Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection
Abstract
:1. Introduction
2. Results
2.1. Formulation Optimization—Without Soil Load
2.2. Formulation Optimization—Improving Activity against Gram-Negative Bacteria
2.3. Formulation Optimization—With Soil Load
2.4. Surface Wiping—Mechanical and Formulation Efficacy
2.5. Formulation Chemical Stability
3. Discussion
4. Materials and Methods
4.1. Chemicals and Test Solutions
4.2. Microorganisms, Culture Conditions, and Test Solutions
4.3. Bactericidal Suspension Test
4.4. Surface Wiping Assay
4.4.1. Preparation of the Contaminated Surface D1
4.4.2. Preparation of the Wipe Carrier
4.4.3. Wiping Test
4.5. Evaluation of Phytochemical/Biocide Chemical Interaction Study by Nuclear Magnetic Resonance Spectroscopy
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BSA | Bovine serum albumin |
CFU | Colony-forming units |
CTAB | Cetyltrimethylammonium bromide |
DMSO | Dimethyl sulfoxide |
EDTA | Ethylenediaminetetraacetic acid disodium salt |
NMR | Nuclear magnetic resonance |
PB | Phosphate buffer |
QAC | Quaternary ammonium compound |
References
- Bintsis, T. Microbial pollution and food safety. AIMS Microbiol. 2018, 4, 377–396. [Google Scholar] [CrossRef] [PubMed]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018, 9, 1–18. [Google Scholar] [CrossRef]
- Hassan, M.Z.; Sturm-Ramirez, K.; Rahman, M.Z.; Hossain, K.; Aleem, M.A.; Bhuiyan, M.U.; Islam, M.M.; Rahman, M.; Gurley, E.S. Contamination of hospital surfaces with respiratory pathogens in Bangladesh. PLoS ONE 2019, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutala, W.A.; Weber, D.J.; Committee, H.I.C.P.A. Guideline for Disinfection and Sterilization in Healthcare Facilities; updated 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2008. [Google Scholar]
- Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E. Residual viral and bacterial contamination of surfaces after cleaning and disinfection. Appl. Environ. Microbiol. 2012, 78, 7769–7775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, S.; Schneider, K.; Gartiser, S.; Heger, W.; Mangelsdorf, I. Consumer exposure to biocides - identification of relevant sources and evaluation of possible health effects. Environ. Health 2010, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, J.-Y. Virus susceptibility to biocides: An understanding. Rev. Med. Microbiol. 2001, 12, 63–74. [Google Scholar] [CrossRef]
- Bhatta, D.R.; Hamal, D.; Shrestha, R.; Hosuru Subramanya, S.; Baral, N.; Singh, R.K.; Nayak, N.; Gokhale, S. Bacterial contamination of frequently touched objects in a tertiary care hospital of Pokhara, Nepal: How safe are our hands? Antimicrob. Resist Infect. Control. 2018, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraise, A.P. Decontamination of the environment and medical equipment in hospitals. In Principles and Practice of Disinfection, Preservation and Sterilization, 5th ed.; Russell, H.A.S., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2013; pp. 445–458. [Google Scholar]
- Fraise, A.P. Biocide abuse and antimicrobial resistance—A cause for concern? J. Antimicrob. Chemother. 2002, 49, 11–12. [Google Scholar] [CrossRef]
- Lei, H.; Li, Y.; Xiao, S.; Yang, X.; Lin, C.; Norris, S.L.; Wei, D.; Hu, Z.; Ji, S. Logistic growth of a surface contamination network and its role in disease spread. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care 2015, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rutala, W.A.; Weber, D.J. Disinfection and sterilization in health care facilities: What clinicians need to know. Clin. Infect. Dis. 2004, 39, 702–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward chlorhexidine in oral bacteria—Is there cause for concern? Front. Microbiol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, J.Y. Bacterial resistance to biocides in the healthcare environment: Should it be of genuine concern? J. Hosp. Infect. 2007, 65 (Suppl. 2), 60–72. [Google Scholar] [CrossRef]
- Maillard, J.-Y. Antimicrobial biocides in the healthcare environment: Efficacy, usage, policies, and perceived problems. Ther. Clin. Risk Manag. 2005, 1, 307–320. [Google Scholar]
