The Study of Zinc Ions Binding to αS1-, β- and κ-Casein
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of αS1CN, βCN, κCN
2.2. Kinetic Study of the Zinc Binding Process
2.3. Spectroscopic Analysis
2.4. Spectrometric Analysis
3. Materials and Methods
3.1. Characteristics of αS1CN, βCN and κCN
3.1.1. Isolation of αS1CN, βCN and κCN, Chromatographic Separation and Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry (MALDI-TOF/TOF-MS) Analysis
3.1.2. Isoelectric Point Determination
3.2. Kinetic Study of Zinc Ions Binding to αS1CN, βCN and κCN
- The zero-order kinetics model:
- The pseudo-first-order kinetics model:
- The pseudo-second-order kinetics model:
- The Weber–Morris intraparticle diffusion model:
3.3. Spectroscopic and Spectrometric Analysis
3.3.1. Fourier Transform Infrared Spectroscopic (FT-IR) and Raman Spectroscopy (Raman) Analysis of αS1CN, βCN and κCN
3.3.2. Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry (MALDI-TOF/TOF-MS) Analysis before and after Zing Binding to Isoforms of Casein
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
αS1CN | αS1-casein |
βCN | β-casein |
κCN | κ-casein |
Ala | Alanine |
Asp | Aspartic acid |
Glu | Glutamic acid |
Phe | Phenylalanine |
Pro | Proline |
Thr | Threonine |
Trp | Tryptophan |
Tyr | Tyrosine |
Ser | Serine |
CCP | Colloidal calcium phosphate |
FT-IR | Fourier transform infrared spectroscopy |
HPLC | High-performance liquid chromatography |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
References
- Bhat, M.Y.; Dar, T.A.; Singh, L.R. Casein Proteins: Structural and Functional Aspects. In Milk Proteins—From Structure to Biological Properties and Health Aspects; IntechOpen: London, UK, 2016; pp. 3–18. [Google Scholar]
- Imafidon, G.I.; Farkye, N.Y.; Spanier, A.M. Isolation, purification, and alteration of some functional groups of major milk proteins: A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 663–689. [Google Scholar] [CrossRef]
- Müller-Buschbaum, P.; Gebhardt, R.; Roth, S.V.; Metwalli, Z.E.; Doster, W. Effect of calcium concentration on the structure of casein micelles in thin films. Biophys. J. 2007, 93, 960–968. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. The Caseins: Structure, Stability, and Functionality, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780081007297. [Google Scholar]
- Glantz, M.; Devold, T.G.; Vegarud, G.E.; Lindmark Månsson, H.; Stålhammar, H.; Paulsson, M. Importance of casein micelle size and milk composition for milk gelation. J. Dairy Sci. 2010, 93, 1444–1451. [Google Scholar] [CrossRef] [Green Version]
- Pérès, J.M.; Bouhallab, S.; Petit, C.; Bureau, F.; Maubois, J.L.; Arhan, P.; Bouglé, D. Improvement of zinc intestinal absorption and reduction of zinc/iron interaction using metal bound to the caseinophosphopeptide 1-25 of β-casein. Reprod. Nutr. Dev. 1998, 38, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Pryshchepa, O.; Sagandykova, G.N.; Pomastowski, P.; Railean-Plugaru, V.; Król, A.; Rogowska, A.; Rodzik, A.; Sprynskyy, M.; Buszewski, B. A New Approach for Spontaneous Silver Ions Immobilization onto Casein. Int. J. Mol. Sci. 2019, 20, 3864. [Google Scholar] [CrossRef] [Green Version]
- Demott, B.J.; Dincer, B. Binding Added Iron to Various Milk Proteins. J. Dairy Sci. 1976, 59, 1557–1559. [Google Scholar] [CrossRef]
- Pomastowski, P.; Sprynskyy, M.; Buszewski, B. The study of zinc ions binding to casein. Colloids Surf. B Biointerfaces 2014, 120, 21–27. [Google Scholar] [CrossRef]
- Srinivas, S.; Prakash, V. Interaction of Zn (II) with bovine milk α-casein: Structure-function study. J. Food Biochem. 2011, 35, 1311–1326. [Google Scholar] [CrossRef]
