Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes
Abstract
:1. Introduction
2. Results
2.1. The Impact of Pre- and Post-Incubation with PQQ on the Content and Composition of Selected Lipid Fractions in Insulin-Resistant L6 Myotubes
2.1.1. Free Fatty Acid (FFA) Content and Composition in L6 Myotubes
2.1.2. DAG Content and Composition in L6 Myotubes
2.1.3. TAG Content and Composition in L6 Myotubes
2.1.4. Sphingolipids Content and Composition in L6 Myotubes
2.2. The Impact of Pre- and Post-Incubation with PQQ on the Protein-Mediated Fatty Acid Transport
2.2.1. The Impact of PQQ on the Expression of Fatty Acid Transporters at the Transcript (mRNA) and Protein Levels in L6 Myotubes
2.2.2. The Impact of PQQ on Palmitic Acid Uptake in L6 Myotubes
2.3. The Impact of Pre- and Post-Incubation with PQQ on the Expression of Enzymes Involved in Substrate Metabolism
2.4. The Impact of PQQ Stimulation on Insulin Sensitivity
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Treatment
4.3. RNA Isolation and Expression Analysis
4.4. Western Blot Analysis
4.5. Immunofluorescence Staining and Bioimaging
4.6. 9,10-[3H(N)]-Palmitic Acid Uptake
4.7. 2-[3H]-Deoxyglucose Uptake
4.8. Lipid Analysis
4.8.1. Content and Fatty Acid Composition of Free Fatty Acids (FFA), Diacylglycerols (DAG) and Triacylglycerols (TAG)
4.8.2. Content of Sphinganine (SFA), Sphinganine-1-phosphate (SFA1P), Sphingosine (SFO) and Sphingosine-1-phosphate (S1P)
4.8.3. Content of Ceramide (CER)
4.9. Data Analysis and Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMPK | 5’AMP-activated protein kinase |
ATGL | adipose triglyceride lipase |
β-HAD | 3-hydroxyacyl-CoA dehydrogenase |
CD36/SR-B2 | cluster of differentiation 36/scavenger receptor class B protein |
CER | ceramides |
CPT1 | carnitine palmitoyltransferase 1 |
CS | citrate synthase |
DAG | diacylglycerols |
DGAT1, 2 | diacylglycerol O-acyltransferase 1, 2 |
FABPpm | plasma membrane-associated fatty acid binding protein |
FAS | fatty acid synthase |
FATP1, 4 | fatty acid transport protein 1, 4 |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
GLUT4 | glucose transporter type 4 |
IRS1 | insulin receptor substrate 1 |
Kd | dissociation constant |
PGC-1α | peroxisome proliferator-activated receptor γ co-activator 1α |
PPARγ | peroxisome proliferator activated receptor γ |
PQQ | pyrroloquinoline quinone |
S1P | sphingosine-1-phosphate |
SFA | sphinganine |
SFA1P | Sphinganine-1-phosphate |
SFO | sphingosine |
SIRT1 | sirtuin 1 |
SPT1 | serine palmitoyltransferase, long chain base subunit 1 |
TAG | triacylglycerols |
Appendix A
FFA | Control | PA | PA/PQQ 2 h | PA/PQQ 24 h | 2 h PQQ/PA | 24 h PQQ/PA |
---|---|---|---|---|---|---|
Myristic (14:0) | 2.741 (2.457–2.922) | 2.415 (2.277–2.574) | 2.018 (1.800–2.164) ~ | 3.178 (3.037–3.369) *,# | 2.292 (2.029–2.485) | 2.994 (2.784–3.476) * |
Palmitic (16:0) | 6.409 (5.518–6.943) | 32.578 (28.929–39.923) ~ | 8.746 (7.995–9.21) * | 14.033 (12.671–17.434) ~,*,# | 16.897 (16.013–20.602) ~,*,^ | 43.134 (40.166–49.454) ~,*,#,^ |
Palmitoleic (16:1) | 0.366 (0.326–0.393) | 1.075 (0.93–1.208) ~ | 1.328 (1.050–1.382) ~ | 1.444 (1.256–1.540) ~,* | 0.801 (0.772–0.867) ~,*,^ | 0.95 (0.895–1.043) ~,^ |
Stearic (18:0) | 3.325 (2.98–3.466) | 1.884 (1.804–1.929) ~ | 1.769 (1.575–2.117) ~ | 4.293 (3.876–5.045) ~,*,# | 2.983 (2.773–3.382) *,^ | 3.441 (3.256–3.604) *,^ |
Oleic (18:1n9c) | 0.46 (0.408–0.496) | 0.386 (0.344–0.43) | 0.286 (0.235–0.307) ~ | 0.523 (0.454–0.598) # | 0.32 (0.28–0.38) | 0.446 (0.385–0.513) |
Linoleic (18:2n6c) | 0.09 (0.082–0.103) | 0.0935 (0.083–0.109) | 0.068 (0.064–0.079) | 0.102 (0.094–0.126) # | 0.089 (0.079–0.119) | 0.086 (0.084–0.098) |
Arachidic (20:0) | 0.049 (0.045–0.053) | 0.037 (0.034–0.045) | 0.028 (0.024–0.035) ~ | 0.068 (0.066–0.071) ~,*,# | 0.053 (0.043–0.056) ^ | 0.065 (0.061–0.073) ~,*,# |
Linolenic (18n3) | 0.047 (0.044–0.054) | 0.033 (0.029–0.036) ~ | 0.034 (0.028–0.037) ~ | 0.061 (0.056–0.065) ~,*,# | 0.04 (0.04–0.05) *,^ | 0.04 (0.036–0.043) ^ |
Behenic (22:0) | 0.058 (0.053–0.07) | 0.048 (0.044–0.049) | 0.037 (0.028- 0.046) ~ | 0.067 (0.062–0.078) *,# | 0.047 (0.043–0.05) | 0.068 (0.059–0.082) *,# |
