Immunodiagnostic Biomarkers for Hepatocellular Carcinoma (HCC): The First Step in Detection and Treatment
Abstract
:1. Introduction
2. Tumor-Associated Antigens (TAAs) and Anti-TAAs Autoantibodies
3. HCC-Derived Exosome
4. Other Immunodiagnostic Biomarkers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hilmi, M.; Vienot, A.; Rousseau, B.; Neuzillet, C. Immune Therapy for Liver Cancers. Cancers 2019, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Altekruse, S.F.; McGlynn, K.A.; Reichman, M.E. Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005. J. Clin. Oncol. 2009, 27, 1485–1491. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Takayama, T.; Makuuchi, M.; Kojiro, M.; Lauwers, G.Y.; Adams, R.B.; Wilson, S.R.; Jang, H.-J.; Charnsangavej, C.; Taouli, B. Early Hepatocellular Carcinoma: Pathology, Imaging, and Therapy. Ann. Surg. Oncol. 2008, 15, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carci-noma. World J. Gastroenterol. 2015, 21, 10573–10583. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.-I.; Hsu, C.-Y.; Liu, P.-H. Magic mirror on the wall: Which is the best biomarker for hepatocellular carcinoma? Hepatology 2018, 67, 2482–2483. [Google Scholar] [CrossRef] [Green Version]
- Collier, J.; Sherman, M. Screening for hepatocellular carcinoma. Hepatology 1998, 27, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Ren, L.N.; Wang, X.; Wang, T.; Zhang, N.; Gao, Y.; Luo, H.; Navarro-Alvarez, N.; Tang, L.J. Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepato-cellular carcinoma diagnosis in rats. J. Cancer Res. Clin. Oncol. 2015, 141, 1767–1778. [Google Scholar] [CrossRef]
- Labgaa, A.; Villanueva, I. Liquid biopsy in liver cancer. Discov. Med. 2015, 19, 263–273. [Google Scholar]
- Bogdanos, D.P.; Gao, B.; Gershwin, M.E. Liver Immunology. Compr. Physiol. 2013, 3, 567–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tampaki, M.; Ionas, E.; Hadziyannis, E.; Deutsch, M.; Malagari, K.; Koskinas, J. Association of TIM-3 with BCLC Stage, Serum PD-L1 Detection, and Response to Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. Cancers 2020, 12, 212. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.W. Tumour-associated antigens and tumour-host interactions. Proc. R. Soc. Med. 1971, 64, 1039–1042. [Google Scholar] [PubMed]
- Zhang, H.-F.; Qin, J.-J.; Ren, P.-F.; Shi, J.-X.; Xia, J.-F.; Ye, H.; Wang, P.; Song, C.-H.; Wang, K.-J.; Zhang, J.-Y. A panel of autoantibodies against multiple tumor-associated antigens in the immunodiagnosis of esophageal squamous cell cancer. Cancer Immunol. Immunother. 2016, 65, 1233–1242. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Li, Y.; Yue, L.-X.; Luo, C.-L.; Chen, Y.; Zhang, J.-Y. Autoantibody response to Sui1 and its tissue-specific expression in hepatocellular carcinoma. Tumor Biol. 2015, 37, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Varela-Ramirez, A.; Li, J.; Dai, L.; Aguilera, R.J.; Zhang, J.-Y. Humoral autoimmune response to nucleophosmin in the immunodiagnosis of hepatocellular carcinoma. Oncol. Rep. 2015, 33, 2245–2252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-Y.; Tan, E.M. Autoantibodies to tumor-associated antigens as diagnostic biomarkers in hepatocellular carcinoma and other solid tumors. Expert Rev. Mol. Diagn. 2010, 10, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.S.; LaBaer, J. The Sentinel Within: Exploiting the Immune System for Cancer Biomarkers. J. Proteome Res. 2005, 4, 1123–1133. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Ren, P.; Liu, M.; Imai, H.; Tan, E.M.; Zhang, J.-Y. Using immunomic approach to enhance tumor-associated autoantibody detection in diagnosis of hepatocellular carcinoma. Clin. Immunol. 2014, 152, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Koziol, J.A.; Imai, H.; Dai, L.; Zhang, J.-Y.; Tan, E.M. Early detection of hepatocellular carcinoma using autoantibody profiles from a panel of tumor-associated antigens. Cancer Immunol. Immunother. 2018, 67, 835–841. [Google Scholar] [CrossRef]
- Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, A.; Greenman, J. Clinical utility of anti-p53 auto-antibody: Systematic review and focus on colorectal cancer. World J. Gastroenterol. 2013, 19, 4651–4670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Chan, E.K.; Peng, X.-X.; Tan, E.M. A Novel Cytoplasmic Protein with RNA-binding Motifs Is an Autoantigen in Human Hepatocellular Carcinoma. J. Exp. Med. 1999, 189, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.; Christiansen, J.; Lykke-Andersen, J.; Johnsen, A.H.; Wewer, U.M.; Nielsen, F.C. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol. Cell Biol. 1999, 19, 1262–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller-Pillasch, F.; Lacher, U.; Wallrapp, C.; Micha, A.; Zimmerhackl, F.; Hameister, H.; Varga, G.; Friess, H.; Büchler, M.; Beger, H.G.; et al. Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein. Oncogene 1997, 14, 2729–2733. [Google Scholar] [CrossRef] [Green Version]
- Kessler, S.M.; Laggai, S.; Barghash, A.E.M.; Schultheiss, C.S.; Lederer, E.; Artl, M.; Helms, V.; Haybaeck, J.; Kiemer, A.K. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis. 2015, 6, e1894. [Google Scholar] [CrossRef] [Green Version]
