Skeletal Muscle Health and Cognitive Function: A Narrative Review
Abstract
:1. Dementia
2. Sarcopenia
3. Sarcopenia and Cognitive Function
4. Muscle Mass and Cognitive Function
5. Muscle Strength and Cognitive Function
6. Physical Performance and Cognitive Function
7. Muscle Quality, Muscle Density and Cognitive Function
8. Potential Mechanisms
8.1. Vitamin D
8.2. Inflammation and Oxidative Stress
8.3. Vitamin D, Exercise and Inflammation
9. Common Lifestyle Risk Factors
9.1. Physical Inactivity
9.2. Poor Diet
9.3. Smoking
9.4. Alcohol Consumption
10. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Draper, B.; Cations, M.; White, F.; Trollor, J.; Loy, C.; Brodaty, H.; Sachdev, P.; Gonski, P.; Demirkol, A.; Cumming, R.G.; et al. Time to diagnosis in young-onset dementia and its determinants: The inspired study. Int. J. Geriatr. Psychiatry 2016, 31, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Action Plan on the Public Health Response to Dementia 2017–2020; World Health Organisation: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Alzheimer’s Disease Facts and Figures; World Health Organisation: Geneva, Switzerland, 2019. [Google Scholar]
- Lin, P.-J.; Zhong, Y.; Fillit, H.M.; Chen, E.; Neumann, P.J. Medicare expenditures of Individuals with Alzheimer’s Disease and related dementias or mild cognitive impairment before and after diagnosis. J. Am. Geriatr. Soc. 2016, 64, 1549–1557. [Google Scholar] [CrossRef]
- Roberts, R.O.; Knopman, D.S. Classification and Epidemiology of MCI. Clin. Geriatr. Med. 2013, 29, 753–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, D.G.; Deary, I.J.; Zaninotto, P. Association of Cognitive Function with Cause-Specific Mortality in Middle and Older Age: Follow-up of Participants in the English Longitudinal Study of Ageing. Am. J. Epidemiol. 2016, 183, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.; Anaki, D.; Binns, M.; Freedman, M. Cognitive decline in Alzheimer disease: Impact of spirituality, religiosity, and QOL. Neurology 2007, 68, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, T.; Hallikainen, M.; Tuomainen, S.; Vanhanen, M.; Soininen, H. Prevalence of mild cognitive impairment: A population-based study in elderly subjects. Acta Neurol. Scand. 2002, 106, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Unverzagt, F.W.; Gao, S.; Baiyewu, O.; Ogunniyi, A.O.; Gureje, O.; Perkins, A.; Emsley, C.L.; Dickens, J.; Evans, R.; Musick, B.; et al. Prevalence of cognitive impairment: Data from the Indianapolis Study of Health and Aging. Neurology 2001, 57, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; Boeve, B.F.; Tangalos, E.G.; Ivnik, R.J.; Rocca, W.A. Prevalence of mild cognitive impairment is higher in men: The Mayo Clinic Study of Aging. Neurology 2010, 75, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, C.H.; Roe, C.M.; Morris, J.C.; Galvin, J.E. Mild physical impairment predicts future diagnosis of dementia of the Alzheimer’s type. J. Am. Geriatr. Soc. 2013, 61, 1055–1059. [Google Scholar] [CrossRef]
- Campbell, S.; Manthorpe, J.; Samsi, K.; Abley, C.; Robinson, L.; Watts, S.; Bond, J.; Keady, J. Living with uncertainty: Mapping the transition from pre-diagnosis to a diagnosis of dementia. J. Aging Stud. 2016, 37, 40–47. [Google Scholar] [CrossRef]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; De Souza, R.J.; Thabane, L.; Raina, P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing 2019, 48, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasco, J.A.; Holloway-Kew, K.L.; Tembo, M.C.; Sui, S.X.; Anderson, K.B.; Rufus-Membere, P.; Hyde, N.K.; Williams, L.J.; Kotowicz, M.A. Normative Data for Lean Mass Using FNIH Criteria in an Australian Setting. Calcif. Tissue Int. 2018, 104, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Reijnierse, E.M.; Buljan, A.; Tuttle, C.S.L.; Van Ancum, J.; Verlaan, S.; Meskers, C.G.M.; Maier, A.B. Prevalence of sarcopenia in inpatients 70 years and older using different diagnostic criteria. Nurs. Open 2018, 6, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Prince, R.L.; Scott, D.; Daly, R.; Duque, G.; Inderjeeth, C.; Zhu, K.; Woodman, R.J.; Hodgson, J.M.; Lewis, J.R. Sarcopenia Definitions and Their Associations with Mortality in Older Australian Women. J. Am. Med. Dir. Assoc. 2019, 20, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Locquet, M.; Beaudart, C.; Hajaoui, M.; Petermans, J.; Reginster, J.-Y.; Bruyere, O. Three-Year Adverse Health Consequences of Sarcopenia in Community-Dwelling Older Adults According to 5 Diagnosis Definitions. J. Am. Med. Dir. Assoc. 2019, 20, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, A.Y.; Meskers, C.G.M.; Ling, C.H.Y.; Narici, M.; Kurrle, S.E.; Cameron, I.D.; Westendorp, R.G.J.; Maier, A.B. Defining sarcopenia: The impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. AGE 2012, 35, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Pagotto, V.; Silveira, E.A. Applicability and agreement of different diagnostic criteria for sarcopenia estimation in the elderly. Arch. Gerontol. Geriatr. 2014, 59, 288–294. [Google Scholar] [CrossRef]
- Hirayama, K.; Hirayama, K.; Han, T.-F.; Izutsu, M.; Yuki, M. Sarcopenia Prevalence and Risk Factors among Japanese Community Dwelling Older Adults Living in a Snow-Covered City According to EWGSOP2. J. Clin. Med. 2019, 8, 291. [Google Scholar]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Tembo, M.C.; Leach, S.; Pasco, J.A. Definition-specific prevalence estimates for sarcopenia in Australian population: The Geelong Osteoporosis Study. JCSM Clin. Rep. 2020, 5, 89–98. [Google Scholar]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscle Ligaments Tendons J. 2019, 3, 346–350. [Google Scholar] [CrossRef]