- Farrell, H.M. Models for Casein Micelle Formation. J. Dairy Sci. 1973, 56, 1195–1206. [Google Scholar] [CrossRef]
- Broyard, C.; Gaucheron, F. Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Sci. Technol. 2015, 95, 831–862. [Google Scholar] [CrossRef]
- Głąb, T.K.; Boratyński, J. Potential of Casein as a Carrier for Biologically Active Agents. Top. Curr. Chem. 2017, 375, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, P.; Mitkov, I.; Sirakova, D.; Mehandgiiski, I.; Radoslavov, G. Measurement of Casein Micelle Size in Raw Dairy Cattle Milk by Dynamic Light Scattering. In Milk Proteins—From Structure to Biological Properties and Health Aspects; InTech: London, UK, 2016. [Google Scholar]
- Morr, C.V. Effect of Oxalate and Urea upon Ultracentrifugation Properties of Raw and Heated Skimmilk Casein Micelles. J. Dairy Sci. 1967, 50, 1744–1751. [Google Scholar] [CrossRef]
- Waugh, D.F.; Noble, R.W. Casein Micelles. Formation and Structure. J. Am. Chem. Soc. 1965, 87, 2246–2257. [Google Scholar] [CrossRef]
- Rose, D. Relation Between Micellar and Serum Casein in Bovine Milk. J. Dairy Sci. 1968, 51, 1897–1902. [Google Scholar] [CrossRef]
- Wilkins, T.D.; Velander, W. Isolation of recombinant proteins from milk. J. Cell. Biochem. 1992, 49, 333–338. [Google Scholar] [CrossRef]
- Donnelly, W.J. Chromatography of milk proteins on hydroxyapatite. J. Dairy Res. 1977, 44, 621–625. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, L.; Jia, Y.; Hu, Y.; Xu, Q.; Xu, X.; Huang, H. Counteraction of trehalose on N, N-dimethylformamide-induced Candida rugosa lipase denaturation: Spectroscopic insight and molecular dynamic simulation. PLoS ONE 2016, 11, e0152275. [Google Scholar] [CrossRef] [PubMed]
- Rouhier, N.; Gelhaye, E.; Jacquot, J.P. Glutaredoxin-dependent peroxiredoxin from poplar. Protein-protein interaction and catalytic mechanism. J. Biol. Chem. 2002, 277, 13609–13614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zänker, H.; Heine, K.; Weiss, S.; Brendler, V.; Husar, R.; Bernhard, G.; Gloe, K.; Henle, T.; Barkleit, A. Strong Uranium(VI) Binding onto Bovine Milk Proteins, Selected Proteins Sequences, and Model Peptides. Inorg. Chem. 2019, 58, 4173–4189. [Google Scholar] [CrossRef]
- Pomastowski, P.; Sprynskyy, M.; Žuvela, P.; Rafińska, K.; Milanowski, M.; Liu, J.J.; Yi, M.; Buszewski, B. Silver-Lactoferrin Nanocomplexes as a Potent Antimicrobial Agent. J. Am. Chem. Soc. 2016, 138, 7899–7909. [Google Scholar] [CrossRef]
- Dokmanić, I.; Šikić, M.; Tomić, S. Metals in proteins: Correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallogr. Sect. D Biol. Crystallogr. 2008, 64, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Awa, M.; Nishikawa, Y.; Kiyonaka, S.; Wakabayashi, M.; Ishihama, Y.; Hamachi, I. A conditional proteomics approach to identify proteins involved in zinc homeostasis. Nat. Methods 2016, 13, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Watt, N.T.; Taylor, D.R.; Kerrigan, T.L.; Griffiths, H.H.; Rushworth, J.V.; Whitehouse, I.J.; Hooper, N.M. Prion protein facilitates uptake of zinc into neuronal cells. Nat. Commun. 2012, 3, 1112–1134. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, H.; Morikawa, H.; Kamon, H.; Iguchi, M.; Hojyo, S.; Fukada, T.; Yamashita, S.; Kaisho, T.; Akira, S.; Murakami, M.; et al. Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 2006, 7, 971–977. [Google Scholar] [CrossRef]
- Harzer, G.; Kauer, H. Binding of zinc to casein. Am. J. Clin. Nutr. 1982, 35, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Pomastowski, P.P.; Dziubakiewicz, E.; Buszewski, B. Potencjał zeta—jego rola i znaczenie. Analityka 2012, 2, 19–23. [Google Scholar]
