High-Resolution Mass Spectrometry for In Vivo Proteome Dynamics using Heavy Water Metabolic Labeling
Abstract
1. Introduction
2. Results and Discussions
3. Materials and Methods
Estimation of the Rate Constant
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
BWE | body water enrichment |
HRMS | high-resolution mass spectrometry |
LC–MS | liquid chromatography and mass spectrometry |
m/z | mass-to-charge ration |
NEH | number of exchangeable hydrogens |
QToF | quadrupole time-of-flight |
R | resolution |
RA | relative abundance |
References
- Uussing, H.H. The Rate of Protein Renewal in Mice and Rats Studied by Means of Heavy Hydrogen. Acta Physiol. Scand. 1941, 2, 209–221. [Google Scholar] [CrossRef]
- Gasier, H.G.; Fluckey, J.D.; Previs, S.F. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr. Metab. (Lond.) 2010, 7, 31. [Google Scholar] [CrossRef]
- Shekar, K.C.; Li, L.; Dabkowski, E.R.; Xu, W.; Ribeiro, R.F., Jr.; Hecker, P.A.; Recchia, F.A.; Sadygov, R.G.; Willard, B.; Kasumov, T.; et al. Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity. J. Mol. Cell. Cardiol. 2014, 75, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Wang, D.; Kim, A.K.; Lau, E.; Lin, A.J.; Liem, D.A.; Zhang, J.; Zong, N.C.; Lam, M.P.; Ping, P. Metabolic labeling reveals proteome dynamics of mouse mitochondria. Mol. Cell. Proteom. 2012, 11, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Hellerstein, M.K.; Hoh, R.A.; Hanley, M.B.; Cesar, D.; Lee, D.; Neese, R.A.; McCune, J.M. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Investig. 2003, 112, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Previs, S.F.; Fatica, R.; Chandramouli, V.; Alexander, J.C.; Brunengraber, H.; Landau, B.R. Quantifying rates of protein synthesis in humans by use of 2H2O: Application to patients with end-stage renal disease. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E665–E672. [Google Scholar] [CrossRef]
- Lee, K.; Haddad, A.; Osme, A.; Kim, C.; Borzou, A.; Ilchenko, S.; Allende, D.; Dasarathy, S.; McCullough, A.; Sadygov, R.G.; et al. Hepatic Mitochondrial Defects in a Nonalcoholic Fatty Liver Disease Mouse Model Are Associated with Increased Degradation of Oxidative Phosphorylation Subunits. Mol. Cell. Proteom. 2018, 17, 2371–2386. [Google Scholar] [CrossRef]
- Sadygov, R.G.; Avva, J.; Rahman, M.; Lee, K.; Ilchenko, S.; Kasumov, T.; Borzou, A. d2ome, Software for in Vivo Protein Turnover Analysis Using Heavy Water Labeling and LC-MS, Reveals Alterations of Hepatic Proteome Dynamics in a Mouse Model of NAFLD. J. Proteome Res. 2018, 17, 3740–3748. [Google Scholar] [CrossRef]
- Lam, M.P.; Wang, D.; Lau, E.; Liem, D.A.; Kim, A.K.; Ng, D.C.; Liang, X.; Bleakley, B.J.; Liu, C.; Tabaraki, J.D.; et al. Protein kinetic signatures of the remodeling heart following isoproterenol stimulation. J. Clin. Investig. 2014, 124, 1734–1744. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Franchi, M.V.; Brook, M.S.; Narici, M.V.; Williams, J.P.; Mitchell, W.K.; Szewczyk, N.J.; Greenhaff, P.L.; Atherton, P.J.; Smith, K. A validation of the application of D2O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E571–E579. [Google Scholar] [CrossRef]
- Miller, B.F.; Baehr, L.M.; Musci, R.V.; Reid, J.J.; Peelor, F.F., 3rd; Hamilton, K.L.; Bodine, S.C. Muscle-specific changes in protein synthesis with aging and reloading after disuse atrophy. J. Cachexia Sarcopenia Muscle 2019, 10, 1195–1209. [Google Scholar] [CrossRef]
- Golizeh, M.; Lee, K.; Ilchenko, S.; Osme, A.; Bena, J.; Sadygov, R.G.; Kashyap, S.R.; Kasumov, T. Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic. Biol. Med. 2017, 113, 461–469. [Google Scholar] [CrossRef]