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltais, M.L.; Desroches, J.; Dionne, I.J. Changes in muscle mass and strength after menopause. J. Musculoskelet. Neuron. Interact. 2009, 9, 186–197. [Google Scholar]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Tembo, M.C.; Mohebbi, M.; Gojanovic, M.; Leach, S.; Pasco, J.A. Handgrip strength and muscle quality in Australian women: Cross-sectional data from the Geelong Osteoporosis Study. J. Cachex-Sarcopenia Muscle 2020, 11, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Anker, S.D.; Von Haehling, S. Prevalence, incidence, and clinical impact of sarcopenia: Facts, numbers, and epidemiology-update 2014. J. Cachex-Sarcopenia Muscle 2014, 5, 253–259. [Google Scholar] [CrossRef]
- Rolfson, D.B.; Majumdar, S.R.; Tsuyuki, R.T.; Tahir, A.; Rockwood, K. Validity and reliability of the Edmonton Frail Scale. Age Ageing 2006, 35, 526–529. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.F.; Lim, Z.Y.; Choe, R.; Seetharaman, S.; Merchant, R. Screening for Frailty and Sarcopenia Among Older Persons in Medical Outpatient Clinics and its Associations with Healthcare Burden. J. Am. Med. Dir. Assoc. 2017, 18, 583–587. [Google Scholar] [CrossRef]
- Mijnarends, D.M.; Schols, J.M.; Meijers, J.M.; Tan, F.E.; Verlaan, S.; Luiking, Y.C.; Morley, J.E.; Halfens, R.J.G. Instruments to Assess Sarcopenia and Physical Frailty in Older People Living in a Community (Care) Setting: Similarities and Discrepancies. J. Am. Med. Dir. Assoc. 2015, 16, 301–308. [Google Scholar] [CrossRef]
- Chang, K.-V.; Hsu, T.-H.; Wu, W.-T.; Huang, K.-C.; Han, D.-S. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1164.e7–1164.e15. [Google Scholar] [CrossRef]
- Lee, I.; Cho, J.; Hong, H.; Jin, Y.; Kim, N.; Kang, H. Sarcopenia Is Associated with Cognitive Impairment and Depression in Elderly Korean Women. Iran. J. Public Health 2018, 47, 327–334. [Google Scholar]
- Abellan van Kan, G.; Cesari, M.; Gillette-Guyonnet, S.; Dupuy, C.; Nourhashemi, F.; Schott, A.-M.; Beauchet, O.; Annweiler, C.; Vellas, B.; Rolland, Y. Sarcopenia and cognitive impairment in elderly women: Results from the EPIDOS cohort. Age Ageing 2012, 42, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.E.; Crimmins, E.M. Sarcopenic Obesity and Cognitive Functioning: The Mediating Roles of Insulin Resistance and Inflammation? Curr. Gerontol. Geriatr. Res. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menant, J.; Weber, F.; Lo, J.; Sturnieks, D.L.; Close, J.C.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. Strength measures are better than muscle mass measures in predicting health-related outcomes in older people: Time to abandon the term sarcopenia? Osteoporos. Int. 2017, 28, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Tolea, M.I.; Galvin, J.E. Sarcopenia and impairment in cognitive and physical performance. Clin. Interv. Aging 2015, 10, 663–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Leach, S.; Pasco, J.A. Muscle strength and function rather than muscle mass are better indicators for poor cognitive performance in older men. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Andrieu, S.; Gillette-Guyonnet, S.; Reynish, E.; Grandjean, H.; Vellas, B. Is There a Relationship Between Fat-Free Soft Tissue Mass and Low Cognitive Function? Results from a Study of 7105 Women. J. Am. Geriatr. Soc. 2002, 50, 1796–1801. [Google Scholar]
- Wirth, R.; Smoliner, C.; Sieber, C.C.; Volkert, D. Cognitive function is associated with body composition and nutritional risk cognitive function is associated with body composition and nutritional risk of geriatric patients. J. Nutr. Health Aging 2011, 15, 706–710. [Google Scholar] [CrossRef]
- Kilgour, A.H.; Ferguson, K.J.; Gray, C.D.; Deary, I.J.; Wardlaw, J.M.; MacLullich, A.M.; Starr, J.M. Neck muscle cross-sectional area, brain volume and cognition in healthy older men: A cohort study. BMC Geriatr. 2013, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, A.H.M.; Subedi, D.; Gray, C.; Deary, I.J.; Lawrie, S.M.; Wardlaw, J.M.; Starr, J.M. Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging. PLoS ONE 2012, 7, e34444. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Kim, K.M.; Choi, S.H.; Lim, S.; Park, K.S.; Jang, H.C. Sarcopenia as a predictor of future cognitive impairment in older adults. J. Nutr. Health Aging 2015, 20, 496–502. [Google Scholar] [CrossRef]
- Auyeung, T.W.; Lee, J.S.W.; Kwok, T.; Woo, J. Physical frailty predicts future cognitive decline—A four-year prospective study in 2737 cognitively normal older adults. J. Nutr. Health Aging 2011, 15, 690–694. [Google Scholar] [CrossRef]
- Lauque, S.; Gillette, S.; Vellas BPlaze, J.M.; Andrieu, S.; Cantet, C. Improvement of weight and fat-free mass with oral nutritional supplementation in patients with Alzheimer’s disease at risk of malnutrition: A prospective randomized study. J. Am. Geriatr. Soc. 2004, 52, 1702–1707. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Johnson, D.K.; Watts, A.; Swerdlow, R.H.; Brooks, W.M. Reduced Lean Mass in Early Alzheimer Disease and Its Association with Brain Atrophy. Arch. Neurol. 2010, 67, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Abellan van Kan, G.; Rolland, Y.; Gillette-Guyonnet, S.; Gardette, V.; Annweiler, C.; Beauchet, O.; Andrieu, S.; Vellas, B. Gait Speed, Body Composition, and Dementia. The EPIDOS-Toulouse Cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 425–432. [Google Scholar]
