Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella
Abstract
:1. Introduction
2. Result
2.1. Sequence Characterization of Three Slc20s
2.2. Slc20s mRNA Expression among the Tissues of Grass Carp
2.3. 5′-Deletion Sequence Analysis of the Slc20s Promoters
2.4. Site-Mutation Analysis of SREBP1, NRF2 and VDR on the Promoters of Slc20s
2.5. EMSA Analysis of SREBP1, NRF2 and VDR Binding with the Slc20s Promoters
2.6. Effect of Pi Incubation on the Luciferase Activity of the Site-Mutagenesis Plasmids
2.7. Effect of Pi Incubation on the mRNA Level of Three slc20s Gene in CIK Cells of Grass Carp
3. Discussion
4. Materials and Methods
4.1. Experimental Grass Carp and Reagents
4.2. Sequence Clone and Plasmids Construction
4.3. Sequence Analysis
4.4. Plasmid Transfections and Analysis of Luciferase Activities
4.5. Site-Mutation Analysis of SREBP1, NRF2 and VDR Binding Sites on the Regions of Three Slc20s Promoters
4.6. Electrophoretic Mobility-Shift Assay (EMSA)
4.7. Effect of Pi Incubation on the mRNA Level of Slc20s in CIK Cells of Grass Carp
4.8. mRNA Expression after Quantitative Real-Time PCR (Q-PCR) Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
18srrna | 18SrRNA |
EMSA | electrophoretic mobility-shift assay |
gapdh | Glyceraldehyde-3-phosphate dehydrogenase |
MS-222 | Tricaine methanesulfonate |
NRF2 | Nuclear factor-erythroid 2 p45-related factor 2 |
ORF | Open-reading frame |
Pi | Phosphorus |
RACE | rapid amplification of cDNA ends |
SREBP1 | Sterol regulatory element-binding protein |
TFBS | transcription factor binding site |
TSS | transcription start sites |
UTR | Untranslated region |
VDR | Vitamin D receptor |
References
- Feng, W.; Yang, F.; Zhang, C.; Liu, J.; Song, F.; Chen, H.; Zhu, Y.; Liu, S.; Giesy, J.P. Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes. Environ. Pollut. 2020, 265, 114838. [Google Scholar] [CrossRef] [PubMed]
- Forster, I.C.; Hernando, N.; Biber, J.; Murer, H. Phosphate transport kinetics and structure –function relationships of SLC34 and SLC20 proteins. Curr. Top. Membr. 2012, 70, 313–356. [Google Scholar] [PubMed] [Green Version]
- Johann, S.V.; Gibbons, J.J.; O’Hara, B. GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J. Virol. 1992, 66, 1635–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.A.; Farrell, K.B.; Eiden, M.V. Properties of a unique form of the murine amphotropic leukemia virus receptor expressed on hamster cells. J. Virol. 1994, 68, 7697–7703. [Google Scholar] [CrossRef] [Green Version]
- Inden, M.; Iriyama, M.; Zennami, M.; Sekine, S.I.; Hara, A.; Yamada, M.; Hozumi, I. The type III transporters (PiT-1 and PiT-2) are the major sodium-dependent phosphate transporters in the mice and human brains. Brain Res. 2016, 1637, 128–136. [Google Scholar] [CrossRef]
- Kavanaugh, M.P.; Miller, D.G.; Zhang, W.; Law, W.; Kozak, S.L.; Kabat, D.; Miller, A.D. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. USA 1994, 91, 7071–7075. [Google Scholar] [CrossRef] [Green Version]
- Uckert, W.; WIllimsky, G.; Pedersen, F.S.; Blankenstein, T.; Pedersen, L. RNA levels of human retrovirus receptors Pit1 and Pit2 do not correlate with infectibility by three retroviral vector pseudotypes. Hum. Gene Ther. 1998, 9, 2619–2627. [Google Scholar] [CrossRef]
- Lenhard, B.; Sandelin, A.; Carninci, P. Metazoan promoters: Emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 2012, 13, 233–245. [Google Scholar] [CrossRef]
- Bai, L.; Collins, J.F.; Ghishan, F.K. Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am. J. Physiol. Cell Physiol. 2001, 279, C1135–C1143. [Google Scholar] [CrossRef]
- Collins, J.F.; Bai, L.; Ghishan, F.K. The SLC20 family of proteins: Dual functions as sodium-phosphate cotransporters and viral receptors. Pflug. Arch. 2004, 447, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Couasnay, G.; Bon, N.; Devignes, C.S.; Sourice, S.; Bianchi, A.; Véziers, J.; Weiss, P.; Elefteriou, F.; Provot, S.; Guicheux, J.; et al. PiT1/Slc20a1 is required for endoplasmic reticulum homeostasis, chondrocyte survival, and skeletal development. J. Bone Miner. Res. 2019, 34, 387–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keasey, M.P.; Lemos, R.R.; Hagg, T.; Oliveira, J.R. Vitamin-D receptor agonist calcitriol reduces calcification in vitro through selective upregulation of SLC20A2 but not SLC20A1 or XPR1. Sci. Rep. 2016, 6, 25802. [Google Scholar] [CrossRef] [Green Version]