- Li, L.; Bebek, G.; Previs, S.F.; Smith, J.D.; Sadygov, R.G.; McCullough, A.J.; Willard, B.; Kasumov, T. Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of NAFLD. J. Proteome Res. 2016, 15, 3388–3404. [Google Scholar] [CrossRef]
- Kasumov, T.; Ilchenko, S.; Li, L.; Rachdaoui, N.; Sadygov, R.G.; Willard, B.; McCullough, A.J.; Previs, S. Measuring protein synthesis using metabolic 2H labeling, high-resolution mass spectrometry, and an algorithm. Anal. Biochem. 2011, 412, 47–55. [Google Scholar] [CrossRef]
- Lau, E.; Cao, Q.; Ng, D.C.; Bleakley, B.J.; Dincer, T.U.; Bot, B.M.; Wang, D.; Liem, D.A.; Lam, M.P.; Ge, J.; et al. A large dataset of protein dynamics in the mammalian heart proteome. Sci. Data 2016, 3, 160015. [Google Scholar] [CrossRef]
- Naylor, B.C.; Porter, M.T.; Wilson, E.; Herring, A.; Lofthouse, S.; Hannemann, A.; Piccolo, S.R.; Rockwood, A.L.; Price, J.C. DeuteRater: A tool for quantifying peptide isotope precision and kinetic proteomics. Bioinformatics 2017, 33, 1514–1520. [Google Scholar] [CrossRef]
- Papageorgopoulos, C.; Caldwell, K.; Shackleton, C.; Schweingrubber, H.; Hellerstein, M.K. Measuring protein synthesis by mass isotopomer distribution analysis (MIDA). Anal. Biochem. 1999, 267, 1–16. [Google Scholar] [CrossRef]
- Fornasiero, E.F.; Mandad, S.; Wildhagen, H.; Alevra, M.; Rammner, B.; Keihani, S.; Opazo, F.; Urban, I.; Ischebeck, T.; Sakib, M.S.; et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 2018, 9, 4230. [Google Scholar] [CrossRef]
- Goh, B.; Kim, J.; Seo, S.; Kim, T.Y. High-Throughput Measurement of Lipid Turnover Rates Using Partial Metabolic Heavy Water Labeling. Anal. Chem. 2018, 90, 6509–6518. [Google Scholar] [CrossRef]
- Pinnick, K.E.; Gunn, P.J.; Hodson, L. Measuring Human Lipid Metabolism Using Deuterium Labeling: In Vivo and In Vitro Protocols. Methods Mol. Biol. 2019, 1862, 83–96. [Google Scholar]
- Busch, R.; Siah, I.M.; Gee, T.A.; Hellerstein, M.K. Heavy water labeling of DNA for measurement of cell proliferation and recruitment during primary murine lymph node responses against model antigens. J. Immunol. Methods 2008, 337, 24–34. [Google Scholar] [CrossRef]
- Farthing, D.E.; Buxbaum, N.P.; Lucas, P.J.; Maglakelidze, N.; Oliver, B.; Wang, J.; Hu, K.; Castro, E.; Bare, C.V.; Gress, R.E. Comparing DNA enrichment of proliferating cells following administration of different stable isotopes of heavy water. Sci. Rep. 2017, 7, 4043. [Google Scholar] [CrossRef]
- Zhang, Y.; Fonslow, B.R.; Shan, B.; Baek, M.C.; Yates, J.R., III. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013, 113, 2343–2394. [Google Scholar] [CrossRef]
- Yates, J.R., III; Eng, J.K.; McCormack, A.L.; Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 1995, 67, 1426–1436. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Wang, B.; Sun, G.; Anderson, D.R.; Jia, M.; Previs, S.; Anderson, V.E. Isotopologue distributions of peptide product ions by tandem mass spectrometry: Quantitation of low levels of deuterium incorporation. Anal. Biochem. 2007, 367, 40–48. [Google Scholar] [CrossRef][Green Version]
- Claydon, A.J.; Beynon, R. Proteome dynamics: Revisiting turnover with a global perspective. Mol. Cell. Proteom. 2012, 11, 1551–1565. [Google Scholar] [CrossRef]
- Guan, S.; Price, J.C.; Prusiner, S.B.; Ghaemmaghami, S.; Burlingame, A.L. A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling. Mol. Cell. Proteom. 2011, 10, M111. [Google Scholar] [CrossRef]
- Hsieh, E.J.; Shulman, N.J.; Dai, D.F.; Vincow, E.S.; Karunadharma, P.P.; Pallanck, L.; Rabinovitch, P.S.; MacCoss, M.J. Topograph, a software platform for precursor enrichment corrected global protein turnover measurements. Mol. Cell. Proteom. 2012, 11, 1468–1474. [Google Scholar] [CrossRef]
- Sadygov, V.R.; Zhang, W.; Sadygov, R.G. Timepoint Selection Strategy for In Vivo Proteome Dynamics from Heavy Water Metabolic Labeling and LC-MS. J. Proteome Res. 2020, 19, 2105–2112. [Google Scholar] [CrossRef]