Arachidonic (20:4n6) | 0.032 (0.291–0.351) | 0.262 (0.225–0.311) | 0.287 (0.254–0.306) | 0.3 (0.281–0.323) | 0.209 (0.201–0.261) ~ | 0.31 (0.283–0.355) # |
Lignoceric (24:0) | 0.047 (0.04–0.059) | 0.048 (0.04–0.062) | 0.022 (0.017–0.038) | 0.057 (0.04–0.069) | 0.041 (0.033–0.055) | 0.07 (0.048–0.089) |
Eicosapentaenoic (20:5n3) | 0.116 (0.11–0.15) | 0.124 (0.101–0.147) | 0.118 (0.108–0.151) | 0.126 (0.117–0.146) | 0.121 (0.103–0.127) | 0.129 (0.108–0.146) |
Nervonic (24:1) | 0.022 (0.02–0.025) | 0.021 (0.019–0.022) | 0.019 (0.016–0.021) | 0.028 (0.024–0.034) ~,* | 0.023 (0.02–0.024) | 0.022 (0.019–0.024) ^ |
Docosahexaenoic (22:6n3) | 0.039 (0.034–0.042) | 0.029 (0.026–0.033) | 0.028 (0.022–0.032) ~ | 0.052 (0.043–0.054) ~,*,# | 0.024 (0.019–0.034) ~ | 0.035 (0.028–0.041) ^ |
SAT | 12.549 (11.069–13.535) | 36.911 (33.57–44.236) ~ | 12.541 (11.651–13.537) * | 21.925 (19.958–25.2) ~,*,# | 22.229 (21.053–26.613) ~,*,^ | 49.797 (46.406–57.004) ~,*,#,^ |
UNSAT | 1.478 (1.365–1.583) | 1.965 (1.849–2.262) ~ | 2.163 (1.778–2.303) ~ | 2.635 (2.373–2.821) ~,*,# | 1.641 (1.580–1.818) ^ | 2.037 (1.878–2.158) ~,^ |
Total | 14.027 (12.566–15.039) | 38.876 (35.419–46.498) ~ | 14.616 (13.68–15.879) * | 24.435 (22.519–28.019) ~,*,# | 23.888 (22.652–28.358) ~,*,^ | 51.963 (48.428–58.986) ~,*,#,^ |
DAG | Control | PA | PA/PQQ 2 h | PA/PQQ 24 h | 2 h PQQ/PA | 24 h PQQ/PA |
---|---|---|---|---|---|---|
Myristic (14:0) | 2.723 (1.603–3.664) | 1.555 (1.443–2.324) | 1.484 (1.399–1.705) ~ | 1.785 (1.639–2.199) | 1.761 (1.508–2.039) | 2.669 (2.245–2.890) |
Palmitic (16:0) | 10.485 (8.31–11.521) | 23.453 (22.915–25.429) ~ | 19.308 (17.4993–22.116) ~,* | 26.326 (25.46–27.384) ~,#,^ | 23.438 (22.863–24.559) ~ | 31.402 (30.049–31.638) ~,*,#,^ |
Palmitoleic (16:1) | 0.415 (0.373–0.458) | 0.767 (0.734–0.943) ~ | 1.065 (0.945–1.153) ~,* | 1.439 (1.362–1.498) ~,*,#,^ | 0.764 (0.712–0.773) ~,^ | 0.687 (0.664–0.731) ~,^ |
Stearic (18:0) | 5.362 (4.811–5.996) | 4.055 (3.730–4.222) | 3.824 (3.449–4.449) ~ | 6.566 (6.244–6.790) *,# | 5.41 (5.077–5.724) *,^ | 5.224 (4.972–6.179) * |
Oleic (18:1n9c) | 0.895 (0.618–1.161) | 0.469 (0.429–0.74) | 0.449 (0.405–0.5225) | 0.677 (0.644–0.725) | 1.221 (0.941–1.376) *,^ | 0.755 (0.6473–1.201) |
Linoleic (18:2n6c) | 0.164 (0.145–0.225) | 0.164 (0.117–0.213) | 0.116 (0.103–0.14) | 0.148 (0.146–0.173) | 0.318 (0.245–0.375) ^ | 0.12 (0.104–0.219) |
Arachidic (20:0) | 0.096 (0.069–0.101) | 0.057 (0.045–0.088) | 0.049 (0.044–0.065) | 0.135 (0.125–0.148) ~,*,# | 0.125 (0.107–0.155) *,^ | 0.141 (0.106–0.163) ~,* |
Linolenic (18n3) | 0.056 (0.041–0.074) | 0.045 (0.037–0.052) | 0.035 (0.033–0.042) | 0.066 (0.062–0.072) *,# | 0.06 (0.051–0.066) ^ | 0.066 (0.058–0.08) * |
Behenic (22:0) | 0.205 (0.192–0.215) | 0.139 (0.131–0.169) ~ | 0.137 (0.132–0.1408) ~ | 0.23 (0.215–0.239) *,# | 0.206 (0.188–0.214) *,^ | 0.212 (0.186–0.246) * |
Arachidonic (20:4n6) | 0.361 (0.336–0.4) | 0.521 (0.499–0.602) ~ | 0.5245 (0.487–0.556) ~ | 0.788 (0.771–0.811) ~,*,# | 0.474 (0.441–0.503) ~ | 0.543 (0.513–0.61) ~,#,^ |
Lignoceric (24:0) | 0.102 (0.068–0.116) | 0.065 (0.055–0.126) | 0.064 (0.056–0.085) | 0.083 (0.06–0.107) | 0.178 (0.144–0.231) ^ | 0.22 (0.109–0.268) ~,*,^ |
Eicosapentaenoic (20:5n3) | 0.077 (0.064–0.1) | 0.072 (0.064–0.104) | 0.07 (0.066–0.082) | 0.131 (0.117–0.153) | 0.116 (0.098–0.166) | 0.086 (0.075–0.092) |
Nervonic (24:1) | 0.024 (0.017–0.032) | 0.021 (0.015–0.029) | 0.015 (0.013–0.027) | 0.037 (0.033–0.042) | 0.021 (0.015–0.026) | 0.016 (0.013–0.029) |
Docosahexaenoic (22:6n3) | 0.042 (0.04–0.065) | 0.035 (0.027–0.114) | 0.027 (0.021–0.046) | 0.052 (0.044–0.057) | 0.048 (0.043–0.152) | 0.044 (0.032–0.052) |
SAT | 19.29 (15.094–21.256) | 29.12 (28.745–32.133) ~ | 24.798 (22.665–28.939) ~ | 35.094 (33.762–36.969) ~,*,# | 31.052 (30.205–32.913) ~,^ | 39.809 (38.083–41.644) ~,*,# |
UNSAT | 2.124 (1.733–2.325) | 2.064 (1.985–2.76) | 2.275 (2.094–2.586) | 3.353 (3.282–3.442) ~,*,# | 2.972 (2.659–3.575) ~ | 2.368 (2.191–2.877) ^ |
Total | 21.427 (16.924–23.47) | 31.184 (30.768–34.856) ~ | 27.149 (24.76–31.412) ~ | 38.385 (37.109–40.438) ~,*,# | 34.275 (32.97–36.1) ~,^ | 42.177 (41.437–43.725) ~,*,# |