- Takata, Y.; Ansai, T.; Soh, I.; Kimura, Y.; Yoshitake, Y.; Sonoki, K.; Awano, S.; Kagiyama, S.; Yoshida, A.; Nakamichi, I.; et al. Physical Fitness and Cognitive Function in an 85-Year-Old Community-Dwelling Population. Gerontology 2008, 54, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Peng, T.-C.; Sun, Y.-S.; Yang, H.-F.; Liaw, F.-Y.; Wu, L.-W.; Chang, Y.-W.; Kao, T.-W. Examining the Association Between Quadriceps Strength and Cognitive Performance in the Elderly. Medicine 2015, 94, e1335. [Google Scholar] [CrossRef]
- Taekema, D.G.; Ling, C.H.Y.; Kurrle, S.E.; Cameron, I.D.; Meskers, C.G.M.; Blauw, G.J.; Westendorp, R.G.J.; De Craen, A.J.M.; Maier, A.B. Temporal relationship between handgrip strength and cognitive performance in oldest old people. Age Ageing 2012, 41, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Acha, A.; Al Snih, S.; Raji, M.A.; Kuo, Y.-F.; Markides, K.S.; Ottenbacher, K.J. Handgrip Strength and Cognitive Decline in Older Mexican Americans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Raji, M.; Kuo, Y.-F.; Al Snih, S.; Markides, K.S.; Peek, M.K.; Ottenbacher, K.J. Cognitive Status, Muscle Strength, and Subsequent Disability in Older Mexican Americans. J. Am. Geriatr. Soc. 2005, 53, 1462–1468. [Google Scholar] [CrossRef]
- Atkinson, H.H.; Rapp, S.R.; Williamson, J.D.; Lovato, J.; Absher, J.R.; Gas, M.; Henderson, V.W.; Johnson, K.C.; Kostis, J.B.; Sink, K.M.; et al. The relationship between cognitive function and physical performance in older women: Results from the women’s health initiative memory study. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Dorner, T.E.; Kranz, A.; Zettl-Wiedner, K.; Ludwig, C.; Rieder, A.; Gisinger, C. The effect of structured strength and balance training on cognitive function in frail, cognitive impaired elderly long-term care residents. Aging Clin. Exp. Res. 2007, 19, 400–405. [Google Scholar] [CrossRef]
- Cassilhas, R.C.; Viana, V.A.R.; Grassmann, V.; Dos Santos, R.V.T.; Santos, R.F.; Tufik, S.; De Mello, M.T. The Impact of Resistance Exercise on the Cognitive Function of the Elderly. Med. Sci. Sports Exerc. 2007, 39, 1401–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berryman, N.; Bherer, L.; Nadeau, S.; Lauzière, S.; Lehr, L.; Bobeuf, F.; Lussier, M.; Kergoat, M.J.; Vu, T.T.M.; Bosquet, L. Multiple roads lead to Rome: Combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults. AGE 2014, 36, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossers, W.J.R.; Van Der Woude, L.H.; Boersma, F.; Scherder, E.J.; Van Heuvelen, M.J. Recommended Measures for the Assessment of Cognitive and Physical Performance in Older Patients with Dementia: A Systematic Review. Dement. Geriatr. Cogn. Disord. Extra 2012, 2, 589–609. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-Y.; Kim, S.-W.; Kim, J.-M.; Shin, I.-S.; Yoon, J.-S. Association of grip strength with dementia in a Korean older population. Int. J. Geriatr. Psychiatry 2012, 27, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.S.; Wilson, R.S.; Boyle, P.A.; Bienias, J.L.; Bennett, D.A. Grip Strength and the Risk of Incident Alzheimer’s Disease. Neuroepidemiology 2007, 29, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2007, 36, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Auyeung, T.W.; Kwok, T.; Lee, J.; Leung, P.C.; Leung, J.; Woo, J. Functional Decline in Cognitive Impairment—The Relationship between Physical and Cognitive Function. Neuroepidemiology 2008, 31, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Verghese, J.; Robbins, M.; Holtzer, R.; Zimmerman, M.; Wang, C.; Xue, X.; Lipton, R.B. Gait Dysfunction in Mild Cognitive Impairment Syndromes. J. Am. Geriatr. Soc. 2008, 56, 1244–1251. [Google Scholar] [CrossRef]
- Martin, K.L.; Blizzard, L.; Wood, A.G.; Srikanth, V.; Thomson, R.; Sanders, L.M.; Callisaya, M.L. Cognitive Function, Gait, and Gait Variability in Older People: A Population-Based Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 726–732. [Google Scholar] [CrossRef]
- Coppin, A.K.; Shumway-Cook, A.; Saczynski, J.S.; Patel, K.V.; Ble, A.; Ferrucci, L.; Guralnik, J.M. Association of executive function and performance of dual-task physical tests among older adults: Analyses from the InChianti study. Age Ageing 2006, 35, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Boyle, P.A.; Wilson, R.S.; Buchman, A.S.; Aggarwal, N.T.; Tang, Y.; Arvanitakis, Z.; Kelly, J.; Bennett, D.A. Lower Extremity Motor Function and Disability in Mild Cognitive Impairment. Exp. Aging Res. 2007, 33, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Buracchio, T.; Dodge, H.H.; Howieson, D.B.; Wasserman, D.; Kaye, J. The Trajectory of Gait Speed Preceding Mild Cognitive Impairment. Arch. Neurol. 2010, 67, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Inzitari, M.; Newman, A.B.; Yaffe, K.; Boudreau, R.M.; De Rekeneire, N.; Shorr, R.; Harris, T.B.; Rosano, C. Gait Speed Predicts Decline in Attention and Psychomotor Speed in Older Adults: The Health Aging and Body Composition Study. Neuroepidemiology 2007, 29, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, H.H.; Rosano, C.; Simonsick, E.M.; Williamson, J.D.; Davis, C.; Ambrosius, W.T.; Rapp, S.R.; Cesari, M.; Newman, A.B.; Harris, T.B.; et al. Cognitive Function, Gait Speed Decline, and Comorbidities: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.L.; Rosano, C.; Boudreau, R.M.; Simonsick, E.M.; Ferrucci, L.; Sutton-Tyrrell, K.; Hardy, S.E.; Atkinson, H.H.; Yaffe, K.; Satterfield, S.; et al. Executive Function, Memory, and Gait Speed Decline in Well-Functioning Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Macaulay, R.K.; Brouillette, R.M.; Foil, H.C.; Bruce-Keller, A.J.; Keller, J.N. A Longitudinal Study on Dual-Tasking Effects on Gait: Cognitive Change Predicts Gait Variance in the Elderly. PLoS ONE 2014, 9, e99436. [Google Scholar] [CrossRef]