- Su, X.; Lu, W.; Rabinowitz, J.D. Metabolite Spectral Accuracy on Orbitraps. Anal. Chem. 2017, 89, 5940–5948. [Google Scholar] [CrossRef]
- Ilchenko, S.; Previs, S.F.; Rachdaoui, N.; Willard, B.; McCullough, A.J.; Kasumov, T. An improved measurement of isotopic ratios by high resolution mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 309–312. [Google Scholar] [CrossRef] [PubMed]
- MacCoss, M.J.; Wu, C.C.; Matthews, D.E.; Yates, J.R., III. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal. Chem. 2005, 77, 7646–7653. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, A.L.; Erve, J.C. Mass spectral peak distortion due to Fourier transform signal processing. J. Am. Soc. Mass Spectrom. 2014, 25, 2163–2176. [Google Scholar] [CrossRef]
- Angel, T.E.; Naylor, B.C.; Price, J.C.; Evans, C.; Szapacs, M. Improved Sensitivity for Protein Turnover Quantification by Monitoring Immonium Ion Isotopologue Abundance. Anal. Chem. 2019, 91, 9732–9740. [Google Scholar] [CrossRef] [PubMed]
- Busch, R.; Kim, Y.K.; Neese, R.A.; Schade-Serin, V.; Collins, M.; Awada, M.; Gardner, J.L.; Beysen, C.; Marino, M.E.; Misell, L.M.; et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 2006, 1760, 730–744. [Google Scholar] [CrossRef] [PubMed]
- Byrd, R.H.; Lu, P.H.; Nocedal, J.; Zhu, C.Y. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
Number of | Resolution (×1000) | ||||
---|---|---|---|---|---|
30 | 60 | 120 | 240 | 480 | |
quantified proteins | 91 | 97 | 92 | 86 | 58 |
proteins with 3 or more unique peptides | 32 | 29 | 23 | 21 | 13 |
proteins with CV ≤ 0.3 | 45 | 41 | 39 | 26 | 10 |
peptides usable for proteome dynamics | 454 | 472 | 421 | 363 | 219 |
identified but unquantifiable proteins | 13 | 10 | 16 | 17 | 35 |
Proteins | QToF1 | QToF2 | Resolution (×1000) | Linear Coefficient (×10−3) | ||||
---|---|---|---|---|---|---|---|---|
30 | 60 | 120 | 240 | 480 | ||||
Albumin | 0.170 | 0.224 | 0.158 | 0.154 | 0.134 | 0.101 | 0.072 | −0.2 ** |
Serotransferrin | 0.391 | 0.455 | 0.340 | 0.344 | 0.329 | 0.244 | 0.168 | −0.4 ** |
Alpha-2-macroglobulin | 0.309 | 0.352 | 0.258 | 0.260 | 0.235 | 0.136 | 0.080 | −0.4 ** |
Hemopexin | 0.387 | 0.504 | 0.573 | 0.505 | 0.360 | 0.375 | 0.339 | −0.4 |
Apolipoprotein A-I | 0.629 | 0.570 | 0.768 | 0.654 | 0.599 | 0.438 | 0.069 | −1.5 ** |
Complement C3 | 1.277 | 2.08 | 1.019 | 1.174 | 1.169 | 0.788 | 0.142 | −2.2 * |
Carboxylesterase 1C | 0.522 | 0.215 | 0.625 | 0.414 | 0.538 | 0.392 | 0.300 | −0.5 |
Murinoglobulin-1 | 0.321 | 0.374 | 0.343 | 0.316 | 0.247 | 0.161 | −0.031 | −0.7 ** |
Serine protease inhibitor A3K | 0.466 | 0.497 | 0.466 | 0.453 | 0.412 | 0.284 | 0.193 | −0.6 ** |
Transthyretin | 1.087 | 1.203 | 1.095 | 1.02 | 0.877 | 0.95 | 0.620 | −0.9 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadygov, R.G. High-Resolution Mass Spectrometry for In Vivo Proteome Dynamics using Heavy Water Metabolic Labeling. Int. J. Mol. Sci. 2020, 21, 7821. https://doi.org/10.3390/ijms21217821
Sadygov RG. High-Resolution Mass Spectrometry for In Vivo Proteome Dynamics using Heavy Water Metabolic Labeling. International Journal of Molecular Sciences. 2020; 21(21):7821. https://doi.org/10.3390/ijms21217821
Chicago/Turabian StyleSadygov, Rovshan G. 2020. "High-Resolution Mass Spectrometry for In Vivo Proteome Dynamics using Heavy Water Metabolic Labeling" International Journal of Molecular Sciences 21, no. 21: 7821. https://doi.org/10.3390/ijms21217821
APA StyleSadygov, R. G. (2020). High-Resolution Mass Spectrometry for In Vivo Proteome Dynamics using Heavy Water Metabolic Labeling. International Journal of Molecular Sciences, 21(21), 7821. https://doi.org/10.3390/ijms21217821