TAG | Control | PA | PA/PQQ 2 h | PA/PQQ 24 h | 2 h PQQ/PA | 24 h PQQ/PA |
---|---|---|---|---|---|---|
Myristic (14:0) | 2.847 (2.046–3.258) | 5.608 (5.272–5.728) ~ | 5.608 (4.882–6.105) ~ | 11.92 (10.88–12.29) ~,*,# | 5.3 (5.122–5.431) ~ | 5.976 (5.3–6.461) ~,^ |
Palmitic (16:0) | 9.026 (7.286–9.664) | 166.814 (156.557–174.35) ~ | 127.662 (121.291–145.259) ~,* | 216.515 (209.856–230.962) ~,*,# | 156.979 (151.511–164.094) ~,^ | 172.05 (166.321–186.678) ~,#,^ |
Palmitoleic (16:1) | 0.95 (0.864–1.09) | 9.394 (8.895–9.65) ~ | 12.415 (11.477–13.173) ~,* | 18.268 (16.533–20.162) ~,*,# | 10.12 (9.495–10.513) ~,^ | 6.835 (6.617–7.609) ~,*,#,^ |
Stearic (18:0) | 2.969 (1.717–4.672) | 2.35 (2.218–2.670) | 2.029 (1.875–2.180) | 5.022 (4.666–5.419) ~,*,#,^ | 3.813 (3.621–4.226) * | 3.73 (3.319–3.890) *,^ |
Oleic (18:1n9c) | 1.327 (1.006–1.705) | 1.737 (1.614–1.954) | 2.012 (1.919–2.198) ~ | 3.638 (3.364–4.211) ~,*,# | 2.401 (2.239–2.750) ~,* | 2.021 (1.784–2.299) ~,^ |
Linoleic (18:2n6c) | 0.104 (0.046–0.159) | 0.19 (0.184–0.262) | 0.174 (0.154–0.219) | 0.391 (0.349–0.45) ~,*,# | 0.286 (0.255–0.341) ~ | 0.192 (0.156–0.306) ~,^ |
Arachidic (20:0) | 0.104 (0.093–0.126) | 0.063 (0.054–0.071) ~ | 0.056 (0.043–0.07) ~ | 0.096 (0.081–0.109) # | 0.09 (0.073–0.115) | 0.124 (0.116–0.149) *,#,^ |
Linolenic (18n3) | 0.096 (0.089–0.124) | 0.184 (0.15–0.19) ~ | 0.185 (0.145–0.212) ~ | 0.264 (0.242–0.288) ~,*,# | 0.211 (0.195–0.236) ~ | 0.175 (0.149–0.213) ~,^ |
Behenic (22:0) | 0.159 (0.132–0.182) | 0.207 (0.175–0.246) | 0.207 (0.177–0.218) | 0.323 (0.287–0.356) ~,*,# | 0.222 (0.212–0.256) ~ | 0.243 (0.218–0.279) ~,^ |
Arachidonic (20:4n6) | 0.225 (0.152–0.338) | 0.383 (0.361–0.442) | 0.41 (0.329–0.472) ~ | 0.52 (0.406–0.567) ~ | 0.382 (0.371–0.519) ~ | 0.432 (0.397–0.489) ~ |
Lignoceric (24:0) | 0.116 (0.064–0.192) | 0.095 (0.047–0.11) | 0.125 (0.081–0.155) | 0.071 (0.056–0.087) | 0.1 (0.091–0.111) | 0.142 (0.115–0.178) ^ |
Eicosapentaenoic (20:5n3) | 0.165 (0.15–0.258) | 0.182 (0.165–0.255) | 0.179 (0.165–0.194) | 0.277 (0.242–0.322) ~,# | 0.209 (0.2–0.231) | 0.197 (0.17–0.254) |
Nervonic (24:1) | 0.048 (0.03–0.058) | 0.043 (0.041–0.048) | 0.041 (0.036–0.043) | 0.051 (0.043–0.094) | 0.042 (0.033–0.055) | 0.044 (0.037–0.058) |
Docosahexaenoic (22:6n3) | 0.091 (0.078–0.118) | 0.178 (0.164–0.189) | 0.206 (0.163–0.222) ~ | 0.206 (0.156–0.257) ~ | 0.226 (0.195–0.304) ~ | 0.167 (0.154–0.221) |
SAT | 15.353 (12.403–16.236) | 175.233 (164.405–182.995) ~ | 135.633 (128.109–154.06) ~,* | 232.864 (226.415–249.014) ~,*,# | 167.144 (161.071–173.299) ~,^ | 181.373 (176.594–197.997) ~,^ |
UNSAT | 3,126 (2.61–3.574) | 12.278 (11.937–12.636) ~ | 15.61 (14.491–16.583) ~,* | 23.549 (21.333–26.297) ~,*,# | 13.752 (13.164–14.681) ~ | 10.029 (9.754–11.095) ~,#,^ |
Total | 18.499 (15.155–19.781) | 187.522 (176.396–195.565) ~ | 150.757 (143.329–171.224) ~,* | 256.702 (247.726–275.516) ~,*,# | 182.027 (173.932–187.214) ~,^ | 191.401 (186.348–209.093) ~,^ |
Gene | Primer Sequence | Annealing Temperature | Product Size [bp] | |
---|---|---|---|---|
Forward | Reverse | |||
CD36/SR-B2 | 5′-GCC TCC TTT CCA CCT TTT GT-3′ | 5′-GAT TCA AAC ACA GCA TAG ATG GAC-3′ | 56 °C | 88 |
FABPpm | 5′-GGA GGG TGG ATG GTG TTG AG-3′ | 5′-TCC AGA TAT CAG CCG TGG GA-3′ | 61 °C | 115 |
FATP1 | 5′-CGC TTC TCA ATG TCA ACC TG-3′ | 5′-AAA TAG CCG ATC ATC CAT GC-3′ | 61 °C | 269 |
FATP4 | 5′-TTG CCT GAG CTG CAC AAA AC-3′ | 5′-AGT GCA ACA TAG CAG CCT GT-3′ | 58 °C | 131 |
PGC-1α | 5′-TCT CGA CAC AGG TCG TGT TCC C-3’ | 5′-TTT CGT GCT CAT TGG CTT CAT AGC-3’ | 59 °C | 213 |
SIRT1 | 5′-CAC CAG AAA GAA CTT CAC CAC CAG-3’ | 5′-ACC ATC AAG CCG CCT ACT AAT CTG-3’ | 61 °C | 299 |
PPARγ | 5′-ACT GGC ACC CTT GAA AAA TG-3’ | 5′-CCC TGG CAA AGC ATT TGT AT-3’ | 59 °C | 201 |
β-HAD | 5′-TAT CTG GGG CGG ATC ACT CT-3′ | 5′-CAT AGC ATG ACC CTG TCC TCC-3′ | 60 °C | 147 |
CPT1 | 5′-GTC GCT TCT TCA AGG TTT GG-3′ | 5′-AAG AAA GCA GCA CGT TCG AT-3′ | 59 °C | 231 |
CS | 5′-GAT TGT GAA CAA TGT CCT CT-3′ | 5′-TTC ATC TCC GTC ATG CCA TA-3′ | 60 °C | 108 |
ATGL | 5′-CCC TGA CTC GAG TTT CGG AT-3′ | 5′-CAC ATA GCG CAC CCC TTG AA-3′ | 60 °C | 145 |