- Xing, M.; Li, P.; Wang, X.; Li, J.; Shi, J.; Qin, J.; Zhang, X.; Ma, Y.; Francia, G.; Zhang, J.Y. Overexpression of p62/IMP2 can Promote Cell Migration in Hepatocellular Carcinoma via Activation of the Wnt/beta-Catenin Pathway. Cancers 2019, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Wachter, D.L.; Kristiansen, G.; Soll, C.; Hellerbrand, C.; Breuhahn, K.; Fritzsche, F.; Agaimy, A.; Hartmann, A.; Riener, M.O. Insu-lin-like growth factor II mRNA-binding protein 3 (IMP3) expression in hepatocellular carcinoma. A clinicopathological analysis with emphasis on diagnostic value. Histopathology 2012, 60, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Degrauwe, N.; Suvà, M.-L.; Janiszewska, M.; Riggi, N.; Stamenkovic, I. IMPs: An RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev. 2016, 30, 2459–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, S.; Haybaeck, J.; Kiemer, A. Insulin-Like Growth Factor 2—The Oncogene and its Accomplices. Curr. Pharm. Des. 2016, 22, 5948–5961. [Google Scholar] [CrossRef] [PubMed]
- Rogler, C.E.; Yang, D.; Rossetti, L.; Donohoe, J.; Alt, E.; Chang, C.J.; Rosenfeld, R.; Neely, K.; Hintz, R. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J. Biol. Chem. 1994, 269, 13779–13784. [Google Scholar] [CrossRef]
- Agrogiannis, G.D.; Sifakis, S.; Patsouris, E.S.; Konstantinidou, A.E. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review). Mol. Med. Rep. 2014, 10, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Cariani, E.; Lasserre, C.; Seurin, D.; Hamelin, B.; Kemeny, F.; Franco, D.; Czech, M.P.; Ullrich, A.; Brechot, C. Differential expression of insulin-like growth factor II mRNA in human primary liver cancers, benign liver tumors, and liver cirrhosis. Cancer Res. 1988, 48, 6844–6849. [Google Scholar] [PubMed]
- Christofori, G.; Naik, P.; Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nat. Cell Biol. 1994, 369, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Li, S.; Li, N.; Chen, Y.; Zhang, B.; Qu, C.; Ding, H.; Huang, J.; Dai, M. Direct comparison of five serum biomarkers in early diagnosis of hepatocellular carcinoma. Cancer Manag. Res. 2018, 10, 1947–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.; Zou, G.; Xu, F.; Huang, Y.; Xu, G.; He, J.; Li, Y.; Zhu, H.; Yu, P. Serum levels of anti-sperm-associated antigen 9 antibody are elevated in patients with hepatocellular carcinoma. Oncol. Lett. 2017, 14, 7608–7614. [Google Scholar] [CrossRef]
- Ren, B.; Luo, S.; Xu, F.; Zou, G.; Xu, G.; He, J.; Huang, Y.; Zhu, H.; Li, Y. The expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in peripheral blood of patients with HCC and lung cancer. Cell Stress Chaperon 2016, 22, 237–244. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Ren, P.; Li, J.; Chai, Y.; Zheng, S.J.; Chen, Y.; Duan, Z.P.; Li, N.; Zhang, J.Y. A cancer-related protein 14-3-3zeta is a potential tumor-associated antigen in immunodiagnosis of hepatocellular carcinoma. Tumour Biol. 2014, 35, 4247–4256. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zheng, S.-J.; Chen, Y.; Li, N.; Ren, P.-F.; Dai, L.-P.; Duan, Z.-P.; Zhang, J.-Y. Autoantibody Response to Murine Double Minute 2 Protein in Immunodiagnosis of Hepatocellular Carcinoma. J. Immunol. Res. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, J.; Wang, S.; Pang, Z.; Wang, Z.; Zhou, W.; Wu, M. Screening of autoantibodies as potential biomarkers for hepa-tocellular carcinoma by using T7 phase display system. Cancer Epidemiol. 2012, 36, 82–88. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.-H.; Yu, C.-H.; Li, Y.-M.; Wang, S.-Q. Identification of Hepatocellular-Carcinoma-Associated Antigens and Autoantibodies by Serological Proteome Analysis Combined with Protein Microarray. J. Proteome Res. 2008, 7, 611–620. [Google Scholar] [CrossRef]
- Heo, C.-K.; Hwang, H.-M.; Lee, H.-J.; Kwak, S.-S.; Yoo, J.-S.; Yu, D.-Y.; Lim, K.-J.; Lee, S.; Cho, E.-W. Serum anti-EIF3A autoantibody as a potential diagnostic marker for hepatocellular carcinoma. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.M.; Heo, C.K.; Lee, H.J.; Kwak, S.S.; Lim, W.H.; Yoo, J.S.; Yu, D.Y.; Lim, K.J.; Kim, J.Y.; Cho, E.W. Identification of an-ti-SF3B1 autoantibody as a diagnostic marker in patients with hepatocellular carcinoma. J. Transl. Med. 2018, 16, 177. [Google Scholar] [CrossRef]
- Chao, N.X.; Li, L.Z.; Luo, G.R.; Zhong, W.G.; Huang, R.S.; Fan, R.; Zhao, F.L. Cancer-testis antigen GAGE-1 expression and serum immunoreactivity in hepatocellular carcinoma. Niger. J. Clin. Pract. 2018, 21, 1361–1367. [Google Scholar]
- Dai, L.; Peng, X.X.; Tan, E.M.; Zhang, J.Y. Tumor-associated antigen CAPERalpha and microvessel density in hepatocellular car-cinoma. Oncotarget 2016, 7, 16985–16995. [Google Scholar] [CrossRef] [Green Version]