- Soumaré, A.; Tavernier, B.; Alpérovitch, A.; Tzourio, C.; Elbaz, A. A Cross-Sectional and Longitudinal Study of the Relationship Between Walking Speed and Cognitive Function in Community-Dwelling Elderly People. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 1058–1065. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.; Metter, E.J.; Bandinelli, S.; Guralnik, J.; Ferrucci, L. Gait speed under varied challenges and cognitive decline in older persons: A prospective study. Age Ageing 2009, 38, 509–514. [Google Scholar] [CrossRef]
- Van Iersel, M.B.; Hoefsloot, W.; Munneke, M.; Bloem, B.R.; Rikkert, M.G.M.O. Systematic review of quantitative clinical gait analysis in patients with dementia. Z. Gerontol. Geriatr. 2004, 37, 27–32. [Google Scholar] [CrossRef]
- Valkanova, V.; Ebmeier, K.P. What can gait tell us about dementia? Review of epidemiological and neuropsychological evidence. Gait Posture 2017, 53, 215–223. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to assess functional status: A new muscle quality index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Chiles Shaffer, N.C.; Fabbri, E.; Ferrucci, L.; Shardell, M.; Simonsick, E.; Studenski, S. Muscle quality, strength and lower extremity physical performance in the Baltimore longitudinal study of aging. J. Frailty Aging 2017, 6, 183–187. [Google Scholar]
- Canon, M.E.; Crimmins, E.M. Sex differences in the association between muscle quality, inflammatory markers, and cognitive decline. J. Nutr. Health Aging 2011, 15, 695–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasco, J.A.; Mohebbi, M.; Holloway, K.L.; Brennan, S.L.; Hyde, N.K.; Kotowicz, M.A. Musculoskeletal decline and mortality: Prospective data from the Geelong Osteoporosis Study. J. Cachex-Sarcopenia Muscle 2017, 8, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Jameson, K.A.; Edwards, M.H.; Ward, A.K.; Gale, C.R.; Cooper, C.; Dennison, E. Mild cognitive impairment is associated with poor physical function but not bone structure or density in late adulthood: Findings from the Hertfordshire cohort study. Arch. Osteoporos. 2018, 13, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudisio, A.; Fontana, D.O.; Rivera, C.; Ruggiero, C.; Bandinelli, S.; Gemma, A.; Ferrucci, L.; Incalzi, R.A. Bone Mineral Density and Cognitive Decline in Elderly Women: Results from the InCHIANTI Study. Calcif. Tissue Int. 2016, 98, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Anderson, K.B.; Tembo, M.C.; Addinsall, A.B.; Leach, S.; Pasco, A.J. Skeletal Muscle Density and Cognitive Function: A Cross-Sectional Study in Men. Calcif. Tissue Int. 2020, 1–11. [Google Scholar] [CrossRef]
- Muir, S.W.; Montero-Odasso, M. Effect of Vitamin D Supplementation on Muscle Strength, Gait and Balance in Older Adults: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2011, 59, 2291–2300. [Google Scholar] [CrossRef]
- Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology 2012, 79, 1397–1405. [Google Scholar] [CrossRef] [Green Version]
- Wolowczuk, I. Obesity—An inflammatory state. Acta Vet. Scand. 2015, 57, K5. [Google Scholar] [CrossRef] [Green Version]
- Cancello, R.; Clément, K. Review article: Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG 2006, 113, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cevenini, E.; Monti, D.; Franceschi, C. Inflamm-ageing. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Sikora, E.; Scapagnini, G.; Dominguez, L.; Ligia, J. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing 2010, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Zembron-Lacny, A.; Dziubek, W.; Wolny-Rokicka, E.; Dabrowska, G.; Wozniewski, M. The Relation of Inflammaging with Skeletal Muscle Properties in Elderly Men. Am. J. Men’s Health 2019, 13, 1557988319841934. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.-K.; Chen, C.-H.; Lee, W.-J.; Wu, Y.-H.; Hwang, A.-C.; Lin, M.-H.; Shimada, H.; Peng, L.; Loh, C.-H.; Arai, H.; et al. Cognitive Frailty and Its Association with All-Cause Mortality Among Community-Dwelling Older Adults in Taiwan: Results from I-Lan Longitudinal Aging Study. Rejuvenation Res. 2018, 21, 510–517. [Google Scholar] [CrossRef]
- Haddad, F.; Zaldivar, F.; Cooper, D.M.; Adams, G.R. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 2005, 98, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Steensberg, A.; Febbraio, M.A.; Osada, T.; Schjerling, P.; Van Hall, G.; Saltin, B.; Pedersen, B.K. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 2001, 537, 633–639. [Google Scholar] [CrossRef]
- Yaffe, K.; Barnes, D.; Nevitt, M.; Lui, L.-Y.; Covinsky, K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. JAMA Intern. Med. 2001, 161, 1703–1708. [Google Scholar] [CrossRef] [Green Version]
- Kimura, N.; Aso, Y.; Yabuuchi, K.; Ishibashi, M.; Hori, D.; Sasaki, Y.; Nakamichi, A.; Uesugi, S.; Fujioka, H.; Iwao, S.; et al. Modifiable Lifestyle Factors and Cognitive Function in Older People: A Cross-Sectional Observational Study. Front. Neurol. 2019, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Legdeur, N.; Heymans, M.W.; Comijs, H.C.; Huisman, M.; Maier, A.B.; Visser, P.J. Age dependency of risk factors for cognitive decline. BMC Geriatr. 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.B.; Sacco, R.L.; Rundek, T.R.; Delman, J.B.; Rabbani, L.E.; Elkind, M.S. Interleukin-6 Is Associated With Cognitive Function: The Northern Manhattan Study. J. Stroke Cerebrovasc. Dis. 2006, 15, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baune, B.T.; Ponath, G.; Golledge, J.; Varga, G.; Arolt, V.; Rothermundt, M.; Berger, K. Association between IL-8 cytokine and cognitive performance in an elderly general population—The MEMO-Study. Neurobiol. Aging 2008, 29, 937–944. [Google Scholar] [CrossRef]