DGAT1 | 5′-GGT TCC CTG TTT GCT CTG-3′ | 5′-GGC ACC ACA GAT TGA CAT-3′ | 58 °C | 79 |
DGAT2 | 5′-GGA GAG TGG TAG ATA ACA-3′ | 5′-CAG ATT GGA GAA GAG GAG-3′ | 58 °C | 75 |
FAS | 5′-TCC CAG GTC TTG CCG TGC-3′ | 5′-GCG GAT GCC TAG GAT GTG TGC-3′ | 59 °C | 259 |
SPT1 | 5′-CCT CAT ACT TTG GAT AAT-3′ | 5′-TCT TCA ATC AGT TCT TCC T-3′ | 58 °C | 98 |
GAPDH | 5′-TGC ACC ACC AAC TGC TTA-3′ | 5′-GGA TGC AGG GAT GAT GTT C-3′ | 60 °C | 177 |
References
- Olaogun, I.; Farag, M.; Hamid, P. The pathophysiology of type 2 diabetes mellitus in non-obese individuals: An overview of the current understanding. Cureus 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Shou, J.; Chen, P.J.; Xiao, W.H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 2020, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Perseghin, G.; Scifo, P.; De Cobelli, F.; Pagliato, E.; Battezzati, A.; Arcelloni, C.; Vanzulli, A.; Testolin, G.; Pozza, G.; Del Maschio, A.; et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999, 48, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Machann, J.; Rett, K.; Brechtel, K.; Volk, A.; Renn, W.; Maerker, E.; Matthaei, S.; Schick, F.; Claussen, C.D.; et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 1999, 48, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Chabowski, A.; Górski, J.; Luiken, J.J.F.P.; Glatz, J.F.C.; Bonen, A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Badin, P.M.; Vila, I.K.; Louche, K.; Mairal, A.; Marques, M.A.; Bourlier, V.; Tavernier, G.; Langin, D.; Moro, C. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 2013, 154, 1444–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, N.; Kowalski, G.M.; Leslie, S.J.; Risis, S.; Yang, C.; Lee-Young, R.S.; Babb, J.R.; Meikle, P.J.; Lancaster, G.I.; Henstridge, D.C.; et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, S.U.; Tankeu, A.T.; Amati, F. Reassessing the role of diacylglycerols in insulin resistance. Trends Endocrinol. Metab. 2019, 30, 618–635. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, L.K.; Smith, G.C.; Turner, N. Defining lipid mediators of insulin resistance: Controversies and challenges. J. Mol. Endocrinol. 2019, 62, R65–R82. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.E.; Tippetts, T.S.; Brassfield, E.S.; Tucker, B.J.; Ockey, A.; Swensen, A.C.; Anthonymuthu, T.S.; Washburn, T.D.; Kane, D.A.; Prince, J.T.; et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem. J. 2013, 456, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Sokolowska, E.; Blachnio-Zabielska, A. The role of ceramides in insulin resistance. Front. Endocrinol. (Lausanne) 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Z.; Zhao, M.; Nie, Y.; Liu, P.; Zhu, Y.; Zhang, X. Skeletal muscle lipid droplets and the athlete’s paradox. Cells 2019, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, S.A.; Forrest, H.S.; Cruse, W.B.T.; Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 1979, 280, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Rucker, R.; Chowanadisai, W.; Nakano, M. Potential physiological importance of pyrroloquinoline quinone. Altern. Med. Rev. 2009, 14, 268–277. [Google Scholar]
- Kumazawa, T.; Sato, S.; Seno, H.; Ishii, A.; Suzuki, O. Levels of pyrroloquinoline quinone in various foods. Biochem. J. 1995, 307, 331–333. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.B.; Chowanadisai, W.; Mishchuk, D.O.; Satre, M.A.; Slupsky, C.M.; Rucker, R.B. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J. Nutr. Biochem. 2013, 24, 2076–2084. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Shen, J.; Zhou, Y.; Zhao, X.; Dai, Z.; Jin, Y. Pyrroloquinoline quinone attenuates isoproterenol hydrochloride-induced cardiac hypertrophy in AC16 cells by inhibiting the NF-κB signaling pathway. Int. J. Mol. Med. 2020, 45, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, R.; Huang, Z.; Zhang, Q.; Xie, X.; Yang, X.; Zhang, Q.; Liu, H.; Ding, F.; Zhu, J.; et al. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Ann. Transl. Med. 2019, 7, 440. [Google Scholar] [CrossRef]