- Oshima, Y.; Shimada, H.; Yajima, S.; Nanami, T.; Matsushita, K.; Nomura, F.; Kainuma, O.; Takiguchi, N.; Soda, H.; Ueda, T.; et al. NY-ESO-1 autoantibody as a tumor-specific biomarker for esophageal cancer: Screening in 1969 patients with various cancers. J. Gastroenterol. 2016, 51, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Middleton, C.H.; Irving, W.; Robertson, J.F.R.; Murray, A.; Parsy-Kowalska, C.B.; Macdonald, I.K.; McElveen, J.; Allen, J.; Healey, G.F.; Thomson, B.J.; et al. Serum Autoantibody Measurement for the Detection of Hepatocellular Carcinoma. PLoS ONE 2014, 9, e103867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhou, Y.; Qiu, S.; Wang, K.; Liu, S.; Peng, X.-X.; Li, J.; Tan, E.M.; Zhang, J.-Y. Autoantibodies to tumor-associated antigens combined with abnormal alpha-fetoprotein enhance immunodiagnosis of hepatocellular carcinoma. Cancer Lett. 2010, 289, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, C.K.; Woo, M.K.; Yu, D.Y.; Lee, J.Y.; Yoo, J.S.; Yoo, H.S.; Ko, J.H.; Kim, J.M.; Choi, J.Y.; Kim, I.G.; et al. Identifi-cation of autoantibody against fatty acid synthase in hepatocellular carcinoma mouse model and its application to diagnosis of HCC. Int. J. Oncol. 2010, 36, 1453–1459. [Google Scholar]
- Wang, K.; Chen, Y.; Liu, S.; Qiu, S.; Gao, S.; Huang, X.; Zhang, J.; Peng, X.; Qiani, W. Immunogenicity of Ra1A and its Tissue-Specific Expression in Hepatocellular Carcinoma. Int. J. Immunopathol. Pharmacol. 2009, 22, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xu, X.; Nie, Y.; Dai, L.; Wang, P.; Zhang, J. Identification of tumor-associated antigens by using SEREX in hepatocellular carcinoma. Cancer Lett. 2009, 281, 144–150. [Google Scholar] [CrossRef]
- Looi, K.S.; Nakayasu, E.S.; de Diaz, R.A.; Tan, E.M.; Almeida, I.C.; Zhang, J.-Y. Using Proteomic Approach to Identify Tumor-Associated Antigens as Markers in Hepatocellular Carcinoma. J. Proteome Res. 2008, 7, 4004–4012. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Fu, S.; Chen, F.; Chen, H.; Chen, Z. Identification of tumor-associated antigens in human hepatocellular carcinoma by autoantibodies. Oncol. Rep. 2008, 20, 979–985. [Google Scholar] [PubMed]
- Zhang, J.-Y.; Megliorino, R.; Peng, X.-X.; Tan, E.M.; Chen, Y.; Chan, E.K. Antibody detection using tumor-associated antigen mini-array in immunodiagnosing human hepatocellular carcinoma. J. Hepatol. 2007, 46, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Takashima, M.; Kuramitsu, Y.; Yokoyama, Y.; Iizuka, N.; Harada, T.; Fujimoto, M.; Sakaida, I.; Okita, K.; Oka, M.; Nakamura, K. Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics 2006, 6, 3894–3900. [Google Scholar] [CrossRef] [PubMed]
- Himoto, T.; Kuriyama, S.; Zhang, J.Y.; Chan, E.K.; Kimura, Y.; Masaki, T.; Uchida, N.; Nishioka, M.; Tan, E.M. Analyses of autoan-tibodies against tumor-associated antigens in patients with hepatocellular carcinoma. Int. J. Oncol. 2005, 27, 1079–1085. [Google Scholar] [PubMed]
- Looi, K.; Megliorino, R.; Shi, F.-D.; Peng, X.-X.; Chen, Y.; Zhang, J.-Y. Humoral immune response to p16, a cyclin-dependent kinase inhibitor in human malignancies. Oncol. Rep. 2006, 16, 1105–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.-Y.; Casiano, C.A.; Peng, X.-X.; Koziol, J.A.; Chan, E.K.L.; Tan, E.M. Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol. Biomark. Prev. 2003, 12, 136–143. [Google Scholar]
- Koziol, J.A.; Zhang, J.-Y.; Casiano, C.A.; Peng, X.-X.; Shi, F.-D.; Feng, A.C.; Chan, E.K.L.; Tan, E.M. Recursive partitioning as an approach to selection of immune markers for tumor diagnosis. Clin. Cancer Res. 2003, 9, 5120–5126. [Google Scholar]
- Soo Hoo, L.; Zhang, J.Y.; Chan, E.K. Cloning and characterization of a novel 90 kDa ’companion’ auto-antigen of p62 overex-pressed in cancer. Oncogene 2002, 21, 5006–5015. [Google Scholar] [CrossRef] [Green Version]
- Le Naour, F.; Brichory, F.; Misek, D.E.; Bréchot, C.; Hanash, S.M.; Beretta, L. A Distinct Repertoire of Autoantibodies in Hepatocellular Carcinoma Identified by Proteomic Analysis. Mol. Cell. Proteom. 2002, 1, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhu, H.; Imai, K.; Kiyosawa, E.K.; Chan, E.M.; Tan, J.Y. De-novo humoral immune responses to cancer-associated autoantigens during transition from chronic liver disease to hepatocellular carcinoma. Clin. Exp. Immunol. 2001, 125, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Raedle, J.; Oremek, G.; Truschnowitsch, M.; Lorenz, M.; Roth, W.; Caspary, W.; Zeuzem, S. Clinical evaluation of autoantibodies to p53 protein in patients with chronic liver disease and hepatocellular carcinoma. Eur. J. Cancer 1998, 34, 1198–1203. [Google Scholar] [CrossRef]
- Edis, C.; Kähler, C.; Klotz, W.; Herold, M.; Feichtinger, H.; Königsreiner, A.; Margreiter, R.; Jaschke, W.; Vogel, W. A Comparison Between α-Fetoprotein and P53 Antibodies in the Diagnosis of Hepatocellular Carcinoma. Transplant. Proc. 1998, 30, 780–781. [Google Scholar] [CrossRef]
- Covini, E.K.; Chan, M.; Nishioka, S.A.; Morshed, S.I.; Reed, E.M.; Tan, G. Immune response to cyclin B1 in hepatocellular carcinoma. Hepatology 1997, 25, 75–80. [Google Scholar] [CrossRef]
- Shao, Q.; Ren, P.; Li, Y.; Peng, B.; Dai, L.; Lei, N.; Yao, W.; Zhao, G.; Li, L.; Zhang, J. Autoantibodies against glucose-regulated protein 78 as serological diagnostic biomarkers in hepatocellular carcinoma. Int. J. Oncol. 2012, 41, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.X.; Han, C.C.; He, C.Y.; Zhou, Y.P.; Dong, M.J.; Cai, X.; Sui, C.X.; Ma, X.; Sun, Y.Y.; Zhang, W.L.; et al. Autoantibodies against glucose-regulated protein 78 as serological biomarkers in metastatic and recurrent hepatocellular car-cinoma. Oncotarget 2017, 8, 24828–24839. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.; Zhao, Y.; Wang, J.-L.; Zhou, X.; Zhao, J.; He, C.-C.; Guo, X.-J.; Jin, G.-H.; Wang, L.-J.; Zhu, Q.; et al. Serum anti-osteopontin autoantibody as a novel diagnostic and prognostic biomarker in patients with hepatocellular carcinoma. Oncol. Rep. 2014, 32, 1550–1556. [Google Scholar] [CrossRef] [Green Version]