- Michigami, T.; Kawai, M.; Yamazaki, M.; Ozono, K. Phosphate as a signaling molecule and its sensing mechanism. Physiol. Rev. 2018, 98, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.L.; Luo, Z.; Liu, C.X.; Chen, Q.L.; Tan, X.Y.; Zhu, Q.L.; Gong, Y. Differential effects of acute and chronic zinc (Zn) exposure on hepatic lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. Aquat. Toxicol. 2013, 132, 173–181. [Google Scholar] [CrossRef]
- Vedie, B.; Jeunemaitre, X.; Megnien, J.L.; Atger, V.; Simon, A.; Moatti, N. A new DNA polymorphism in the 5’ untranslated region of the human SREBP-1a is related to development of atherosclerosis in high cardiovascular risk population. Atherosclerosis 2001, 154, 589–597. [Google Scholar] [CrossRef]
- Ting, T.C.; Miyazaki-Anzai, S.; Masuda, M.; Levi, M.; Demer, L.L.; Tintut, Y.; Miyazaki, M. Increased lipogenesis and stearate accelerate vascular calcification in calcifying vascular cells. J. Biol. Chem. 2011, 286, 23938–23949. [Google Scholar] [CrossRef] [Green Version]
- Betancur, R.R.; Wiley, E.O.; Arratia, G.; Acero, A.; Bailly, N.; Miya, M.; Lecointre, G.; Orti, G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017, 17, 162. [Google Scholar] [CrossRef] [Green Version]
- Near, T.J.; Eytan, R.I.; Dornburg, A.; Kuhn, K.L.; Moore, J.A.; Davis, M.P.; Wainwright, P.C.; Friedman, M.; Smith, W.L. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl. Acad. Sci. USA 2012, 109, 13698–13703. [Google Scholar] [CrossRef] [Green Version]
- Ravi, V.; Venkatesh, B. Rapidly evolving fish genomes and teleost diversity. Curr. Opin. Genet. Dev. 2008, 18, 544–550. [Google Scholar] [CrossRef]
- Kassahn, K.S.; Dang, V.T.; Wilkins, S.J.; Perkins, A.C.; Ragan, M.A. Evolution of gene function and regulatory control after whole-genome duplication: Comparative analyses in vertebrates. Genome Res. 2009, 19, 1404–1418. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Hashiguchi, Y.; Nishida, M. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMV Evol. Biol. 2009, 9, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, A.; Kinne, R.K. Evolution of the Na-Pi cotransport systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bottger, P.; Pedersen, L. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem. 2011, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Farrell, K.B.; Tusnady, G.E.; Eiden, M.V. New structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape leukemia virus. J. Biol. Chem. 2009, 284, 29979–29987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virkki, L.V.; Biber, J.; Murer, H.; Forster, I.C. Phosphate transporters: A tale of two solute carrier families. Am. J. Physiol. Renal Physiol. 2007, 293, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Bottger, P.; Pedersen, L. Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function. J. Biol. Chem. 2002, 277, 42741–42747. [Google Scholar] [CrossRef] [Green Version]
- Bøttger, P.; Pedersen, L. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS J. 2005, 272, 3060–3074. [Google Scholar] [CrossRef]
- Tatsumi, S.; Segawa, H.; Morita, K.; Haga, H.; Kouda, T.; Yamamoto, H.; Inoue, Y.; Nii, T.; Katai, K.; Taketani, Y.; et al. Molecular cloning and hormonal regulation of Pit-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology 1998, 139, 1692–1699. [Google Scholar] [CrossRef]
- Nishimura, M.; Naito, S. Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 2008, 23, 22–44. [Google Scholar] [CrossRef] [Green Version]
- Beck, L.; Leroy, C.; Beck-Cormier, S.; Forand, A.; Salaün, C.; Paris, N.; Bernier, A.; Ureña-Torres, P.; Prié, D.; Ollero, M.; et al. The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS ONE 2010, 5, e9148. [Google Scholar] [CrossRef] [Green Version]