- Akagawa, M.; Nakano, M.; Ikemoto, K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci. Biotechnol. Biochem. 2016, 80, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Yu, H.; Liu, J.; Cheng, L. Pyrroloquinoline quinone inhibits oxygen/glucose deprivation-induced apoptosis by activating the PI3K/AKT pathway in cardiomyocytes. Mol. Cell. Biochem. 2014, 386, 107–115. [Google Scholar] [CrossRef]
- Misra, H.S.; Rajpurohit, Y.S.; Khairnar, N.P. Pyrroloquinoline-quinone and its versatile roles in biological processes. J. Biosci. 2012, 37, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Lumpe, H.; Daumann, L.J. Studies of redox cofactor pyrroloquinoline quinone and its interaction with lanthanides(III) and calcium(II). Inorg. Chem. 2019, 58, 8432–8441. [Google Scholar] [CrossRef]
- Mukai, K.; Ouchi, A.; Nakano, M. Kinetic study of the quenching reaction of singlet oxygen by pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in micellar solution. J. Agric. Food Chem. 2011, 59, 1705–1712. [Google Scholar] [CrossRef]
- Hwang, P.; Willoughby, D.S. Mechanisms behind pyrroloquinoline quinone supplementation on skeletal muscle mitochondrial biogenesis: Possible synergistic effects with exercise. J. Am. Coll. Nutr. 2018, 37, 738–748. [Google Scholar] [CrossRef]
- Chowanadisai, W.; Bauerly, K.A.; Tchaparian, E.; Wong, A.; Cortopassi, G.A.; Rucker, R.B. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 2010, 285, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Monsalve, M.; Wu, Z.; Adelmant, G.; Puigserver, P.; Fan, M.; Spiegelman, B.M. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 2000, 6, 307–316. [Google Scholar] [CrossRef]
- Chan, M.C.; Arany, Z. The many roles of PGC-1α in muscle - Recent developments. Metabolism 2014, 63, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Jonscher, K.R.; Stewart, M.S.; Alfonso-Garcia, A.; DeFelice, B.C.; Wang, X.X.; Luo, Y.; Levi, M.; Heerwagen, M.J.R.; Janssen, R.C.; de la Houssaye, B.A.; et al. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J. 2017, 31, 1434–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supruniuk, E.; Mikłosz, A.; Chabowski, A.; Łukaszuk, B. Dose- and time-dependent alterations in lipid metabolism after pharmacological PGC-1α activation in L6 myotubes. J. Cell. Physiol. 2019, 234, 11923–11941. [Google Scholar] [CrossRef] [Green Version]
- Holloway, G.P.; Schwenk, R.W.; Luiken, J.J.F.P.; Glatz, J.F.C.; Bonen, A. Fatty acid transport in skeletal muscle: Role in energy provision and insulin resistance. Clin. Lipidol. 2010, 5, 731–745. [Google Scholar] [CrossRef]
- Cantó, C.; Gerhart-hines, Z.; Feige, J.N.; Lagouge, M.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2013, 458, 1056–1060. [Google Scholar] [CrossRef]
- Ruderman, N.B.; Xu, X.J.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 2010, 298, E751. [Google Scholar] [CrossRef]
- Hong, Y.B.; Lee, J.H.; Park, J.M.; Choi, Y.R.; Hyun, Y.S.; Yoon, B.R.; Yoo, J.H.; Koo, H.; Jung, S.C.; Chung, K.W.; et al. A compound heterozygous mutation in HADHB gene causes an axonal Charcot-Marie-tooth disease. BMC Med. Genet. 2013, 14, 125. [Google Scholar] [CrossRef] [Green Version]
- Bhatt-Wessel, B.; Jordan, T.W.; Miller, J.H.; Peng, L. Role of DGAT enzymes in triacylglycerol metabolism. Arch. Biochem. Biophys. 2018, 655, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Beyer, A.; Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Teo, G.; Krueger, S.; Rock, T.M.; Koh, H.W.; Choi, H.; Vogel, C. Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress. Mol. Syst. Biol. 2016, 12, 855. [Google Scholar] [CrossRef]
- Stierwalt, H.D.; Ehrlicher, S.E.; Bergman, B.C.; Robinson, M.M.; Newsom, S.A. Insulin-stimulated Rac1-GTP binding is not impaired by palmitate treatment in L6 myotubes. Physiol. Rep. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Pandey, S.K.; Saha, G.; Gattupalli, N.K. Pyrroloquinoline quinone (PQQ) producing Escherichia coli Nissle 1917 (EcN) alleviates age associated oxidative stress and hyperlipidemia, and improves mitochondrial function in ageing rats. Exp. Gerontol. 2015, 66, 1–9. [Google Scholar] [CrossRef]
