Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1
Abstract
1. Introduction
2. Results
2.1. Preparation and Characterization of Liposomes
2.2. Effects of Liposomes on the Oxidase Activity of Erv1
2.3. Effects of Liposomes on Cytochrome c Reductase Activity of Erv1
3. Discussion
4. Materials and Methods
4.1. Protein Expression and Purification
4.2. Liposome Preparation
4.3. UV-Visible Spectroscopy
4.4. Oxygen Consumption Assays
4.5. Cytochrome c Reduction Assay
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALR | Augmenter of liver regeneration |
DTT | Dithiothreitol |
DOPC | 1,2-dioleoyl-sn-glycero-3-phosphocholine |
DOPCE | 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine |
Erv | Essential for respiration and viability |
FAD | Flavin adenine dinucleotide |
IMS | Intermembrane space |
IM | Inner membrane |
MIA | Mitochondrial import and assembly |
OM | Outer membrane |
References
- Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 1997, 66, 863–917. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.M.; Hell, K. Chopped, trapped or tacked–protein translocation into the IMS of mitochondria. Trends Biochem. Sci. 2005, 30, 205–212. [Google Scholar] [CrossRef]
- Stojanovski, D.; Bragoszewski, P.; Chacinska, A. The MIA pathway: A tight bond between protein transport and oxidative folding in mitochondria. Biochim. Biophys. Acta 2012, 1823, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Hell, K. The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim. Biophys. Acta 2008, 1783, 601–609. [Google Scholar] [CrossRef]
- MacPherson, L.; Tokatlidis, K. Protein trafficking in the mitochondrial intermembrane space: Mechanisms and links to human disease. Biochem. J. 2017, 474, 2533–2545. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Allen, S.; Wardleworth, L.; Savory, P.; Tokatlidis, K. Functional TIM10 chaperone assembly is redox-regulated in vivo. J. Biol. Chem. 2004, 279, 18952–18958. [Google Scholar] [CrossRef]
- Mesecke, N.; Terziyska, N.; Kozany, C.; Baumann, F.; Neupert, W.; Hell, K.; Herrmann, J.M. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 2005, 121, 1059–1069. [Google Scholar] [CrossRef]
- Ceh-Pavia, E.; Tang, X.; Liu, Y.; Heyes, D.J.; Zhao, B.; Xiao, P.; Lu, H. Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J. 2020, 287, 2281–2291. [Google Scholar] [CrossRef]
- Allen, S.; Balabanidou, V.; Sideris, D.P.; Lisowsky, T.; Tokatlidis, K. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 2005, 353, 937–944. [Google Scholar] [CrossRef]
- Herrmann, J.M.; Köhl, R. Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. J. Cell Biol. 2007, 176, 559–563. [Google Scholar] [CrossRef]
- Dabir, D.V.; Leverich, E.P.; Kim, S.K.; Tsai, F.D.; Hirasawa, M.; Knaff, D.B.; Koehler, C.M. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 2007, 26, 4801–4811. [Google Scholar] [CrossRef] [PubMed]
- Hagiya, M.; Francavilla, A.; Polimeno, L.; Ihara, I.; Sakai, H.; Seki, T.; Shimonishi, M.; Porter, K.A.; Starzl, T.E. Cloning and sequence analysis of the rat augmenter of liver regeneration (ALR) gene: Expression of biologically active recombinant ALR and demonstration of tissue distribution. Proc. Natl. Acad. Sci. USA 1994, 91, 8142–8146. [Google Scholar] [CrossRef] [PubMed]
- Levitan, A.; Danon, A.; Lisowsky, T. Unique features of plant mitochondrial sulfhydryl oxidase. J. Biol. Chem. 2004, 279, 20002–20008. [Google Scholar] [CrossRef] [PubMed]