- Ravaglia, G.; Forti, P.; Maioli, F.; Arnone, G.; Pantieri, G.; Cocci, C.; Nativio, V.; Muscari, A.; Pedone, V.; Mariani, E. The clock-drawing test in elderly Italian community dwellers: Associations with sociodemographic status and risk factors for vascular cognitive impairment. Dement. Geriatr. Cogn. Disord. 2003, 16, 287–295. [Google Scholar] [CrossRef]
- Yaffe, K.; Lindquist, K.; Penninx, B.W.; Simonsick, E.M.; Pahor, M.; Kritchevsky, S.; Launer, L.; Kuller, L.; Rubin, S.; Harris, T. Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 2003, 61, 76–80. [Google Scholar] [CrossRef]
- Yaffe, K.; Fiocco, A.J.; Lindquist, K.; Vittinghoff, E.; Simonsick, E.M.; Newman, A.B.; Satterfield, S.; Rosano, C.; Rubin, S.M.; Ayonayon, H.N.; et al. Predictors of maintaining cognitive function in older adults: The Health ABC Study. Neurology 2009, 72, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, C.; Van Boxtel, M.; Bosma, H.; Bosmans, E.; Delanghe, J.; De Bruijn, C.; Wauters, A.; Maes, M.; Jolles, J.; Steinbusch, H.; et al. Inflammation markers in relation to cognition in a healthy aging population. J. Neuroimmunol. 2003, 134, 142–150. [Google Scholar] [CrossRef]
- Alley, D.E.; Crimmins, E.M.; Karlamangla, A.; Hu, P.; Seeman, T.E. Inflammation and Rate of Cognitive Change in High-Functioning Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 50–55. [Google Scholar] [CrossRef]
- Schrag, M.; Mueller, C.; Zabel, M.; Crofton, A.; Kirsch, W.M.; Ghribi, O.; Squitti, R.; Perry, G. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Neurobiol. Dis. 2013, 59, 100–110. [Google Scholar] [CrossRef]
- Agrawal, D.K.; Yin, K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, I.; Jaffery, S.S.; Fayyaz, M.; Samoo, Z.; Anjum, S. The Role of Vitamin D in Brain Health: A Mini Literature Review. Cureus 2018, 10, e2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, R.; Morshedi, M.; Asghari Jafarabadi, M.; Altafi, D.; Saeed Hosseini-Asl, S.; Rafie-Arefhosseini, S. Anti-inflammatory effects of dietary vitamin D3 in patients with multiple sclerosis. Neurol. Genet. 2018, 4, e278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasco, A.J.; Williams, L.J.; Jacka, F.N.; Stupka, N.; Brennan-Olsen, S.L.; Holloway-Kew, K.L.; Berk, M. Sarcopenia and the Common Mental Disorders: A Potential Regulatory Role of Skeletal Muscle on Brain Function? Curr. Osteoporos. Rep. 2015, 13, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.; Schneider, E.D.; Dixon, B.M.; Henriksen, V.T.; Weaver, L.K. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr. Metab. 2013, 10, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L.; Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 2014, 14, 510. [Google Scholar] [CrossRef] [Green Version]
- Chodzko-Zajko, W.; Proctor, D. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510. [Google Scholar] [CrossRef]
- Febbraio, M.; Pedersen, B. Muscle-derived interleukin-6. FASEB J. 2002, 16, 1335. [Google Scholar] [CrossRef]
- Stookey, J.; Adair, L. Patterns of long-term change in body composition are associated with diet, activity, income & urban residence among older adults in China. J. Nutr. 2001, 131, 2433S. [Google Scholar]
- Meng, X.; Zhu, K.; Devine, A.; Kerr, D.A.; Binns, C.W.; Prince, R.L. A 5-Year Cohort Study of the Effects of High Protein Intake on Lean Mass and BMC in Elderly Postmenopausal Women. J. Bone Miner. Res. 2009, 24, 1827–1834. [Google Scholar] [CrossRef]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B.; et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; De Van Der Schueren, M.A. Frailty, Sarcopenia, and Malnutrition Frequently (Co-)occur in Hospitalized Older Adults: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Wojzischke, J.; Van Wijngaarden, J.; Berg, C.V.D.; Cetinyurek-Yavuz, A.; Diekmann, R.; Luiking, Y.; Bauer, J. Nutritional status and functionality in geriatric rehabilitation patients: A systematic review and meta-analysis. Eur. Geriatr. Med. 2020, 11, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, F.; Solfrizzi, V.; Giannini, M.; Seripa, D.; Pilotto, A.; Logroscino, G. Nutrition, frailty, and Alzheimer’s disease. Front Aging Neurosci. 2014, 6, 221. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F.; Capurso, A. The role of diet in cognitive decline. J. Neural Transm. 2003, 110, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Fotuhi, M.; Mohassel, P.; Yaffe, K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: A complex association. Nat. Rev. Neurol. 2009, 5, 140–152. [Google Scholar] [CrossRef]
- Wright, R.S.; Waldstein, S.R.; Kuczmarski, M.F.; Pohlig, R.T.; Gerassimakis, C.S.; Gaynor, B.; Evans, M.K.; Zonderman, A.B. Diet quality and cognitive function in an urban sample: Findings from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study. Public Health Nutr. 2017, 20, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Ozguner, F.; Koyu, A.G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol. Ind. Health 2005, 21, 21. [Google Scholar] [CrossRef]