- Tchaparian, E.; Marshal, L.; Cutler, G.; Bauerly, K.; Chowanadisai, W.; Satre, M.; Harris, C.; Rucker, R.B. Identification of transcriptional networks responding to pyrroloquinoline quinone dietary supplementation and their influence on thioredoxin expression, and the JAK/STAT and MAPK pathways. Biochem. J. 2010, 429, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Nishii, K.; Kuwata, K.; Nakamichi, M.; Nakanishi, K.; Sugimoto, A.; Ikemoto, K. Effects of pyrroloquinoline quinone and imidazole pyrroloquinoline on biological activities and neural functions. Heliyon 2020, 6. [Google Scholar] [CrossRef]
- Kuo, Y.T.; Shih, P.H.; Kao, S.H.; Yeh, G.C.; Lee, H.M. Pyrroloquinoline quinone resists denervation-induced skeletal muscle atrophy by activating PGC-1α and integrating mitochondrial electron transport chain complexes. PLoS ONE 2015, 10, e0143600. [Google Scholar] [CrossRef]
- Hwang, P.S.; Machek, S.B.; Cardaci, T.D.; Wilburn, D.T.; Kim, C.S.; Suezaki, E.S.; Willoughby, D.S. Effects of pyrroloquinoline quinone (PQQ) supplementation on aerobic exercise performance and indices of mitochondrial biogenesis in untrained men. J. Am. Coll. Nutr. 2020, 39, 547–556. [Google Scholar] [CrossRef]
- Zhang, J.; Meruvu, S.; Bedi, Y.S.; Chau, J.; Arguelles, A.; Rucker, R.; Choudhury, M. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells. Nutr. Res. 2015, 35, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Schwanhüusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Supruniuk, E.; Miklosz, A.; Chabowski, A. The implication of PGC-1α on fatty acid transport across plasma and mitochondrial membranes in the insulin sensitive tissues. Front. Physiol. 2017, 8, 923. [Google Scholar] [CrossRef]
- Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA 2007, 104, 12017–12022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saihara, K.; Kamikubo, R.; Ikemoto, K.; Uchida, K.; Akagawa, M. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry 2017, 56, 6615–6625. [Google Scholar] [CrossRef]
- Popov, D.V.; Lysenko, E.A.; Butkov, A.D.; Vepkhvadze, T.F.; Perfilov, D.V.; Vinogradova, O.L. AMPK does not play a requisite role in regulation of PPARGC1A gene expression via the alternative promoter in endurance-trained human skeletal muscle. Exp. Physiol. 2017, 102, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Brandt, N.; Gunnarsson, T.P.; Hostrup, M.; Tybirk, J.; Nybo, L.; Pilegaard, H.; Bangsbo, J. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle. Physiol. Rep. 2016, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.L. Sirt1 and the mitochondria. Mol. Cells 2016, 39, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Stites, T.; Storms, D.; Bauerly, K.; Mah, J.; Harris, C.; Fascetti, A.; Rogers, Q.; Tchaparian, E.; Satre, M.; Rucker, R.B. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J. Nutr. 2006, 136, 390–396. [Google Scholar] [CrossRef]
- Bauerly, K.; Harris, C.; Chowanadisai, W.; Graham, J.; Havel, P.J.; Tchaparian, E.; Satre, M.; Karliner, J.S.; Rucker, R.B. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS ONE 2011, 6, e21779. [Google Scholar] [CrossRef]
- Boulinguiez, A.; Staels, B.; Duez, H.; Lancel, S. Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle? Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 901–916. [Google Scholar] [CrossRef]
- Martínez-Redondo, V.; Jannig, P.R.; Correia, J.C.; Ferreira, D.M.S.; Cervenka, I.; Lindvall, J.M.; Sinha, I.; Izadi, M.; Pettersson-Klein, A.T.; Agudelo, L.Z.; et al. Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J. Biol. Chem. 2016, 291, 15169–15184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, H.; Nagayama, D.; Ishihara, N.; Tanaka, S.; Watanabe, R.; Watanabe, Y.; Sato, Y.; Yamaguchi, T.; Ban, N.; Kawana, H.; et al. Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes. Mol. Genet. Metab. Rep. 2017, 12, 44–50. [Google Scholar] [CrossRef]
- Huang, T.Y.; Zheng, D.; Houmard, J.A.; Brault, J.J.; Hickner, R.C.; Cortright, R.N. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E253–E263. [Google Scholar] [CrossRef] [Green Version]
- Akagawa, M.; Minematsu, K.; Shibata, T.; Kondo, T.; Ishii, T.; Uchida, K. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein. Sci. Rep. 2016, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Aburasayn, H.; Al Batran, R.; Ussher, J.R. Targeting ceramide metabolism in obesity. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E423–E435. [Google Scholar] [CrossRef]
