Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis
Abstract
:1. Introduction
2. Results
2.1. Differentially Expressed mRNAs and miRNA in CC Based on TCGA Data
2.2. Functional Enrichment Analysis
2.3. Gene Network Analysis
2.4. mRNA-miRNA Interactions in CC.
3. Discussion
4. Materials and Methods
4.1. TCGA Data Collection
4.2. Differentially Expressed Analysis and Survival Analysis
4.3. OncoLnc
4.4. Gene Enrichment Analysis
4.5. Gene Network analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luo, F.; Wen, Y.; Zhou, H.; Li, Z. Roles of long non-coding RNAs in cervical cancer. Life Sci. 2020, 256, 117981. [Google Scholar] [CrossRef]
- Han, C.; Zhao, F.; Wan, C.; He, Y.; Chen, Y. Associations between the expression of SCCA, MTA1, P16, Ki-67 and the infection of high-risk HPV in cervical lesions. Oncol. Lett. 2020, 20, 884–892. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- He, J.; Huang, B.; Zhang, K.; Liu, M.; Xu, T. Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity. Biomed. Pharm. 2020, 127, 110209. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, Y.S.; Shin, J.W.; Osong, B.; Lee, S.H. Prediction scoring system based on clinicohematologic parameters for cervical cancer patients undergoing chemoradiation. Int. J. Gynecol. Cancer 2020. [CrossRef]
- Zhang, H.; Chen, R.; Shao, J. MicroRNA-96-5p Facilitates the Viability, Migration, and Invasion and Suppresses the Apoptosis of Cervical Cancer Cells byNegatively Modulating SFRP4. Technol. Cancer Res. Treat. 2020, 19. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Shen, M.-R. Epithelial-mesenchymal transition in cervical carcinoma. Am. J. Transl. Res. 2012, 4, 1–13. [Google Scholar]
- Gulei, D.; Mehterov, N.; Ling, H.; Stanta, G.; Braicu, C.; Berindan-Neagoe, I. The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1661–1675. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Sample, K.M. DNA repair gene expression is associated with differential prognosis between HPV16 and HPV18 positive cervical cancer patients following radiation therapy. Sci. Rep. 2020, 10, 2774. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Ou, Y.; Dong, Y.; Xu, P.; Yuan, L. Expression of VEGF and HIF-1α in locally advanced cervical cancer: Potential biomarkers for predicting preoperative radiochemotherapy sensitivity and prognosis. Onco Targets 2016, 9, 3031–3037. [Google Scholar]
- Obasi, T.C.; Braicu, C.; Iacob, B.C.; Bodoki, E.; Jurj, A.; Raduly, L.; Oniga, I.; Berindan-Neagoe, I.; Oprean, R. Securidaca-saponins are natural inhibitors of AKT, MCL-1, and BCL2L1 in cervical cancer cells. Cancer Manag. Res. 2018, 10, 5709–5724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Munger, K. Expression of the Long Noncoding RNA DINO in Human Papillomavirus-Positive Cervical Cancer Cells Reactivates the Dormant TP53 Tumor Suppressor through ATM/CHK2 Signaling. mBio 2020, 11. [Google Scholar] [CrossRef]
- Braicu, C.; Zimta, A.A.; Harangus, A.; Iurca, I.; Irimie, A.; Coza, O.; Berindan-Neagoe, I. The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers 2019, 11, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonea, L.; Buse, M.; Gulei, D.; Onaciu, A.; Simon, I.; Braicu, C.; Berindan-Neagoe, I. Decoding the Emerging Patterns Exhibited in Non-coding RNAs Characteristic of Lung Cancer with Regard to their Clinical Significance. Curr. Genom. 2018, 19, 258–278. [Google Scholar] [CrossRef]
- Zimta, A.A.; Tigu, A.B.; Braicu, C.; Stefan, C.; Ionescu, C.; Berindan-Neagoe, I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front. Oncol. 2020, 10, 389. [Google Scholar] [CrossRef]
- Tomuleasa, C.; Braicu, C.; Irimie, A.; Craciun, L.; Berindan-Neagoe, I. Nanopharmacology in translational hematology and oncology. Int. J. Nanomed. 2014, 9, 3465–3479. [Google Scholar]