- Steffl, M.; Bohannon, R.W.; Petr, M.; Kohlikova, E.; Holmerova, I. Relation Between Cigarette Smoking and Sarcopenia: Meta-Analysis. Physiol. Res. 2015, 64, 419–426. [Google Scholar] [CrossRef]
- Rom, O.; Kaisari, S.; Aizenbud, D.; Reznick, A.Z. Sarcopenia and smoking: A possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann. N. Y. Acad. Sci. 2012, 1259, 47–53. [Google Scholar] [CrossRef]
- Kellar, K.; Wonnacott, S. Nicotinic Cholinergic Receptors in Alzheimer’s Disease, in Nicotine Psychopharmacology: Molecular, Cellular, and Behavioral Aspects; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Sayon-Orea, C.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Alcohol consumption and body weight: A systematic review. Nutr. Rev. 2011, 69, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Steffl, M.; Bohannon, R.W.; Petr, M.; Kohlíková, E.; Holmerová, I. Alcohol consumption as a risk factor for sarcopenia—A meta-analysis. BMC Geriatr. 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daskalopoulou, C.; Wu, Y.T.; Pan, W.; Vázquez, I.G.; Prince, M.; Prina, M.; Tyrovolas, S. Factors related with sarcopenia and sarcopenic obesity among low- and middle-income settings: The 10/66 DRG study. Sci. Rep. 2020, 10, 20453. [Google Scholar] [CrossRef] [PubMed]
- Römer, P.; Mathes, B.; Reinelt, T.; Stoyanova, P.; Petermann, F.; Zierul, C. Systematic review showed that low and moderate prenatal alcohol and nicotine exposure affected early child development. Acta Paediatr. 2020, 109, 2491–2501. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.; McDonald, S.; Page, M.J.; Reid, J.; Ward, S.A.; Forbes, A.; McKenzie, J.E. Long-term effects of alcohol consumption on cognitive function: A systematic review and dose-response analysis of evidence published between 2007 and 2018. Syst. Rev. 2020, 9, 1–39. [Google Scholar] [CrossRef] [PubMed]
Author, Year; Country/Region; Follow-Up Period | Participant Characteristics | Muscle Mass Measurements | Cognitive Function Measurements | Results |
---|---|---|---|---|
Cross-Sectional Studies | ||||
1. Nourbashemi et al., 2002 [38]; France | 7105 community-dwelling women aged 75+ years | DXA (lean mass) | SPMSQ (focus on orientation, memory; using to identify cognitive impairment in this study) | Women in the lowest quartile of lean mass had a 1.43-times higher risk of general cognitive impairment compared with those in the highest quartile of lean mass |
2. Wirth et al., 2011 [39]; Germany | 4095 (71.3% female); hospitalised patients | BIA (lean mass) | MMSE (general cognition) | 5.9% loss of lean mass was associated with an increased score from 2.1 to 3.0, indicating cognitive deterioration |
3. Kilgour et al., 2013 [40]; UK | 51 community-dwelling older men mean aged 73.8 ± 1.5 years | CT (muscle volume) | MMSE (global cognition); Rey’s auditory–verbal declarative memory test (memory); the controlled word association test (executive function); Benton’s visual retention test; the national adult reading test | No association between neck muscle volume and cognitive abilities; the total muscle volume was negatively associated with estimated prior cognitive ability; individuals with lower cognitive abilities were more likely to have larger muscle size as they aged |
4. Burns et al., 2010 [45]; USA | Cognitively normal (n = 70) or with early-stage Alzheimer’s disease (n = 70); aged 60+ years | DXA (lean mass) | A standardised psychometric battery (Logical Memory, Free and Cued Selective Reminding Task, Boston Naming, Verbal Fluency, Digit Span Forward and Backward, Letter–Number Sequencing, Stroop Color-Word Test and Block Design MMSE (global cognition) | The lean mass was lower in the patients with Alzheimer’s disease, after controlling for sex |
5. Abellan van Kan et al., 2012 [46]; France | 1462 community-dwelling women aged 75+ years | DXA (lean mass) | SPMSQ or MMSE (general cognition) | Lean mass was not associated with dementia |
6. Sui et al., 2020 [37]; Australia | 292 men aged 60+ years; population based | DXA (lean mass) | CogState Brief Battery (psychomotor function, visual identification/attention, visual learning and working memory | No association was detected between lean mass and cognitive function |
7. Sui et al.,2020 [80]; Australia | 281 men aged 60+ years; population based | pQCT (muscle density) | CogState Brief Battery (psychomotor function, visual identification/attention, visual learning and working memory | Muscle density was associated with cognitive function in the psychomotor function and visual learning |
Longitudinal Studies | ||||
8. Moon et al., 2016 [42]; South Korean; 5 years follow-up | 297 community-dwelling men and women without cognitive impairment at baseline; aged 65+ years | DXA (lean mass) | Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Clinical Assessment Battery; Korean version of the Mini International Neuropsychiatric Interview; International Working Group on MCI; DSM-IV; Final diagnosis of MCI, dementia was determined by a panel of research neuropsychiatrists | Mean lean mass was not different between groups (normal cognitive function, mild cognitive impairment and dementia); thus, no significant associations between lean mass and the risk of developing cognitive impairment were detected |
9. Auyeung et al., 2011 [43]; Hong Kong; four years follow-up | 2737 cognitively healthy men and women from the community; aged 65+ years | DXA (lean mass) | MMSE (general cognition) | Lower lean mass was associated with a higher risk of general cognitive decline in men; however, this association was not sustained after adjusting for confounders and no relationship between lean mass and general cognitive decline was found in women |