- Carrasco, S.; Mérida, I. Diacylglycerol, when simplicity becomes complex. Trends Biochem. Sci. 2007, 32, 27–36. [Google Scholar] [CrossRef]
- Meex, R.C.R.; Blaak, E.E.; van Loon, L.J.C. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes. Rev. 2019, 20, 1205–1217. [Google Scholar] [CrossRef] [Green Version]
- Hoeks, J.; Arany, Z.; Phielix, E.; Moonen-Kornips, E.; Hesselink, M.K.C.; Schrauwen, P. Enhanced lipid-but not carbohydrate-supported mitochondrial respiration in skeletal muscle of PGC-1α overexpressing mice. J. Cell. Physiol. 2012, 227, 1026–1033. [Google Scholar] [CrossRef]
- Barile, C.J.; Tse, E.C.M.; Li, Y.; Gewargis, J.P.; Kirchschlager, N.A.; Zimmerman, S.C.; Gewirth, A.A. The flip-flop diffusion mechanism across lipids in a hybrid bilayer membrane. Biophys. J. 2016, 110, 2451–2462. [Google Scholar] [CrossRef] [Green Version]
- Van Hall, G. The physiological regulation of skeletal muscle fatty acid supply and oxidation during moderate-intensity exercise. Sport Med. 2015, 45, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Glatz, J.F.C.; Luiken, J.J.F.P.; Bonen, A. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease. Physiol. Rev. 2010, 90, 367–417. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.L.E.; Stone, S.J.; Koliwad, S.; Harris, C.; Farese, R.V. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008, 49, 2283–2301. [Google Scholar] [CrossRef] [Green Version]
- Caldo, K.M.P.; Acedo, J.Z.; Panigrahi, R.; Vederas, J.C.; Weselake, R.J.; Lemieux, M.J. Diacylglycerol acyltransferase 1 is regulated by its N-terminal domain in response to allosteric effectors. Plant Physiol. 2017, 175, 667–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, K.; Hwang, B.J.; Dewi, R.E.; Ou, L.; Twaddel, W.; Fang, H.; Vafai, S.B.; Vazquez, F.; Puigserver, P.; Boros, L.; et al. PGC-1α promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res. 2011, 71, 6888–6898. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.E.; Mikus, C.R.; Slentz, D.H.; Seiler, S.E.; Debalsi, K.L.; Ilkayeva, O.R.; Crain, K.I.; Kinter, M.T.; Kien, C.L.; Stevens, R.D.; et al. Muscle-specific overexpression of PGC-1α does not augment metabolic improvements in response to exercise and caloric restriction. Diabetes 2015, 64, 1532–1543. [Google Scholar] [CrossRef] [Green Version]
- Summermatter, S.; Shui, G.; Maag, D.; Santos, G.; Wenk, M.R.; Handschin, C. PGC-1α improves glucose homeostasis in skeletal muscle in an activity-dependent manner. Diabetes 2013, 62, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, B.C.; Perreault, L.; Strauss, A.; Bacon, S.; Kerege, A.; Harrison, K.; Brozinick, J.T.; Hunerdosse, D.M.; Playdon, M.C.; Holmes, W.; et al. Intramuscular triglyceride synthesis: Importance in muscle lipid partitioning in humans. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E152–E164. [Google Scholar] [CrossRef] [PubMed]
- Perreault, L.; Newsom, S.A.; Strauss, A.; Kerege, A.; Kahn, D.E.; Harrison, K.A.; Snell-Bergeon, J.K.; Nemkov, T.; D’Alessandro, A.; Jackman, M.R.; et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Martínez, C.; Marotta, M.; Moore-Carrasco, R.; Guitart, M.; Camps, M.; Busquets, S.; Montell, E.; Gómez-Foix, A.M. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am. J. Physiol. Cell Physiol. 2005, 288, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Savage, D.B.; Watson, L.; Carr, K.; Adams, C.; Brage, S.; Chatterjee, K.K.; Hodson, L.; Boesch, C.; Kemp, G.J.; Sleigh, A. Accumulation of saturated intramyocellular lipid is associated with insulin resistance. J. Lipid Res. 2019, 60, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Amati, F.; Dubé, J.J.; Alvarez-Carnero, E.; Edreira, M.M.; Chomentowski, P.; Coen, P.M.; Switzer, G.E.; Bickel, P.E.; Stefanovic-Racic, M.; Toledo, F.G.S.; et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: Another paradox in endurance-trained athletes? Diabetes 2011, 60, 2588–2597. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Kar, A. Pyrroloquinoline quinone (PQQ) has potential to ameliorate streptozotocin-induced diabetes mellitus and oxidative stress in mice: A histopathological and biochemical study. Chem. Biol. Interact. 2015, 240, 278–290. [Google Scholar] [CrossRef]