- Saftencu, M.; Braicu, C.; Cojocneanu, R.; Buse, M.; Irimie, A.; Piciu, D.; Berindan-Neagoe, I. Gene Expression Patterns Unveil New Insights in Papillary Thyroid Cancer. Medicina 2019, 55, 500. [Google Scholar] [CrossRef] [Green Version]
- Irimie, A.I.; Braicu, C.; Sonea, L.; Zimta, A.A.; Cojocneanu-Petric, R.; Tonchev, K.; Mehterov, N.; Diudea, D.; Buduru, S.; Berindan-Neagoe, I. A Looking-Glass of Non-coding RNAs in oral cancer. Int. J. Mol. Sci. 2017, 18, 2620. [Google Scholar] [CrossRef] [Green Version]
- Irimie, A.I.; Braicu, C.; Cojocneanu-Petric, R.; Berindan-Neagoe, I.; Campian, R.S. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol. Scand. 2015, 73, 161–168. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramaniam, S.D.; Balakrishnan, V.; Oon, C.E.; Kaur, G. Key Molecular Events in Cervical Cancer Development. Medicina 2019, 55, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.; Ye, M.; Zhou, J.; Wang, Z.P.; Zhu, X. Recent Advances on the Molecular Mechanism of Cervical Carcinogenesis Based on Systems Biology Technologies. Comput. Struct. Biotechnol. J. 2019, 17, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Spriggs, C.C.; Blanco, L.Z.; Maniar, K.P.; Laimins, L.A. Expression of HPV-induced DNA Damage Repair Factors Correlates with CIN Progression. Int. J. Gynecol. Pathol. 2019, 38, 1–10. [Google Scholar] [CrossRef]
- Tudoran, O.; Soritau, O.; Balacescu, O.; Balacescu, L.; Braicu, C.; Rus, M.; Gherman, C.; Virag, P.; Irimie, F.; Berindan-Neagoe, I. Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J. Cell Mol. Med. 2012, 16, 520–530. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, H.; Zhu, L.; Hu, S.; Xi, X.; Liu, Y.; Liu, J.; Zhong, T. Bioinformatics analysis shows that TOP2A functions as a key candidate gene in the progression of cervical cancer. Biomed. Rep. 2020, 13, 21. [Google Scholar] [CrossRef]
- Aldea, M.D.; Petrushev, B.; Soritau, O.; Tomuleasa, C.I.; Berindan-Neagoe, I.; Filip, A.G.; Chereches, G.; Cenariu, M.; Craciun, L.; Tatomir, C.; et al. Metformin plus sorafenib highly impacts temozolomide resistant glioblastoma stem-like cells. J. BUON 2014, 19, 502–511. [Google Scholar]
- Aldea, M.; Craciun, L.; Tomuleasa, C.; Berindan-Neagoe, I.; Kacso, G.; Florian, I.S.; Crivii, C. Repositioning metformin in cancer: Genetics, drug targets, and new ways of delivery. Tumor Biol. 2014, 35, 5101–5110. [Google Scholar] [CrossRef]
- Sugumaran, A.; Mathialagan, V. Colloidal Nanocarriers a Versatile Targeted Delivery System for Cervical Cancer. Curr. Pharm. Des. 2020. [Google Scholar] [CrossRef]
- Turgeon, M.-O.; Perry, N.J.S.; Poulogiannis, G. DNA Damage, Repair, and Cancer Metabolism. Front. Oncol. 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Wang, Y.; Shi, K.; Wang, Y. Identification of Core Prognosis-Related Candidate Genes in Cervical Cancer via Integrated Bioinformatical Analysis. Biomed. Res. Int. 2020, 2020, 8959210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carunchio, L.; Soveral, I.; Steenbergen, R.D.; Torné, A.; Martinez, S.; Fusté, P.; Pahisa, J.; Marimon, L.; Ordi, J.; del Pino, M. HPV-negative carcinoma of the uterine cervix: A distinct type of cervical cancer with poor prognosis. BJOG 2015, 122, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, C.; Collin, G.; Descamps, S.; Touaitahuata, H.; Simon, V.; Reymond, N.; Fernandez, L.; Milhiet, P.-E.; Georget, V.; Urbach, S.; et al. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat. Commun. 2016, 7, 10765. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Kim, S.; Son, M.-J.; Kim, G.; Singh, P.; Kim, H.N.; Choi, H.-G.; Yoo, H.J.; Ko, Y.B.; Lee, B.S.; et al. Dual oxidase 1 and NADPH oxidase 2 exert favorable effects in cervical cancer patients by activating immune response. BMC Cancer 2019, 19, 1078. [Google Scholar] [CrossRef]