Intervention Studies | ||||
10. Cassilhas et al., 2007 [54]; Brazil; 24 weeks | 62 older adults aged from 65 to 75 years. Participants were randomly assigned to three groups: control, experimental moderate- and experimental high-intensity training (six exercises including chest press, leg press, vertical traction, abdominal crunch, leg curl and lower back) | Whole-body plethysmography (lean mass) | WAIS III (central executive and short-term memory); WSM-R (visual modality of short-term memory); Toulouse–Pieron’s concentration attention test (attention); Rey–Osterrieth complex figure (long-term episodic memory) | The training groups reported improvement in neuropsychological tests, such as the forward digit span and immediate recall tests, indicating that the intervention improved cognitive function |
11. Lauque et al., 2004 [44]; France; 3 months | Patients with Alzheimer’s disease aged ≥65 years; 46 patients were treated with nutritional supplements for three months and 45 received their usual care as a control group | DXA (lean mass) | MMSE (general cognition) | Lean mass increased in the nutrition supplement group; however, no change in cognitive function was detected |
Author, Year; Country/Region; Follow-Up Period | Participant Characteristics | Muscle Strength Measurements | Cognitive Function Measurements | Results |
---|---|---|---|---|
Cross-Sectional Studies | ||||
1. Abellan van Kan et al., 2012 [33]; France | 3025 community-dwelling women aged 75+ years | HGS dynamometry | SPMSQ (used to identify cognitive impairment) | Lower HGS was associated with cognitive impairment |
2. Takata et al., 2008 [47]; Japan | Community-dwelling participants aged 85 years (90 men, 117 women) | HGS dynamometry | MMSE (global cognition) | Those with higher MMSE scores were more likely to have greater HGS for both the right hand (21.8 ± 7.1 vs. 19.3 ± 5.8 kg, p = 0.009) and the left hand (20.6 ± 6.7 vs. 17.9 ± 5.5 kg, p = 0.003) and greater isometric leg extensor strength (22.7 ± 8.7 vs. 20.7 ± 9.1 kg, p = 0.18). This association persisted after adjustment for confounders |
3. Chen et al., 2015 [48]; USA | 1799 population-based men and women aged 60+ years | Isokinetic strength dynamometry | DSST (measuring the visuospatial and motor speed of processing, represented a sensitive measure of frontal lobe executive functions) | The DSST scores were greater in higher quadriceps strength groups, indicating that muscle strength was associated with speed of processing and visual–spatial processing |
4. Shin et al., 2012 [57]; Korea | 1038 men and women aged 65+ years from the community | Sit-to-stand score; HGS dynamometry | Dementia (identified using the Korean version of GMS B3-K; CSID-K; CERAD) | Each 8-kg decrease in HGS was associated with a 59% increased likelihood of dementia (adjusted OR 1.59; 95% CI 1.19–2.14) |
5. Sui et al., 2020 [37]; Australia | 292 men aged 60+ years; population based | HGS dynamometry | CogState Brief Battery (psychomotor function, visual identification/attention, visual learning and working memory | for every 1 kg increase in handgrip strength, scores for psychomotor function were 0.003 (log10 milliseconds) lower and for overall cognitive function 0.02 (unitless) higher (both indicating better function). |
Longitudinal Studies | ||||
6. Taekema et al., 2012 [49]; Netherlands | 555 population-based participants at all ages, 85 years at base line (35% men) and 89 (29% men) years at follow-up | HGS dynamometry | Neuropsychological test battery (for assessing global cognitive performance, attention, processing speed and memory) | HGS was associated with scores in tests for processing speed and memory for both age groups, but was not associated with attention at age 89 years |
7. Buchman et al., 2007 [58]; USA; 5 years follow-up | 877 men and women without dementia | HGS dynamometry | Dementia (Mini Mental State Examination; Health Interview Survey) | Each 1-kg deficit in baseline HGS conferred a 1.5% greater risk of developing AD over 5.7 years (adjusted hazard ratio 0.986; 95% CI 0.973–0.998) |
8. Alfaro-Acha et al., 2006 [50]; USA; 6 years follow-up | 2160 non-institutionalised Mexican Americans (57.5% women) aged 65+ years | HGS dynamometry | MMSE (measuring cognitive decline) | HGS at baseline was associated with greater cognitive decline, as assessed by MMSE (β estimate = 1.28, se = 0.16; p = 0.0001) over a period of six years |
9. Raji et al., 2005 [51]; USA; 7 years follow-up | 2381 Mexican American men and women aged 65+ years, without disabilities | HGS dynamometry | MMSE (measuring cognitive decline) | A decline in HGS was observed over a period of seven years for participants with poor global cognitive function (measured by MMSE) compared with those with good cognitive function |
10. Atkinson et al., 2010 [52]; USA; 6 years follow-up | 1793 women aged 65–80 years | HGS dynamometry | MMSE (measuring cognitive decline) | Reciprocal changes in general cognitive function (MMSE scores) and HGS over a follow-up period of 6 years |
Intervention Studies | ||||
11. Dorner et al., 2007 [53]; Austria; 10-week trial | 42 long-term care facility residents (men and women, mean age of 86.8 years) with cognitive impairment and frailty; intervention through involved a structured strength and balance training | Increased muscle Strength | MMSE (measuring cognitive decline) | Muscle strength in the muscle training group increased compared with the control group over a period of ten weeks [53]. Even though a linear relationship was observed between increasing muscle strength and improved MMSE scores in the muscle training group, a difference was not detected in mean MMSE scores between the training and control groups |