- Takeji, S.; Hirooka, M.; Koizumi, Y.; Tokumoto, Y.; Abe, M.; Ikeda, Y.; Nadano, S.; Hiasa, Y.; Onji, M. Des-gamma-carboxy pro-thrombin identified by P-11 and P-16 antibodies reflects prognosis for patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2013, 28, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Qian, H.; Zhang, J.; Wang, S.; Shi, P.; Peng, X. The diversity expression of p62 in digestive system cancers. Clin. Immunol. 2005, 116, 118–123. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Xu, Y.; Zhao, H. Change of circulating antibodies against CD25-derived peptide antigen in hepatocellular carcinoma. J. Cancer Res. Ther. 2017, 13, 813. [Google Scholar] [CrossRef]
- Yu, Y.-Q.; Wang, L.; Jin, Y.; Zhou, J.-L.; Geng, Y.-H.; Jin, X.; Zhang, X.-X.; Yang, J.-J.; Qian, C.-M.; Zhou, D.-E.; et al. Identification of serologic biomarkers for predicting microvascular invasion in hepatocellular carcinoma. Oncotarget 2016, 7, 16362–16371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.-X.; Xiang, B.-D.; Long, J.-M.; Qu, C.; Mo, Z.-J.; Li, K.; Zhuang, Y.; Lv, Z.-L.; Zhou, S.-F. Diagnostic Value of Serum SMP30 and Anti-SMP30 Antibody in Hepatocellular Carcinoma. Lab. Med. 2018, 49, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, S.J.; Zheng, D.D.; Bian, J.Y.; Zhang, J.; Yao, Q.F.; Zheng, A.M.; Shi, W.H.; Li, L.; Li, Y.; et al. Tumor-associated autoantibodies are useful biomarkers in immunodiagnosis of alpha-fetoprotein-negative hepato-cellular carcinoma. World J. Gastroenterol. 2017, 23, 3496–3504. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Xie, X.-X.; Bin, Y.-H.; Lan, L.; Chen, F.; Luo, G.-R. Identification of HCC-22-5 tumor-associated antigen and antibody response in patients. Clin. Chim. Acta 2006, 366, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Himoto, S.; Kuriyama, J.Y.; Zhang, E.K.; Chan, M.; Nishioka, E.M.; Tan, T. Significance of autoantibodies against insulin-like growth factor II mRNA-binding proteins in patients with hepatocellular carcinoma. Int. J. Oncol. 2005, 26, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, A.J.; Gao, Y.X.; Hu, M.G.; Zhao, G.D.; Zhao, Z.M.; Liu, R. Expression of Ku86 and presence of Ku86 antibody as bi-omarkers of hepatitis B virus related hepatocellular carcinoma. Dig. Dis. Sci. 2014, 59, 614–622. [Google Scholar] [CrossRef]
- Yau, W.-Y.; Shih, H.-C.; Tsai, M.-H.; Sheu, J.-C.; Chen, C.-H.; Chow, L.-P. Autoantibody recognition of an N-terminal epitope of hnRNP L marks the risk for developing HBV-related hepatocellular carcinoma. J. Proteom. 2013, 94, 346–358. [Google Scholar] [CrossRef]
- Akada, J.; Kamei, S.; Ito, A.; Ito, M.; Kitagawa, T.; Furumoto, H.; Kato, Y.; Tamesa, M.; Takashima, M.; Shirai, M.; et al. A new type of protein chip to detect hepatocellular carcinoma-related autoimmune antibodies in the sera of hepatitis C virus-positive patients. Proteome Sci. 2013, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Nomura, F.; Sogawa, K.; Noda, K.; Seimiya, M.; Matsushita, K.; Miura, T.; Tomonaga, T.; Yoshitomi, H.; Imazeki, F.; Takizawa, H.; et al. Serum anti-Ku86 is a potential biomarker for early detection of hepatitis C virus-related hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2012, 421, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Ezzikouri, S.; Kimura, K.; Sunagozaka, H.; Kaneko, S.; Inoue, K.; Nishimura, T.; Hishima, T.; Kohara, M.; Tsukiyama-Kohara, K. Serum DHCR24 Auto-antibody as a new Biomarker for Progression of Hepatitis, C. eBioMedicine 2015, 2, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Wortzel, I.; Dror, S.; Kenific, C.M.; Lyden, D. Exosome-Mediated Metastasis: Communication from a Distance. Dev. Cell 2019, 49, 347–360. [Google Scholar] [CrossRef]
- Sun, F.; Wang, J.-Z.; Luo, J.-J.; Wang, Y.-Q.; Pan, Q. Exosomes in the Oncobiology, Diagnosis, and Therapy of Hepatic Carcinoma: A New Player of an Old Game. BioMed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Bach, D.-H.; Hong, J.-Y.; Park, H.J.; Lee, S.K. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int. J. Cancer 2017, 141, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Li, B. The functional role of exosome in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2018, 144, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Tomimaru, Y.; Eguchi, H.; Nagano, H.; Wada, H.; Kobayashi, S.; Marubashi, S.; Tanemura, M.; Tomokuni, A.; Takemasa, I.; Umeshita, K.; et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J. Hepatol. 2012, 56, 167–175. [Google Scholar] [CrossRef]
- Wang, L.; Hou, A.; Li, Y.; Duan, H.; Gao, X.; Song, H. Expression of serum exosomal microRNA-21 in human hepatocellular car-cinoma. BioMed Res. Int. 2014, 2014, 864894. [Google Scholar]
- Xu, J.; Wu, C.; Che, X.; Wang, L.; Yu, D.; Zhang, T.; Huang, L.; Li, H.; Tan, W.; Wang, C.; et al. Circulating MicroRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog. 2011, 50, 136–142. [Google Scholar] [CrossRef]