- Ribeiro, M.; Simões, L.C.; Simões, M. Biocides. In Encyclopedia of Microbiology, 4th ed.; Schmidt, T.M., Ed.; Academic Press: Oxford, UK, 2018; pp. 478–490. [Google Scholar]
- Russell, A.D. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J. Hosp. Infect. 2004, 57, 97–104. [Google Scholar] [CrossRef]
- Fischbach, M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 2011, 14, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Pieren, M.; Tigges, M. Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance. Curr. Opin. Pharmacol. 2012, 12, 551–555. [Google Scholar] [CrossRef]
- Malheiro, J.F.; Maillard, J.Y.; Borges, F.; Simões, M. Biocide potentiation using cinnamic phytochemicals and derivatives. Molecules 2019, 24, 3918. [Google Scholar] [CrossRef] [Green Version]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef]
- Ioannou, C.J.; Hanlon, G.W.; Denyer, S.P. Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Deng, J.; Liang, J.; Shan, C.; Tong, M. Efficient bacteria capture and inactivation by cetyltrimethylammonium bromide modified magnetic nanoparticles. Colloids Surf. B Biointerfaces 2015, 136, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Tsuchido, T.; Matsumura, Y. Antimicrobial cationic surfactant, cetyltrimethylammonium bromide, induces superoxide stress in Escherichia coli cells. J. Appl. Microbiol. 2011, 110, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Khan, A.A.; Ahmed, I.; Musaddiq, M.; Ahmed, K.S.; Polasa, H.; Rao, L.V.; Habibullah, C.M.; Sechi, L.A.; Ahmed, N. Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob. 2005, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006, 54, 2745–2749. [Google Scholar] [CrossRef]
- Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 1–49. [Google Scholar] [CrossRef]
- Poole, S.K.; Poole, C.F. Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce. Analyst 1994, 119, 113–120. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) No 872/2012, 2012. List of Flavouring Substances Provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/eli/reg_impl/2012/872/oj (accessed on 21 August 2020).
- CEN, the European Committee for Standardization. EN 1276:2009 Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Bactericidal Activity of Chemical Disinfectants and Antiseptics Used in Food, Industrial, Domestic and Institutional Areas—Test Method and Requirements (Phase 2, Step 1). Available online: https://infostore.saiglobal.com/preview/98699354436.pdf?sku=859672_SAIG_NSAI_NSAI_2045153 (accessed on 23 October 2020).
- Finnegan, S.; Percival, S.L. EDTA: An antimicrobial and antibiofilm agent for use in wound care. Adv. Wound Care 2015, 4, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Vale, J.; Ribeiro, M.; Abreu, A.C.; Soares-Silva, I.; Simões, M. The use of selected phytochemicals with EDTA against Escherichia coli and Staphylococcus epidermidis single- and dual-species biofilms. Lett. Appl. Microbiol. 2019, 68, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Sattar, S.A.; Maillard, J.Y. The crucial role of wiping in decontamination of high-touch environmental surfaces: Review of current status and directions for the future. Am. J. Infect. Control. 2013, 41, S97–S104. [Google Scholar] [CrossRef]
- Ismaïl, R.; Aviat, F.; Michel, V.; Le Bayon, I.; Gay-Perret, P.; Kutnik, M.; Fédérighi, M. Methods for recovering microorganisms from solid surfaces used in the food industry: A review of the literature. Int. J. Environ. Res. Public Health 2013, 10, 6169–6183. [Google Scholar] [CrossRef]
- Panousi, M.N.; Williams, G.J.; Girdlestone, S.; Hiom, S.J.; Maillard, J.Y. Evaluation of alcohol wipes used during aseptic manufacturing. Lett. Appl. Microbiol. 2009, 48, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, J.F.; Gomes, I.; Borges, A.; Bastos, M.M.S.M.; Maillard, J.Y.; Borges, F.; Simões, M. Phytochemical profiling as a solution to palliate disinfectant limitations. Biofouling 2016, 32, 1007–1016. [Google Scholar] [CrossRef]
- Malheiro, J.F.; Maillard, J.Y.; Borges, F.; Simões, M. Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control. Int. Biodeterior. Biodegrad. 2018, 141, 71–78. [Google Scholar] [CrossRef]