12. Cassilhas et al., 2007 [54]; Brazil; 24 weeks | 62 older adults aged from 65 to 75 years. Participants were randomly assigned to three groups: control, experimental moderate- and experimental high-intensity training (six exercises including chest press, leg press, vertical traction, abdominal crunch, leg curl and lower back) | 1 RM test | WAIS III (central executive and short-term memory); WSM-R (visual modality of short-term memory); Toulouse–Pieron’s concentration attention test (attention); Rey–Osterrieth complex figure (long-term episodic memory) | The training groups reported improvement in neuropsychological tests, such as the forward digit span and immediate recall tests, indicating that the intervention improved cognitive function |
13. Berryman et al., 2014 [55]; eight weeks | 47 healthy older adults (mean age 70.7 ± 5.6 years); compared the effects of three interventions: strength training | Isokinetic strength dynamometer | Generation cognition (MMSE); executive functions, memory, processing speed | Intervention increased muscle strength and improved executive function |
Author, Year, Country/Region, STUDY Type | Participant Characteristics | Physical Performance Measurements | Cognitive Function Measurements | Results |
---|---|---|---|---|
Cross-Sectional Studies | ||||
1. Auyeung et al., 2008 [60]; Hong Kong | 4000 Chinese men and women from the community | 6-m walk speed test and chair stand test | CSI-D (identifying dementia) | Cognitive impairment group had poorer performance in gait speed tests than the non-cognitively impaired control group (0.89 ± 0.024 vs. 1.02 ± 0.004 m/s in men and 0.85 ± 0.009 vs. 0.93 ± 0.005 m/s in women, both p < 0.001) and chair stand tests (13.99 ± 0.05 s vs. 12.57 ± 0.09 s in men and 14.45 ± 0.27 s vs. 13.07 ± 0.12 s in women, both p < 0.001) |
2. Verghese et al., 2008 [61]; USA | 44 men and women with amnestic MCI (mean age = 79.3 ± 4.7 years), 62 with non-amnestic MCI (mean age 81.8 ± 6.2 years) and 295 healthy individuals (mean age 81.8 ± 6.2 years) | Computer-based analyses of gait ability that included pace, rhythm and variability | Blessed Information-Memory-Concentration test (General cognition); FCSRT (verbal memory); DSST, TMT-B, LFT (executive function); TMT-A and Digit Span forwards-attention); Boston Naming Test (language) | Gait was worse in participants with MCI than in the controls |
3. Coppin et al., 2006 [63]; USA | 37 community-dwelling individuals aged 65+ years | Complex walking tasks; reference walking tasks | TMT (executive function); MMSE (general cognition) | Reported slower gait speed in participants with poor executive function than those with high executive function |
4. Martin et al., 2013 [62]; Australia | 422 older people aged 60–85 years | GAITRite walkway | COWAT, Category Fluency, Victoria Stroop test, WAIS-III (Executive function/attention); WAIS-III (Processing speed); Rey Complex Figure copy task (Visuospatial ability); Hopkins Verbal Learning Test—revised, generating scores for total immediate recall, delayed recall and recognition memory and a delayed reproduction after 20 min of the Rey Complex Figure (memory) | Gait measures were not associated with memory |
5. Sui et al., 2020 [37]; Australia | 292 men aged 60+ years; population based | 4-m walk speed test | CogState Brief Battery (psychomotor function, visual identification/attention, visual learning and working memory | For every 1 m/s increase in gait speed, scores for psychomotor function were 0.12 lower, attention 0.08 lower and overall cognitive function 0.49 higher (all better function) |
Longitudinal Studies | ||||
6. Buracchio et al., 2010 [65]; USA; 20 years follow-up | 204 healthy older adults (58% female) aged 65+ | 9.14-m waking test | MMSE; CDR (identifying dementia) | Gait speed declined by 0.02 m/s/year for up to 12 years prior to the onset of MCI, as assessed using standardised neurologic examinations |
7. Inzitari et al., 2007 [66]; 5 years follow-up | 2776 men and women aged 75–85 years | 6-m walking speed test | DSST (attention and psychomotor speed) | Gait speed predicts decline in attention and psychomotor speed in the elderly |
8. Atkinson et al., 2007 [67]; 3+ years follow-up | 2349 men and women (mean age 75.6 years) | 20-m usual walking speed | 3MS (general cognition); ECF; CLOX; 1EXIT (Executive function) | Lower global cognitive function and executive function were associated with greater gait speed decline |
9. Deshpande et al., 2009 [71]; Italy; three years follow-up | Population-based study involving 660 older adults aged 65+ years | Walking while talking task | MMSE (general cognition) | Only fast gait speed predicted general cognitive decline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal Muscle Health and Cognitive Function: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 255. https://doi.org/10.3390/ijms22010255
Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA. Skeletal Muscle Health and Cognitive Function: A Narrative Review. International Journal of Molecular Sciences. 2021; 22(1):255. https://doi.org/10.3390/ijms22010255
Chicago/Turabian StyleSui, Sophia X., Lana J. Williams, Kara L. Holloway-Kew, Natalie K. Hyde, and Julie A. Pasco. 2021. "Skeletal Muscle Health and Cognitive Function: A Narrative Review" International Journal of Molecular Sciences 22, no. 1: 255. https://doi.org/10.3390/ijms22010255