- Roosen-Runge, F.; Heck, B.S.; Zhang, F.; Kohlbacher, O.; Schreiber, F. Interplay of pH and binding of multivalent metal ions: Charge inversion and reentrant condensation in protein solutions. J. Phys. Chem. B 2013, 117, 5777–5787. [Google Scholar] [CrossRef] [Green Version]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef] [Green Version]
- Egito, A.S.; Miclo, L.; López, C.; Adam, A.; Girardet, J.M.; Gaillard, J.L. Separation and characterization of mares’ milk αs1-, β-, κ-caseins, γ-casein-like, and proteose peptone component 5-like peptides. J. Dairy Sci. 2002, 85, 697–706. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Ami, D.; Lavatelli, F.; Rognoni, P.; Palladini, G.; Raimondi, S.; Giorgetti, S.; Monti, L.; Doglia, S.M.; Natalello, A.; Merlini, G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: A FTIR microspectroscopy study. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herskovits, T.T. On the Conformation of Caseins. Optical Rotatory Properties. Biochemistry 1966, 5, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Michael Byler, D.; Farrell, H.M.; Susi, H. Raman Spectroscopic Study of Casein Structure. J. Dairy Sci. 1988, 71, 2622–2629. [Google Scholar] [CrossRef]
- Malin, E.L.; Brown, E.M.; Wickham, E.D.; Farrell, H.M. Contributions of terminal peptides to the associative behavior of αs1-casein. J. Dairy Sci. 2005, 88, 2318–2328. [Google Scholar] [CrossRef] [Green Version]
- Cestelli Guidi, M.; Mirri, C.; Fratini, E.; Licursi, V.; Negri, R.; Marcelli, A.; Amendola, R. In vivo skin leptin modulation after 14 MeV neutron irradiation: A molecular and FT-IR spectroscopic study. Anal. Bioanal. Chem. 2012, 404, 1317–1326. [Google Scholar] [CrossRef]
- Parikh, S.J.; Kubicki, J.D.; Jonsson, C.M.; Jonsson, C.L.; Hazen, R.M.; Sverjensky, D.A.; Sparks, D.L. Evaluating Glutamate and Aspartate Binding Mechanisms to Rutile (α-TiO2 ) via ATR-FTIR Spectroscopy and Quantum Chemical Calculations. Langmuir 2011, 27, 1778–1787. [Google Scholar] [CrossRef]
- Ryde, U. Carboxylate binding modes in zinc proteins: A theoretical study. Biophys. J. 1999, 77, 2777–2787. [Google Scholar] [CrossRef] [Green Version]
- Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, R.; Takeda, N.; Kulozik, U.; Doster, W. Structure and stabilizing interactions of casein micelles probed by high-pressure light scattering and FTIR. J. Phys. Chem. B 2011, 115, 2349–2359. [Google Scholar] [CrossRef]
- Thomas, G.J. Raman spectroscopy of protein and nucleic acid assemblies. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Li-Chan, E.C.Y. Vibrational spectroscopy applied to the study of milk proteins. Dairy Sci. Technol. 2007, 87, 443–458. [Google Scholar] [CrossRef]
- Li-Chan, E.; Nakai, S.; Hirotsuka, M. Raman spectroscopy as a probe of protein structure in food systems. In Protein Structure-Function Relationships in Foods; Springer: Boston, MA, USA, 1994; pp. 163–197. [Google Scholar]
- Almeida, M.R.; Oliveira, K.D.S.; Stephani, R.; De Oliveira, L.F.C. Fourier-transform Raman analysis of milk powder: A potential method for rapid quality screening. J. Raman Spectrosc. 2011, 42, 1548–1552. [Google Scholar] [CrossRef]
- Jarvis, R.M.; Blanch, E.W.; Golovanov, A.P.; Screen, J.; Goodacre, R. Quantification of casein phosphorylation with conformational interpretation using Raman spectroscopy. Analyst 2007, 132, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Kurouski, D.; Van Duyne, R.P.; Lednev, I.K. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: A review. Analyst 2015, 140, 4967–4980. [Google Scholar] [CrossRef]