- Kumar, N. Effects of pyrroloquinoline quinone and vitamin C on diabetes associated cardiac oxidative damages and hyperlipidemia in mice: Biochemical and histopathological study. MOJ Bioequiv. Bioavailab. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Takada, M.; Sumi, M.; Maeda, A.; Watanabe, F.; Kamiya, T.; Ishii, T.; Nakano, M.; Akagawa, M. Pyrroloquinoline quinone, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves impaired glucose tolerance in diabetic KK-Ay mice. Biochem. Biophys. Res. Commun. 2012, 428, 315–320. [Google Scholar] [CrossRef]
- Steinberg, F.; Stites, T.E.; Anderson, P.; Storms, D.; Chan, I.; Eghbali, S.; Rucker, R. Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets. Exp. Biol. Med. 2003, 228, 160–166. [Google Scholar] [CrossRef]
- Stites, T.E.; Mitchell, A.E.; Rucker, R.B. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J. Nutr. 2000, 130, 719–727. [Google Scholar] [CrossRef]
- Mitchell, A.E.; Jones, A.D.; Mercer, R.S.; Rucker, R.B. Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk. Anal. Biochem. 1999, 269, 317–325. [Google Scholar] [CrossRef]
- Esaka, Y.; Yamaguchi, Y.; Kano, K.; Goto, M. Separation of amino acid-oxazole derivatives of the redox coenzyme pyrroloquinoline quinone by capillary zone electrophoresis. J. Chromatogr. A 1993, 652, 225–232. [Google Scholar] [CrossRef]
- Baus, D.; Yan, Y.; Li, Z.; Garyantes, T.; de Hoop, M.; Tennagels, N. A robust assay measuring GLUT4 translocation in rat myoblasts overexpressing GLUT4-myc and AS160_v2. Anal. Biochem. 2010, 397, 233–240. [Google Scholar] [CrossRef]
- Ching, J.K.; Rajguru, P.; Marupudi, N.; Banerjee, S.; Fisher, J.S. A role for AMPK in increased insulin action after serum starvation. Am. J. Physiol. Cell Physiol. 2010, 299, C1171. [Google Scholar] [CrossRef] [Green Version]
- Naito, Y.; Kumazawa, T.; Kino, I.; Suzuki, O. Effects of pyrroloquinoline quinone (PQQ) and PQQ-oxazole on DNA synthesis of cultured human fibroblasts. Life Sci. 1993, 52, 1909–1915. [Google Scholar] [CrossRef]
- He, K.; Nukada, H.; Urakami, T.; Murphy, M.P. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): Implications for its function in biological systems. Biochem. Pharmacol. 2003, 65, 67–74. [Google Scholar] [CrossRef]
- Smidt, C.R.; Unkefer, C.J.; Houck, D.R.; Rucker, R.B. Intestinal Absorption and Tissue Distribution of [14C]Pyrroloquinoline Quinone in Mice. Proc. Soc. Exp. Biol. Med. 1991, 197, 27–31. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, 45e. [Google Scholar] [CrossRef]
- Chavez, J.A.; Summers, S.A. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch. Biochem. Biophys. 2003, 419, 101–109. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride - methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [PubMed]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [PubMed]
- Mikłosz, A.; Łukaszuk, B.; Zendzian-Piotrowska, M.; Kurek, K.; Chabowski, A. The effects of AS160 modulation on fatty acid transporters expression and lipid Profile in L6 myotubes. Cell. Physiol. Biochem. 2016, 38, 267–282. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supruniuk, E.; Mikłosz, A.; Chabowski, A. Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes. Int. J. Mol. Sci. 2020, 21, 8382. https://doi.org/10.3390/ijms21218382
Supruniuk E, Mikłosz A, Chabowski A. Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes. International Journal of Molecular Sciences. 2020; 21(21):8382. https://doi.org/10.3390/ijms21218382
Chicago/Turabian StyleSupruniuk, Elżbieta, Agnieszka Mikłosz, and Adrian Chabowski. 2020. "Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes" International Journal of Molecular Sciences 21, no. 21: 8382. https://doi.org/10.3390/ijms21218382
APA StyleSupruniuk, E., Mikłosz, A., & Chabowski, A. (2020). Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes. International Journal of Molecular Sciences, 21(21), 8382. https://doi.org/10.3390/ijms21218382