- Eckers, E.; Petrungaro, C.; Gross, D.; Riemer, J.; Hell, K.; Deponte, M. Divergent Molecular Evolution of the Mitochondrial Sulfhydryl: Cytochrome c Oxidoreductase Erv in Opisthokonts and Parasitic Protists. J. Biol. Chem. 2013, 288, 2676–2688. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.; Sevier, C.S.; Vala, A.; Kaiser, C.A.; Fass, D. A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nat. Struct. Biol. 2002, 9, 61–67. [Google Scholar] [CrossRef]
- Guo, P.C.; Ma, J.D.; Jiang, Y.L.; Wang, S.J.; Bao, Z.Z.; Yu, X.J.; Chen, Y.X.; Zhou, C.Z. Structure of Yeast Sulfhydryl Oxidase Erv1 Reveals Electron Transfer of the Disulfide Relay System in the Mitochondrial Intermembrane Space. J. Biol. Chem. 2012, 287, 34961–34969. [Google Scholar] [CrossRef]
- Wang, W.Z.; Winther, J.R.; Thorpe, C. Erv2p: Characterization of the redox behavior of a yeast sulfhydryl oxidase. Biochemistry 2007, 46, 3246–3254. [Google Scholar] [CrossRef]
- Ang, S.K.; Lu, H. Deciphering Structural and Functional Roles of Individual Disulfide Bonds of the Mitochondrial Sulfhydryl Oxidase Erv1p. J. Biol. Chem. 2009, 284, 28754–28761. [Google Scholar] [CrossRef]
- Hofhaus, G.; Lee, J.E.; Tews, I.; Rosenberg, B.; Lisowsky, T. The N-terminal cysteine pair of yeast sulfhydryl oxidase Erv1p is essential for in vivo activity and interacts with the primary redox centre. Eur. J. Biochem. 2003, 270, 1528–1535. [Google Scholar] [CrossRef]
- Ceh-Pavia, E.; Ang, S.K.; Spiller, M.P.; Lu, H. The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. Biochem. J. 2014, 464, 449–459. [Google Scholar] [CrossRef]
- Farrell, S.R.; Thorpe, C. Augmenter of Liver Regeneration: A Flavin-Dependent Sulfhydryl Oxidase with Cytochrome c Reductase Activity. Biochemistry 2005, 44, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Hoober, K.L.; Thorpe, C. Egg white sulfhydryl oxidase: Kinetic mechanism of the catalysis of disulfide bond formation. Biochemistry 1999, 38, 3211–3217. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ang, S.K.; Ceh-Pavia, E.; Heyes, D.J.; Lu, H. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J. 2020, 287, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.L. Phosphoglycerides of mitochondrial membranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 475–485. [Google Scholar]
- Scorrano, L.; Ashiya, M.; Buttle, K.; Weiler, S.; Oakes, S.A.; Mannella, C.A.; Korsmeyer, S.J. A Distinct Pathway Remodels Mitochondrial Cristae and Mobilizes Cytochrome c during Apoptosis. Dev. Cell 2002, 2, 55–67. [Google Scholar] [CrossRef]
- Bernardi, P.; Azzone, G.F. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J. Biol. Chem. 1981, 256, 7187–7192. [Google Scholar]
- Suga, K.; Hamasaki, A.; Chinzaka, J.; Umakoshi, H. Liposomes modified with cardiolipin can act as a platform to regulate the potential flux of NADP+-dependent isocitrate dehydrogenase. Metab. Eng. Commun. 2016, 3, 8–14. [Google Scholar] [CrossRef]
- Rytömaa, M.; Kinnunen, P.K. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J. Biol. Chem. 1994, 269, 1770–1774. [Google Scholar]
- Ascenzi, P.; Coletta, M.; Wilson, M.T.; Fiorucci, L.; Marino, M.; Polticelli, F.; Sinibaldi, F.; Santucci, R. Cardiolipin–cytochrome c complex: Switching cytochrome c from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein. IUBMB Life 2015, 67, 98–109. [Google Scholar] [CrossRef]
- Mandal, A.; Hoop, C.L.; DeLucia, M.; Kodali, R.; Kagan, V.E.; Ahn, J.; van der Wel, P.C.A. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c. Biophys. J. 2015, 109, 1873–1884. [Google Scholar] [CrossRef]
- Stojanovski, D.; Milenkovic, D.; Müller, J.M.; Gabriel, K.; Schulze-Specking, A.; Baker, M.J.; Ryan, M.T.; Guiard, B.; Pfanner, N.; Chacinska, A. Mitochondrial protein import: Precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase. J. Cell Biol. 2008, 183, 195–202. [Google Scholar] [CrossRef]