- Qi, P.; Cheng, S.-Q.; Wang, H.; Li, N.; Chen, Y.-F.; Gao, C.-F. Serum MicroRNAs as Biomarkers for Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection. PLoS ONE 2011, 6, e28486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, G.; Bala, S. MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 542–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halasz, G.; Horvath, G.; Par, K.; Werling, A.; Kiss, Z.; Schaff, G.; Lendvai, T. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan. World J. Gastroenterol. 2015, 21, 7814–7823. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K.D.; Giering, F.; Erfurth, C.; Neumann, A.; Fehr, C.; Meister, G.; Niepmann, M. microRNA-122 Dependent Binding of Ago2 Protein to Hepatitis C Virus RNA Is Associated with Enhanced RNA Stability and Translation Stimulation. PLoS ONE 2013, 8, e56272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Ding, X.; Ning, J.; Yi, F.; Chen, J.; Zhao, D.; Zheng, J.; Liang, Z.; Hu, Z.; Du, Q. Circulating microRNA-122 as a potential biomarker for liver injury. Mol. Med. Rep. 2012, 5, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, T.; Miyaaki, H.; Kanda, Y.; Shibata, H.; Honda, T.; Ozawa, E.; Miuma, S.; Taura, N.; Nakao, K. Serum exosomal mi-croRNA-122 and microRNA-21 as predictive biomarkers in transarterial chemoembolization-treated hepatocellular carcinoma patients. Oncol. Lett. 2018, 16, 3267–3273. [Google Scholar] [PubMed]
- Sohn, J.; Kim, S.H.; Kang, S.R.; Yang, J.Y.; Cho, H.C.; Cho, S.G.; Shim, Y.H.; Paik, J. Serum exosomal microRNAs as novel bi-omarkers for hepatocellular carcinoma. Exp. Mol. Med. 2015, 47, e184. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, J.; Zhou, K.; Chen, F.; Wang, Z.; Liao, B.; Dai, Z.; Cao, Y.; Fan, J.; Zhou, J. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. OncoTargets Ther. 2017, 10, 3843–3851. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Kim, G.; Tak, W.Y.; Jang, S.Y.; Kweon, Y.O.; Gil Park, J.; Lee, H.W.; Han, Y.S.; Chun, J.M.; Park, S.Y.; et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int. J. Cancer 2019, 144, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Yang, F.; Wang, J.Z.; Ma, Y.J.; Guo, Q.F.; Tao, F.; Liu, W.; Pan, T.T.; Wang, C.C.; Zhou, S.B.; et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014, 25, 666–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimachi, T.; Matsumura, H.; Hirata, R.; Uchi, M.; Ueda, H.; Ueo, Y.; Shinden, T.; Iguchi, H.; Eguchi, K.; Shirabe, T.; et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular car-cinoma recurrence after liver transplantation. Br. J. Cancer 2015, 112, 532–538. [Google Scholar] [CrossRef]
- Hu, G.; Drescher, K.M.; Chen, X.-M. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front. Genet. 2012, 3, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.-X.; Lv, L.-H.; Wan, Y.-L.; Cao, Y.; Li, G.-L.; Lin, H.-M.; Zhou, R.; Shang, C.-Z.; Cao, J.; He, H.; et al. Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells. Hepatology 2015, 61, 1284–1294. [Google Scholar] [CrossRef]
- Arbelaiz, A.; Azkargorta, M.; Krawczyk, M.; Santos-Laso, A.; Lapitz, A.; Perugorria, M.J.; Erice, O.; Gonzalez, E.; Jimenez-Agüero, R.; Lacasta, A.; et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2017, 66, 1125–1143. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-S.; Weng, D.-S.; Wang, Q.-J.; Pan, K.; Zhang, Y.-J.; Li, Y.-Q.; Li, J.-J.; Zhao, J.-J.; He, J.; Lv, L.; et al. Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J. Transl. Med. 2014, 12, 273. [Google Scholar] [CrossRef] [Green Version]
- Kogure, T.; Lin, W.-L.; Yan, I.K.; Braconi, C.; Patel, T. Intercellular nanovesicle-mediated microRNA transfer: A mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011, 54, 1237–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Deng, C.-X. Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. Int. J. Biol. Sci. 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol. Cancer 2017, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhou, L.; Lv, D.; Zhu, X.; Tang, H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J. Hematol. Oncol. 2019, 12, 53. [Google Scholar] [CrossRef]
- Chen, R.; Xu, X.; Tao, Y.; Qian, Z.; Yu, Y. Exosomes in hepatocellular carcinoma: A new horizon. Cell Commun. Signal. 2019, 17, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, Q.; Zuo, B.; Lu, Z.; Gao, X.; You, A.; Wu, C.; Du, Z.; Yin, H. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 2016, 64, 456–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Zuo, B.; Jing, R.; Gao, X.; Rao, Q.; Liu, Z.; Qi, H.; Guo, H.; Yin, H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J. Hepatol. 2017, 67, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-M.; Liu, Z.-X.; Cheng, Q.-Y. Exosome plays an important role in the development of hepatocellular carcinoma. Pathol. Res. Pract. 2019, 215, 152468. [Google Scholar] [CrossRef]
- Xu, H.; Dong, X.; Chen, Y.; Wang, X. Serum exosomal hnRNPH1 mRNA as a novel marker for hepatocellular carcinoma. Clin. Chem. Lab. Med. 2018, 56, 479–484. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, X.; Qi, Q.; Gao, Y.; Wei, Q.; Han, S. lncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related hepatocellular carcinoma. Cancer Biomark. 2018, 21, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, Y.; Liu, K.; Zhu, Q.; Yang, W.-H.; Xiong, L.-K.; Guo, D.-L. Exosomal miR-9-3p suppresses HBGF-5 expression and is a functional biomarker in hepatocellular carcinomaa. Minerva Med. 2017, 109, 15–23. [Google Scholar] [PubMed]
