 0.0435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Tato, M.P.; Seijas, J.A.; Meijide, F.; Fraga, F.; de Frutos, S.; Miragaya, J.; Trillo, J.V.; Jover, A.; Soto, V.H.; Vázquez Tato, J. Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. Int. J. Mol. Sci. 2021, 22, 6684. https://doi.org/10.3390/ijms22136684
Vázquez-Tato MP, Seijas JA, Meijide F, Fraga F, de Frutos S, Miragaya J, Trillo JV, Jover A, Soto VH, Vázquez Tato J. Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. International Journal of Molecular Sciences. 2021; 22(13):6684. https://doi.org/10.3390/ijms22136684
Chicago/Turabian StyleVázquez-Tato, M. Pilar, Julio A. Seijas, Francisco Meijide, Francisco Fraga, Santiago de Frutos, Javier Miragaya, Juan Ventura Trillo, Aida Jover, Victor H. Soto, and José Vázquez Tato. 2021. "Highly Hydrophilic and Lipophilic Derivatives of Bile Salts" International Journal of Molecular Sciences 22, no. 13: 6684. https://doi.org/10.3390/ijms22136684
APA StyleVázquez-Tato, M. P., Seijas, J. A., Meijide, F., Fraga, F., de Frutos, S., Miragaya, J., Trillo, J. V., Jover, A., Soto, V. H., & Vázquez Tato, J. (2021). Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. International Journal of Molecular Sciences, 22(13), 6684. https://doi.org/10.3390/ijms22136684