- Sztolsztener, M.E.; Brewinska, A.; Guiard, B.; Chacinska, A. Disulfide Bond Formation: Sulfhydryl Oxidase ALR Controls Mitochondrial Biogenesis of Human MIA40. Traffic 2013, 14, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Daum, G.; Vance, J.E. Import of lipids into mitochondria. Prog. Lipid Res. 1997, 36, 103–130. [Google Scholar] [CrossRef]
- Wagner, S.; Paltauf, F. Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast 1994, 10, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Elsana, H.; Olusanya, T.O.B.; Carr-wilkinson, J.; Darby, S.; Faheem, A.; Elkordy, A.A. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci. Rep. 2019, 9, 15120. [Google Scholar] [CrossRef]
- Ang, S.K.; Zhang, M.; Lodi, T.; Lu, H. Mitochondrial thiol oxidase Erv1: Both shuttle cysteine residues are required for its function with distinct roles. Biochem. J. 2014, 460, 199–210. [Google Scholar] [CrossRef]
- Pinheiro, T.J.T.; Cheng, H.; Seeholzer, S.H.; Roder, H. Direct evidence for the cooperative unfolding of cytochrome c in lipid membranes from H-2H exchange kinetics. J. Mol. Biol. 2000, 303, 617–626. [Google Scholar] [CrossRef][Green Version]
- Butterfield, D.A.; Sultana, R. Redox proteomics: Understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev. Proteom. 2008, 5, 157–160. [Google Scholar] [CrossRef][Green Version]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef]
- Vogtle, F.N.; Burkhart, J.M.; Rao, S.; Gerbeth, C.; Hinrichs, J.; Martinou, J.C.; Chacinska, A.; Sickmann, A.; Zahedi, R.P.; Meisinger, C. Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteom. 2012, 11, 1840–1852. [Google Scholar] [CrossRef]
- Di Fonzo, A.; Ronchi, D.; Lodi, T.; Fassone, E.; Tigano, M.; Lamperti, C.; Corti, S.; Bordoni, A.; Fortunato, F.; Nizzardo, M.; et al. The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am. J. Hum. Genet. 2009, 84, 594–604. [Google Scholar] [CrossRef]
- Daithankar, V.N.; Schaefer, S.A.; Dong, M.; Bahnson, B.J.; Thorpe, C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry 2010, 49, 6737–6745. [Google Scholar] [CrossRef] [PubMed]
Substrate | Liposomes | kcat (s−1) | Km (µM) | kcat/Km (M−1 s−1) |
---|---|---|---|---|
Oxygen | Control (No liposomes) | 1.0 ± 0.1 | 50 ± 10 | 2.0 × 104 (100%) |
CL0 | 0.82 ± 0.02 | 60.0 ± 6 | 1.4 × 104 (70%) | |
CL5 | 0.74 ± 0.01 | 58.8 ± 6 | 1.2 × 104 (60%) | |
CL15 | 0.76 ± 0.02 | 53.2 ± 5 | 1.4 × 104 (70%) | |
Cytochrome c | Control (No liposomes) | 0.82 ± 0.07 | 23 ± 4 | 3.6 × 104 (100%) |
CL0 | 0.75 ± 0.03 | 52 ± 4 | 1.4 × 104 (39%) | |
CL5 | 0.61 ± 0.04 | 74 ± 3 | 8.2 × 103 (23%) | |
CL15 | 0.48 ± 0.02 | 105 ± 7 | 4.6 × 103 (13%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Harris, L.K.; Lu, H. Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1. Int. J. Mol. Sci. 2020, 21, 9402. https://doi.org/10.3390/ijms21249402
Tang X, Harris LK, Lu H. Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1. International Journal of Molecular Sciences. 2020; 21(24):9402. https://doi.org/10.3390/ijms21249402
Chicago/Turabian StyleTang, Xiaofan, Lynda K Harris, and Hui Lu. 2020. "Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1" International Journal of Molecular Sciences 21, no. 24: 9402. https://doi.org/10.3390/ijms21249402
APA StyleTang, X., Harris, L. K., & Lu, H. (2020). Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1. International Journal of Molecular Sciences, 21(24), 9402. https://doi.org/10.3390/ijms21249402