- Jensen, N.; Schroder, H.D.; Hejbol, E.K.; Fuchtbauer, E.M.; de Oliveira, J.R.; Pedersen, L. Loss of function of Slc20a2 associated with familial idiopathic basal ganglia calcification in human causes brain calcifications in mice. J. Mol. Neurosci. 2013, 51, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, J.A.; Tjian, R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat. Rev. Genet. 2010, 11, 549–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smale, S.T.; Kadonaga, J.T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 2003, 72, 449–479. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.M.; Leung, K.S.; Lee, K.H. TFBS identification based on genetic algorithm with combined representations and adaptive post-processing. Bioinformatics 2008, 24, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.H.; Tan, X.Y.; Xu, Y.C.; Zhao, T.; Zhang, L.H.; Luo, Z. Novel insights for SREBP1 as a key transcription factor in regulating lipogenesis in a freshwater teleost, grass carp Ctenopharyngodon idella. Br. J. Nutr. 2019, 122, 1201–1211. [Google Scholar] [CrossRef]
- Liang, J.J.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Liang, G.Y. Dietary available phosphorus requirement of juvenile grass carp (Ctenopharyngodon idella). Aquacult. Nutr. 2012, 18, 181–188. [Google Scholar] [CrossRef]
- Zhang, S.W. Effects of Dietary Phosphorus Levels on Growth, Body Composition and Lipid Metabolism of Lateolabrax japonicus Reared in Freshwater. Master’s Thesis, JiMei University, Xiamen, China, 2018. [Google Scholar]
- Li, X.; Yang, H.Y.; Giachelli, C.M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 2006, 98, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Shobeiri, N.; Adams, M.A.; Holden, R.M. Phosphate: An old bone molecule but new cardiovascular risk factor. Br. J. Clin. Pharmacol. 2014, 77, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Sidow, A. Genome duplications in the evolution of early vertebrates. Curr. Op. Genet. Develop. 1996, 6, 715–722. [Google Scholar] [CrossRef]
- Force, A.; Lynch, M.; Postlethwait, J. Preservation of duplicate genes by subfunctionalization. Am. Zool. 1999, 39, 78a. [Google Scholar]
- Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Selivanov, V.A.; Zeak, J.A.; Roca, J.; Cascante, M.; Trucco, M.; Votyakova, T.V. The role of external and matrix pH in mitochondrial reactive oxygen species generation. J. Biol. Chem. 2008, 283, 29292–29300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Tokumoto, M.; Tatsumoto, N.; Taniguchi, M.; Noguchi, H.; Nakano, T.; Masutani, K.; Ooboshi, H.; Tsuruya, K.; Kitazono, T. Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am. J. Physiol. Renal. Physiol. 2014, 306, 1418–1428. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Quan, X.; Hwang, K.H.; Xu, S.; Das, R.; Choi, S.K.; Wiederkehr, A.; Wollheim, C.B.; Cha, S.K.; Park, K.S. Mitochondrial oxidative stress mediates high-phosphate-induced secretory defects and apoptosis in insulin-secreting cells. Am. J. Physiol. Endocrinol. Metab. 2015, 308, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Enaka, M.; Muragaki, Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci. Rep. 2019, 9, 10366. [Google Scholar] [CrossRef] [Green Version]
- Sim, H.J.; Kim, J.H.; Kook, S.H.; Lee, S.Y.; Lee, J.C. Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways. Mol. Cell. Biochem. 2016, 419, 157–163. [Google Scholar] [CrossRef]
- Xiong, Y.X.; Zhao, B.; Zhang, W.J.; Jia, L.L.; Zhang, Y.P.; Xu, X. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway. Iran. J. Basic. Med. Sci. 2020, 23, 954–960. [Google Scholar]
- Fernandes, I.; Beliveau, R.; Friedlander, G.; Silve, C. NaPO4 cotransport type III (PiT1) expression in human embryonic kidney cells and regulation by PTH. Am. J. Physiol. Renal Physiol. 1999, 277, F543–F551. [Google Scholar] [CrossRef]
- Chien, M.L.; Foster, J.L.; Douglas, J.L.; Garcia, J.V. The amphotropic murine leukiemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. J. Virol. 1997, 71, 4564–4570. [Google Scholar] [CrossRef] [Green Version]
- Chien, M.L.; O’Neill, E.; Garcia, J.V. Phosphate depletion enhances the stability of the amphotropic murine leukemia virus receptor mRNA. Virology 1998, 240, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Crouthamel, M.H.; Lau, W.L.; Leaf, E.M.; Chavkin, N.W.; Wallingford, M.C.; Peterson, D.F.; Li, X.; Liu, Y.; Chin, M.T.; Levi, M.; et al. Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: Redundant roles for PiT-1 and PiT-2. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2625–2632. [Google Scholar] [CrossRef] [Green Version]