- Li, B.; Mao, R.; Liu, C.; Zhang, W.; Tang, Y.; Guo, Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci. 2018, 197, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Fornari, F.; Ferracin, M.; Trerè, D.; Milazzo, M.; Marinelli, S.; Galassi, M.; Venerandi, L.; Pollutri, D.; Patrizi, C.; Borghi, A.; et al. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, Identify Cirrhotic Patients with HCC. PLoS ONE 2015, 10, e0141448. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Zhao, Y.; Wang, X.; Qin, L.; Hu, R. Development and validation of serum exosomal microRNAs as diagnostic and prognostic biomarkers for hepatocellular carcinoma. J. Cell. Biochem. 2019, 120, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, X.; Wang, X.; Zhao, Y.; Hu, R.; Qin, L. Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A. Biochem. Biophys. Res. Commun. 2018, 502, 515–521. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, J.; Wu, J.; Ji, A.; Qiang, G.; Jiang, Y.; Jiang, C.; Ding, Y. Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 2017, 8, 80666–80678. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Chen, Y.; Dong, X.; Wang, X. Serum Exosomal Long Noncoding RNAs ENSG00000258332.1 and LINC00635 for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Cancer Epidemiol. Biomark. Prev. 2018, 27, 710–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.H.; Zhang, Z.J.; Shang, L.R.; Luo, Y.W.; Lin, Y.F.; Yuan, Y.; Zhuang, S.M. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology 2018, 68, 1459–1475. [Google Scholar] [CrossRef] [Green Version]
- Gramantieri, L.; Baglioni, M.; Fornari, F.; Laginestra, M.A.; Ferracin, M.; Indio, V.; Ravaioli, M.; Cescon, M.; De Pace, V.; Leoni, S.; et al. LncRNAs as novel players in hepatocellular carcinoma recurrence. Oncotarget 2018, 9, 35085–35099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Jiang, Y.; Yang, L.; Yan, S.; Wang, Y.; Lu, X. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J. Cell. Biochem. 2018, 119, 4711–4716. [Google Scholar] [CrossRef] [PubMed]
- Pontisso, P.; Calabrese, F.; Benvegnù, L.; Lise, M.; Belluco, C.; Ruvoletto, M.G.; De Falco, S.; Marino, M.; Valente, M.; Nitti, D.; et al. Overexpression of squamous cell carcinoma antigen variants in hepatocellular carcinoma. Br. J. Cancer 2004, 90, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Cataltepe, S.; Gornstein, E.R.; Schick, C.; Kamachi, Y.; Chatson, K.; Fries, J.; Silverman, G.A.; Upton, M.P. Co-expression of the Squamous Cell Carcinoma Antigens 1 and 2 in Normal Adult Human Tissues and Squamous Cell Carcinomas. J. Histochem. Cytochem. 2000, 48, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Beneduce, L.; Castaldi, F.; Marino, M.; Quarta, S.; Ruvoletto, M.; Benvegnù, L.; Calabrese, F.; Gatta, A.; Pontisso, P.; Fassina, G. Squamous cell carcinoma antigen-immunoglobulin M complexes as novel biomarkers for hepatocellular carcinoma. Cancer 2005, 103, 2558–2565. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.-F.; Tanaka, Y.; Fong, D.; Fung, J.; Wong, D.K.-H.; Yuen, J.C.-H.; But, D.Y.-K.; Chan, A.O.-O.; Wong, B.C.-Y.; Mizokami, M.; et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J. Hepatol. 2009, 50, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef]
- Silverman, G.J. Regulatory natural autoantibodies to apoptotic cells: Pallbearers and protectors. Arthritis Rheum. 2011, 63, 597–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozzan, R.; Cardin, M.; Piciocchi, N.; Cazzagon, G.; Maddalo, V.; Vanin, A.; Giacomin, P.; Pontisso, U.; Cillo, F.; Farinati, C. Di-agnostic and prognostic role of SCCA-IgM serum levels in hepatocellular carcinoma (HCC). J. Gastroenterol. Hepatol. 2014, 29, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Biasiolo, L.; Chemello, S.; Quarta, L.; Cavalletto, F.; Bortolotti, C.; Caberlotto, L.; Beneduce, E.; Bernardinello, N.; Tono, G.; Fassina, A.; et al. Monitoring SCCA-IgM complexes in serum predicts liver disease progression in patients with chronic hepatitis. J. Viral Hepat. 2008, 15, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Mossad, E.H.; Mahmoud, E.A.; Osman, S.H.; Mahmoud, H.I.; Shousha, N.A. Evaluation of squamous cell carcinoma anti-gen-immunoglobulin M complex (SCCA-IGM) and alpha-L-fucosidase (AFU) as novel diagnostic biomarkers for hepatocellular carcinoma. Tumour Biol. 2014, 35, 11559–11564. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Higazi, H.M.; Moness, N.M.; Farag, Z.M.; Saad, H.A.; Moukareb, W.; Soliman, G.; El Sagheer, S.R.; Abd El Hamid, H.; Abdl Hamid, L.H. Clinical significances and diagnostic utilities of both miR-215 and squamous cell carcinoma antigen-IgM versus alpha-fetoprotein in Egyptian patients with hepatitis C virus-induced hepatocellular carcinoma. Clin. Exp. Gastroenterol. 2019, 12, 51–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suminami, Y.; Nagashima, S.; Murakami, A.; Nawata, S.; Gondo, T.; Hirakawa, H.; Numa, F.; Silverman, G.A.; Kato, H. Suppression of a squamous cell carcinoma (SCC)-related serpin, SCC antigen, inhibits tumor growth with increased intratumor infiltration of natural killer cells. Cancer Res. 2001, 61, 1776–1780. [Google Scholar]