- Farrell, H.M.; Kumosinski, T.F.; Cooke, P.H.; King, G.; Hoagland, P.D.; Wickham, E.D.; Dower, H.J.; Groves, M.L. Particle sizes of purified κ-casein: Metal effect and correspondence with predicted three-dimensional molecular models. J. Protein Chem. 1996, 15, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Kumosinski, T.F.; Brown, E.M.; Farrell, H.M. Three-Dimensional Molecular Modeling of Bovine Caseins: κ-Casein. J. Dairy Sci. 1991, 74, 2879–2887. [Google Scholar] [CrossRef]
- Audagnotto, M.; Dal Peraro, M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput. Struct. Biotechnol. J. 2017, 15, 307–319. [Google Scholar] [CrossRef]
- Pomastowski, P.; Walczak, J.; Gawin, M.; Bocian, S.; Piekoszewski, W.; Buszewski, B. HPLC separation of casein components on a diol-bonded silica column with MALDI TOF/TOF MS identification. Anal. Methods 2014, 6, 5236–5244. [Google Scholar] [CrossRef]
- Vincent, D.; Elkins, A.; Condina, M.R.; Ezernieks, V.; Rochfort, S. Quantitation and identification of intact major milk proteins for high-throughput LC-ESI-Q-TOF MS analyses. PLoS ONE 2016, 11, e0163471. [Google Scholar] [CrossRef]
- Mamone, G.; Caira, S.; Garro, G.; Mauriello, R.; Nicolai, M.A.; Picariello, G.; Calabrese, M.G.; Ferranti, P.; Chianese, L.; Addeo, F. Challenging the heterogeneity of casein by an IEF/MALDI-TOF “virtual 2D-like” approach. Food Res. Int. 2013, 54, 1263–1272. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Camirand, W.M.; Pavlath, A.E. Structures and Functionalities of Milk Proteins; Taylor & Francis: Abingdon, UK, 1996; Volume 36, ISBN 1040839960952. [Google Scholar]
- Pisano, A.; Packer, N.H.; Redmond, J.W.; Williams, K.L.; Gooley, A.A. Characterization of O-linked glycosylation motifs in the glycopeptide domain of bovine κ-casein. Glycobiology 1994, 4, 837–844. [Google Scholar] [CrossRef]
Zn-αS1CN | Zn-βCN | Zn-κCN | ||
---|---|---|---|---|
Zero-order kinetic model | k0 [(mg/L)/min] | 3.02 | 0.54 | 7.00 |
0.026 | 0.030 | 0.085 | ||
0.0033 | ||||
Pseudo-first-order kinetic model | k1 [1/min] | 0.018 | 0.13 | 0.76 |
S | 1.32 | 0.70 | 0.58 | |
R2 | 0.075 | 0.78 | 0.90 | |
Pseudo-second-order kinetic model | k2 [(g/mg)/min] | 0.0065 | 0.050 | 0.21 |
S | 1.02 | 0.80 | 0.40 | |
R2 | 0.45 | 0.71 | 0.96 | |
Intraparticle diffusion model | A [mg/g] | 2.58 | 3.56 | 5.30 |
Kip [(mg/g)/min−0.5] | 0.094 | 0.16 | 0.19 | |
S | 0.25 | 0.083 | 0.066 | |
R2 | 0.94 | 0.92 | 0.96 | |
Distribution coefficient, the Gibbs’ free energy change of the metal ions sorption | qe [mg/g] | 5.89 | 5.16 | 6.85 |
Ce [mg/L] | 10.53 | 12.37 | 8.13 | |
Kd | 559.49 | 417.25 | 842.62 | |
T [K] | 295 | 295 | 295 | |
ΔG0 [kJ/mol] | −15.52 | −14.80 | −16.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodzik, A.; Pomastowski, P.; Railean-Plugaru, V.; Sprynskyy, M.; Buszewski, B. The Study of Zinc Ions Binding to αS1-, β- and κ-Casein. Int. J. Mol. Sci. 2020, 21, 8096. https://doi.org/10.3390/ijms21218096
Rodzik A, Pomastowski P, Railean-Plugaru V, Sprynskyy M, Buszewski B. The Study of Zinc Ions Binding to αS1-, β- and κ-Casein. International Journal of Molecular Sciences. 2020; 21(21):8096. https://doi.org/10.3390/ijms21218096
Chicago/Turabian StyleRodzik, Agnieszka, Paweł Pomastowski, Viorica Railean-Plugaru, Myroslav Sprynskyy, and Bogusław Buszewski. 2020. "The Study of Zinc Ions Binding to αS1-, β- and κ-Casein" International Journal of Molecular Sciences 21, no. 21: 8096. https://doi.org/10.3390/ijms21218096
APA StyleRodzik, A., Pomastowski, P., Railean-Plugaru, V., Sprynskyy, M., & Buszewski, B. (2020). The Study of Zinc Ions Binding to αS1-, β- and κ-Casein. International Journal of Molecular Sciences, 21(21), 8096. https://doi.org/10.3390/ijms21218096