- Villa-Bellosta, R.; Sorribas, V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflug. Arch. 2010, 459, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, K.; Sakuma, M.; Tanaka, S.; Masuda, M.; Nakao-Muraoka, M.; Niida, Y.; Nakamatsu, Y.; Ito, M.; Taketani, Y.; Arai, H. High-fat diets provoke phosphorus absorption from the small intestine in rats. Nutrition 2020, 72, 110694. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhang, Y.; Ning, Z.; Li, Y.; Zhao, Q.; Lu, H.; Huang, R.; Xia, X.; Feng, Q.; et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 2015, 47, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Bon, N.; Couasnay, G.; Bourgine, A.; Sourice, S.; Beck-Cormier, S.; Guicheux, J.; Beck, L. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J. Biol. Chem. 2018, 293, 2102–2114. [Google Scholar] [CrossRef] [Green Version]
- Kawai, M.; Kinoshita, S.; Ozono, K.; Michigami, T. Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an α-Klotho-Deficient Model. J. Am. Soc. Nephrol. 2016, 27, 2810–2824. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, Y.T.; Xu, T.H.; Sun, W.; Tian, B.Y.; Sheng, Z.T.; Sun, L.; Liu, L.L.; Ma, J.F.; Wang, L.N.; et al. MicroRNA-30b regulates high phosphorus level-induced autophagy in vascular smooth muscle cells by targeting BECN1. Cell. Physiol. Biochem. 2017, 42, 530–536. [Google Scholar] [CrossRef]
- Imi, Y.; Yabiki, N.; Abuduli, M.; Masuda, M.; Yamanaka-Okumura, H.; Taketani, Y. High phosphate diet suppresses lipogenesis in white adipose tissue. J. Clin. Biochem. Nutr. 2018, 63, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.H.; Luo, Z.; Wu, K.; Fan, Y.F.; You, W.J.; Zhang, L.H. Structure and functional analysis of promoters from two liver isoforms of CPT I in grass carp Ctenopharyngodon Idella. Int. J. Mol. Sci. 2017, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, M.Q.; Luo, Z.; Xu, Y.H.; Li, D.D.; Pan, Y.X.; Wu, K. Functional analysis of promoters from three subtypes of the pi3k family and their roles in the regulation of lipid metabolism by insulin in yellow catfish Pelteobagrus fulvidraco. Int. J. Mol. Sci. 2018, 19, 265. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.H.; Lv, W.; Xu, Y.H.; Wei, X.L.; Xu, Y.C.; Luo, Z. Functional analysis of MTF-1 and MT promoters and their transcriptional response to zinc (Zn) and copper (Cu) in yellow catfish Pelteobagrus fulvidraco. Chemosphere 2020, 246, 125792. [Google Scholar] [CrossRef]
- Read, M.A.; Cordle, S.R.; Veach, R.A.; Carlisle, C.D.; Hawiger, J. Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc. Natl. Acad. Sci. USA 1993, 90, 9887–9891. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Vandesompele, J.; De-Preter, K.; Pattyn, F.; Poppe, B.; Van-Roy, N.; De-Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, R0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Genes/Name | Promoters/bp | 5‘UTR/bp | ORF/bp | 3’UTR/bp | Protein/bp | Full-Length/bp |
---|---|---|---|---|---|---|
slc20a1a | 1813 | 180 | 1935 | 377 | 644 | 2264 |
slc20a1b | 1804 | 76 | 1995 | 410 | 664 | 2453 |
slc20a2 | 1775 | 140 | 1989 | 79 | 662 | 2125 |
Genes | Ci-slc20a1b | Ci-slc20a2 | Danio rerio | Cyprinus carpio | Xenopus | Canis lupus | Mus musculus | Homo sapiens |
---|---|---|---|---|---|---|---|---|
Ci-slc20a1a | 73 | 61.9 | 92.4 | 94.7 | 67.4 | 67.0 | 66.9 | 67.7 |
Ci-slc20a1b | _ | 60.0 | 91.7 | 90.9 | 71.4 | 70.2 | 69.8 | 71.3 |
Ci-slc20a2 | _ | _ | 95.5 | 94.4 | 79.0 | 76.4 | 76.6 | 78.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, M.-Q.; Lv, W.-H.; Xu, Y.-H.; Luo, Z. Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella. Int. J. Mol. Sci. 2020, 21, 8228. https://doi.org/10.3390/ijms21218228
Zhuo M-Q, Lv W-H, Xu Y-H, Luo Z. Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella. International Journal of Molecular Sciences. 2020; 21(21):8228. https://doi.org/10.3390/ijms21218228
Chicago/Turabian StyleZhuo, Mei-Qin, Wu-Hong Lv, Yi-Huan Xu, and Zhi Luo. 2020. "Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella" International Journal of Molecular Sciences 21, no. 21: 8228. https://doi.org/10.3390/ijms21218228
APA StyleZhuo, M.-Q., Lv, W.-H., Xu, Y.-H., & Luo, Z. (2020). Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella. International Journal of Molecular Sciences, 21(21), 8228. https://doi.org/10.3390/ijms21218228