- Guarino, G.G.; Di Costanzo, A.; Gallotta, R.; Tortora, L.; Paneghetti, F.; Auriemma, C.; Tuccillo, G.; Fassina, N.; Caporaso, F.; Morisco, M. Circulating SCCA-IgM complex is a useful biomarker to predict the outcome of therapy in hepatocellular carcinoma patients. Scand. J. Clin. Lab. Investig. 2017, 77, 448–453. [Google Scholar] [CrossRef]
- Filmus, J. The contribution of in vivo manipulation of gene expression to the understanding of the function of glypicans. Glycoconj. J. 2002, 19, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, B.V.; Centeno, G.; Pascuccelli, H.; Ward, F.; Peters, M.G.; Filmus, J.; Puricelli, L.; Joffé, E.B.D.K. Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development. Histol. Histopathol. 2008, 23, 1333–1340. [Google Scholar] [PubMed]
- Yao, M.; Yao, D.-F.; Bian, Y.-Z.; Zhang, C.-G.; Qiu, L.-W.; Wu, W.; Sai, W.-L.; Yang, J.-L.; Zhang, H.-J. Oncofetal antigen glypican-3 as a promising early diagnostic marker for hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 2011, 10, 289–294. [Google Scholar] [CrossRef]
- Saber, M.A.; Khorshed, S.F.E.; Aboushousha, T.S.; Hamdy, H.E.; Seleem, M.I.; Soliman, A.H. Differential Expression of Glypican-3 and Insulin-Like Growth Factor-II mRNAs and Alpha-Fetoprotein and Ki-67 Markers in HCV Related Hepato-cellular Carcinomas in Egyptian Patients. Asian Pac. J. Cancer Prev. 2017, 18, 121–127. [Google Scholar] [PubMed]
- Capurro, M.; Wanless, I.R.; Sherman, M.; Deboer, G.; Shi, W.; Miyoshi, E.; Filmus, J. Glypican-3: A novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003, 125, 89–97. [Google Scholar] [CrossRef]
- Hayashi, E.; Motomura, Y.; Shirakawa, H.; Yoshikawa, T.; Oba, N.; Nishinakagawa, S.; Mizuguchi, Y.; Kojima, T.; Nomura, K.; Nakatsura, T. Detection of glypican-3-specific CTLs in chronic hepatitis and liver cirrhosis. Oncol. Rep. 2009, 22, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatsura, T.; Shirakawa, H.; Kuronuma, T.; Nishimura, Y.; Hasebe, T.; Nakano, M.; Gotohda, N.; Takahashi, S.; Nakagohri, T.; Konishi, M.; et al. Glypican-3 is a useful diagnostic marker for a component of hepatocellular carcinoma in human liver cancer. Int. J. Oncol. 2009, 34, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Degos, F.; Dubois, S.; Tessiore, S.; Allegretta, M.; Guttmann, R.D.; Jothy, S.; Belghiti, J.; Bedossa, P.; Paradis, V. Glypican-3 expression in hepatocellular tumors: Diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum. Pathol. 2006, 37, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Wang, J.; Wang, Y.; Wang, G.; Wang, X.; Zhou, Z.; Liu, G.; Gao, S.; Zhu, L. Identification of a Glypican-3-Binding Peptide for In Vivo Non-Invasive Human Hepatocellular Carcinoma Detection. Macromol. Biosci. 2017, 17, 17. [Google Scholar] [CrossRef]
- Zhou, F.; Shang, W.; Yu, X.; Tian, J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med. Res. Rev. 2018, 38, 741–767. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.; Korfel, A.; Pfeiffer, S.; Kiewe, P.; Volk, H.-D.; Cakiroglu, H.; Widmann, T.; Thiel, E. CXCL13 and CXCL12 in Central Nervous System Lymphoma Patients. Clin. Cancer Res. 2009, 15, 5968–5973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhan-Chang, R.; Romero, J.P.; Kusanovic, F.; Gotsch, S.S.; Edwin, O.; Erez, P.; Mittal, C.J.; Kim, M.J.; Kim, J.; Espinoza, L.A.; et al. A role for CXCL13 (BCA-1) in pregnancy and intra-amniotic in-fection/inflammation. J. Matern. Fetal Neonatal. Med. 2008, 21, 763–775. [Google Scholar] [CrossRef]
- Widney, D.; Gui, L.M.; Popoviciu, J.W.; Said, E.C.; Breen, X.; Huang, C.M.; Kitchen, J.M.; Alcantar, J.B.; Smith, R.; Detels, O.; et al. Expression and Function of the Chemokine, CXCL13, and Its Receptor, CXCR5, in Aids-Associated Non-Hodgkin’s Lymphoma. AIDS Res. Treat. 2010, 2010, 164586. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Ryu, K.J.; Hong, M.; Ko, Y.H.; Kim, W.S. The serum CXCL13 level is associated with the Glasgow Prognostic Score in extranodal NK/T-cell lymphoma patients. J. Hematol. Oncol. 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Gao, J.; Zhang, L.; Liang, H.; Huang, X.; Xu, Q.; Zhang, Y.; Shen, T.; Lu, F. Phenotype and function of CXCR5+CD45RA−CD4+ T cells were altered in HBV-related hepatocellular carcinoma and elevated serum CXCL13 predicted better prognosis. Oncotarget 2015, 6, 44239–44253. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Kang, D.; Sun, X.; Liu, Y.; Wang, J.; Gao, P. The Effect of C-X-C Motif Chemokine 13 on Hepatocellular Carcinoma Associates with Wnt Signaling. BioMed Res. Int. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Su, H.; Cao, J.; Zhang, L. CXCL13 rather than IL-31 is a potential indicator in patients with hepatocellular carcinoma. Cytokine 2017, 89, 91–97. [Google Scholar] [CrossRef] [PubMed]
Function | Autoantibodies | Control | Refs. |
---|---|---|---|
Early diagnosis | ↑HCC1, P16, P53, P90, survivin | Healthy individuals | [20] |
↑AFP, AFP-L3, DCP, CENPF | LC, CH, NHS | [35] | |
↑SPAG9 | LC, CH, NHS | [36,37] | |
↑NPM1 | LC, CH, SLE, NHS | [16] | |
↑14-3-3ζ | LC, CH, NHS | [38] | |
↑MDM2 | LC, CH, NHS | [39] | |
↑CENPF, DDX3, HSPA4, HSPA5, VIM, LMNB1, p53 | CH, NHS | [40] | |
↑DDX3, eEF2, AIF, hnRNP A2, PBP, TIM | CH, NHS, lung cancer, EC, BC, GC | [41] | |