- Ramanaiah, M.; Sailaja, B.B.V. Protonation equilibria of L-phenylalanine and maleic acid in cationic micellar media. Chem. Speciat. Bioavailab. 2014, 26, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.O.; Holley, R.A. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004, 70, 5750–5755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, F.; Bojko, B.; Bessonneau, V.; Pawliszyn, J. Cinnamaldehyde characterization as an antibacterial agent toward E. coli metabolic profile using 96-blade solid-phase microextraction coupled to liquid chromatography-mass spectrometry. J. Proteome. Res. 2016, 15, 963–975. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M. Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods. J. Agric. Food Chem. 2017, 65, 10406–10423. [Google Scholar] [CrossRef]
- Wang, L.-H.; Wang, M.-S.; Zeng, X.-A.; Gong, D.-M.; Huang, Y.-B. An in vitro investigation of the inhibitory mechanism of β-galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3189–3198. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, K.; Yang, H.; Zhang, Z.; Yuan, Y.; Yue, T. Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front. Microbiol. 2018, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D. Gram-negative resistance. ACS Infect. Dis. 2015, 1, 507. [Google Scholar] [CrossRef] [Green Version]
- Lambert, R.J.W.; Hanlon, G.W.; Denyer, S.P. The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa. J. Appl. Microbiol. 2004, 96, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Kumar, S.; Payasi, A. A novel approach to combat acquired multiple resistance in Escherichia coli by using EDTA as efflux pump inhibitor. J. Microb. Biochem. Technol. 2012, 04, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Sung, W.S.; Lee, D.G. Mechanism of decreased susceptibility for Gram-negative bacteria and synergistic effect with ampicillin of indole-3-carbinol. Biol. Pharm. Bull 2008, 31, 1798–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CEN, the European Committee for Standardization. EN 16615:2015 Chemical disinfectants and antiseptics—Quantitative Test Method for the Evaluation of Bactericidal and Yeasticidal Activity on Nonporous Surfaces with Mechanical Action Employing Wipes in the Medical Area (4-field test)—Test Method and Requirements (Phase 2, Step 2). Available online: https://infostore.saiglobal.com/preview/98705130228.pdf?sku=878806_SAIG_NSAI_NSAI_2088323 (accessed on 1 April 2015).
- ASTM. E2967—15 Standard Test Method for Assessing the Ability of Pre-Wetted Towelettes to Remove and Transfer Bacterial Contamination on Hard, Non-Porous Environmental Surfaces Using the Wiperator; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar] [CrossRef]
- Williams, G.J.; Denyer, S.P.; Hosein, I.K.; Hill, D.W.; Maillard, J.Y. The development of a new three-step protocol to determine the efficacy of disinfectant wipes on surfaces contaminated with Staphylococcus aureus. J. Hosp. Infect. 2007, 67, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Siani, H.; Cooper, C.; Maillard, J.Y. Efficacy of “sporicidal” wipes against Clostridium difficile. Am. J. Infect. Control 2011, 39, 212–218. [Google Scholar] [CrossRef] [PubMed]
Cinnamaldehyde (mM) | EDTA (mM) | CTAB (mM) |
---|---|---|
1 | 10 | 0.02 |
25 | 0.02 < (CTAB) < 0.5 | |
0.5 | ||
0.5 < (CTAB) < 1 | ||
1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malheiro, J.F.; Oliveira, C.; Cagide, F.; Borges, F.; Simões, M.; Maillard, J.-Y. Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection. Int. J. Mol. Sci. 2020, 21, 7852. https://doi.org/10.3390/ijms21217852
Malheiro JF, Oliveira C, Cagide F, Borges F, Simões M, Maillard J-Y. Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection. International Journal of Molecular Sciences. 2020; 21(21):7852. https://doi.org/10.3390/ijms21217852
Chicago/Turabian StyleMalheiro, Joana F., Catarina Oliveira, Fernando Cagide, Fernanda Borges, Manuel Simões, and Jean-Yves Maillard. 2020. "Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection" International Journal of Molecular Sciences 21, no. 21: 7852. https://doi.org/10.3390/ijms21217852
APA StyleMalheiro, J. F., Oliveira, C., Cagide, F., Borges, F., Simões, M., & Maillard, J.-Y. (2020). Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection. International Journal of Molecular Sciences, 21(21), 7852. https://doi.org/10.3390/ijms21217852