Diagnose (complementarydiagnosis) | ↑EIF3A | NHS | [42] |
↑SF3B1 | NHS | [43] | |
↑GAGE-1 | LC, HB, NHS | [44] | |
↑CAPERα | Prostate cancer, breast cancer | [45] | |
↑NY-ESO-1 | NHS | [46] | |
↑IMP1, IMP2/p62, IMP3/Koc, CIP2A/p90, RalA, c-Myc, survivin, cyclin B1, 14-3-3 ζ, MDM2, p53, CAPERα/HCC1.4, p16, NPM1 | LC, CH, NHS | [19] | |
↑AFP, Cyclin B1, Gankyrin, p53, NY-ESO-1, RalA, CK8, H-RAS-1, p16, WT1 | hepatitis C with either cirrhosis or chronic liver disease, NHS | [47] | |
↑ Sui1 | LC, CH, NHS | [15] | |
↑IMP1, p62, Koc, p53, c-myc, cyclin B1, survivin, p16, RalA, Sui1 | LC, CH, NHS | [48] | |
↑FASN | NHS | [49] | |
↑RalA | LC, CH, NHS | [50] | |
↑KRT23, AHSG, RPL17, FTL, DDX41 | CH, NHS | [51] | |
↑ORP150, aconitate dehydratase, HSP70, protein disulfide-isomerase A3, NDRG1, GLUD1, PA2G4, fumarate hydratase, VDAC1, PEBP, peroxiredoxin | LC, CH, NHS | [52] | |
↑EIF3SI, LDHA, RFC2, MCART1 | LC, CH, NHS, GC, PC | [53] | |
↑IMP1, p62, Koc, p53, c-myc, cyclin B1, survivin, p16 | LC, CH, NHS | [54] | |
↑HSP70, GAPDH, PRX, Mn-SOD | NHS | [55] | |
↑ IMP1, IMP3, p53 | LC, CH, NHS | [56] | |
↑p16 | NHS | [57] | |
↑c-myc, p53, cyclin B1, p62, Koc, IMP1, survivin | NHS | [58,59] | |
↑p90 | CH, AH, HBsAg carriers, NHS | [60] | |
↑calreticulin, CK8, and NDPKA, and ATP5F1B, | Other cancers, CH, active SLE, NHS | [61] | |
↑p62, CENPF | LC, CH, autoimmune hepatitis | [62] | |
↑p62 | Asymptomatic HBsAg carrier, AH, CH, NHS | [23] | |
↑p53, AFP | chronic liver disease (non-viral/viral liver disease ) | [63,64] | |
↑cyclin B1 | LC, CH, NHS | [65] | |
Diagnosis, recurrence/metastasis prediction | ↑GRP78 | LC, CH, NHS SUN449, A549, T24, MOLT-4, KOPN63 | [66,67] |
Diagnosis/prognostic marker | ↑OPN | LC, CH, NHS | [68] |
↑NX-PVKA, DCP | Compare using Child-Pugh class and TNM classification | [69] | |
↑p62 | EC, GC, large intestine cancer | [70] | |
Prognostic marker | ↑anti-CD25 IgG | NHS | [71] |
MVI prediction in HCC | ↑HSP 70 and Eno-1 | NHS | [72] |
Diagnosis of AFP-negative HCC | ↑SMP30 | LC, CH, NHS | [73] |
↑NPM1, 14-3-3 ζ, MDM2 | chronic liver disease, normal human control, AFP-positive HCC cases | [74] | |
↑HCC-22-5 | LC, CH, NHS, Nasopharynx cancer, lung cancer, gastric-intestine disease | [75] | |
↑IMPs | NHS | [76] | |
Diagnosis of HBV-HCC | ↑Ku86 | LC, NHS | [77] |
↑hnRNP L | HBV carrier, HBV LC, NHS | [78] | |
Diagnose of HCV-HCC | ↑HSP70, SOD2, PRDX6 | HCV-/HCC-, HCV+/HCC-, NHS | [79] |
↑Ku86 | LC, NHS | [80] | |
↑DHCR24 | HBV+ including LC, CH | [81] |
Function | Species | Source | Exosome contents | Control | Ref. |
---|---|---|---|---|---|
Early prediction | Rat | Serum | ↑miR-10b, ↑miR-21, ↓miR-122, ↓miR-200a | Normal, degeneration, fibrosis, cirrhosis | [9] |
Human | Serum | ↑miR-21 | Healthy individuals, CHB patients | [87] | |
Diagnose | Human | Serum | ↑hnRNPH1 | Healthy individuals, CHB and LC patients | [112] |
Human | Serum | ↑LncRNA HEIH ↓LncRNA HEIH | HCV-induced cirrhosis CHC patients | [113] | |
Human | Serum | ↓miR-9-3p | Healthy individuals | [114] | |
Human | Serum | ↑LncRNA-FAL1 | Healthy individuals | [115] | |
Human | Serum | ↑LG3BP, ↑PIGR | Healthy individuals | [102] | |
Human | Serum | ↑miR-18a, ↑miR-221, ↑miR-222, ↑miR-224 ↓miR-101, ↓miR-106b, ↓miR-122, ↓miR-195 | CHB or LC | [95] | |
Human | Serum | ↑miR-519d, ↑miR-494, ↑miR-21, ↑miR-22 | Cirrhotic patients without HCC | [116] | |
Diagnosis and prognosis prediction | Human | Serum | ↑miR-122, ↑miR-125b, ↑miR-145, ↑miR-192, ↑miR-194, ↑miR-29a, ↑miR-17-5p, ↑miR-106a | Healthy individuals | [117] |
HepG2, SMMC7721, SKHEP1, Huh7 cells Human | Cell culture media Serum | ↑miR-93 | WRL68 cell Healthy individuals | [118] | |
MHCC-97H Human | Cell culture media Serum | ↑miR-665 | MHCC-97L and L02 Healthy individuals | [119] | |
Diagnosis, clinical staging and recurrence prediction | Human | Serum | ↑ENSG00000258332.1, ↑LINC00635 | Healthy individuals, CHB and LC patients | [120] |
Recurrence/metastasis prediction | Human | Serum | ↑miR-103 | Recurrence-free survival groups | [121] |
Human | Serum | ↑CASC9 | Low recurrence survival groups | [122] | |
Prognosis prediction | Human | Serum | ↑miRNA-21, ↑lncRNA-ATB | Two different non-human miRNAs | [97] |
Human | Serum | ↓miR-638 | Healthy individuals | [123] | |
Human | Serum | ↓miR-125b | CHB | [96] | |
Prognosis prediction after LT | Human | Serum | ↓miR-718 | HCC patients without recurrence | [99] |
Prognosis prediction of TACE | Human | Serum | ↓miR-122 | LC and CH | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, M.; Wang, X.; Kirken, R.A.; He, L.; Zhang, J.-Y. Immunodiagnostic Biomarkers for Hepatocellular Carcinoma (HCC): The First Step in Detection and Treatment. Int. J. Mol. Sci. 2021, 22, 6139. https://doi.org/10.3390/ijms22116139
Xing M, Wang X, Kirken RA, He L, Zhang J-Y. Immunodiagnostic Biomarkers for Hepatocellular Carcinoma (HCC): The First Step in Detection and Treatment. International Journal of Molecular Sciences. 2021; 22(11):6139. https://doi.org/10.3390/ijms22116139
Chicago/Turabian StyleXing, Mengtao, Xinzhi Wang, Robert A. Kirken, Ling He, and Jian-Ying Zhang. 2021. "Immunodiagnostic Biomarkers for Hepatocellular Carcinoma (HCC): The First Step in Detection and Treatment" International Journal of Molecular Sciences 22, no. 11: 6139. https://doi.org/10.3390/ijms22116139