- Shukla, S.; Dass, J.; Pujani, M. p53 and bcl2 expression in malignant and premalignant lesions of uterine cervix and their correlation with human papilloma virus 16 and 18. South Asian J. Cancer 2014, 3, 48–53. [Google Scholar] [PubMed]
- Crawford, R.A.; Caldwell, C.; Iles, R.K.; Lowe, D.; Shepherd, J.H.; Chard, T. Prognostic significance of the bcl-2 apoptotic family of proteins in primary and recurrent cervical cancer. Br. J. Cancer 1998, 78, 210–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leisching, G.; Loos, B.; Botha, M.; Engelbrecht, A.-M. Bcl-2 confers survival in cisplatin treated cervical cancer cells: Circumventing cisplatin dose-dependent toxicity and resistance. J. Transl. Med. 2015, 13, 328. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Zhao, Y.-L. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer. Comput. Math. Methods Med. 2016. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.J.; Chen, B.P.C.; Chen, D.J. DNA-PK: A dynamic enzyme in a versatile DSB repair pathway. DNA Repair 2014, 17, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddin, I.S.; Kang, M.H. DNA-PK as an Emerging Therapeutic Target in Cancer. Front. Oncol. 2019, 9, 635. [Google Scholar] [CrossRef]
- Deshpande, R.A.; Myler, L.R.; Soniat, M.M.; Makharashvili, N.; Lee, L.; Lees-Miller, S.P.; Finkelstein, I.J.; Paull, T.T. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv. 2020, 6, eaay0922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Liu, H.; Yang, Y.; Wang, X.; Liu, P.; Li, Y.; Meyers, C.; Banerjee, N.S.; Wang, H.-K.; Cam, M.; et al. Genome-Wide Profiling of Cervical RNA-Binding Proteins Identifies Human Papillomavirus Regulation of RNASEH2A Expression by Viral E7 and E2F1. mBio 2019, 10, e02687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, G.; Murty, V.V. Integrative genomic approaches in cervical cancer: Implications for molecular pathogenesis. Future Oncol. 2010, 6, 1643–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.-S.; Song, Y.; Hua, K.-Q.; Gao, S.-J. Involvement of FAK-ERK2 signaling pathway in CKAP2-induced proliferation and motility in cervical carcinoma cell lines. Sci. Rep. 2017, 7, 2117. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Song, S.Y.; Choi, J.-J.; Ae Park, Y.; Kang, H.; Kim, T.-J.; Lee, J.-W.; Kim, B.-G.; Lee, J.-H.; Bae, D.-S. Prognostic significance of VEGF expression in patients with bulky cervical carcinoma undergoing neoadjuvant chemotherapy. BMC Cancer 2008, 8, 295. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wu, F.; Wang, Z.; Di, J.; Yang, J.; Gao, P.; Jiang, B.; Su, X. CENPH Inhibits Rapamycin Sensitivity by Regulating GOLPH3-dependent mTOR Signaling Pathway in Colorectal Cancer. J. Cancer 2017, 8, 2163–2172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, L. CKAP2 Promotes Ovarian Cancer Proliferation and Tumorigenesis through the FAK-ERK Pathway. DNA Cell Biol. 2017, 36, 983–990. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, D.; Ye, L.; Wang, K.; Huang, L.; Mei, S.; Wu, J.; Chen, S.; Lai, X.; Zheng, L.; et al. Up-regulated lncRNA XIST contributes to progression of cervical cancer via regulating miR-140-5p and ORC1. Cancer Cell Int. 2019, 19, 45. [Google Scholar] [CrossRef]
- Gaffney, D.K.; Haslam, D.; Tsodikov, A.; Hammond, E.; Seaman, J.; Holden, J.; Lee, R.J.; Zempolich, K.; Dodson, M. Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) negatively affect overall survival in carcinoma of the cervix treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 922–928. [Google Scholar] [CrossRef]
Network | Top Diseases and Functions | Score | Focus Molecules | Molecules in a Network |
---|---|---|---|---|
Network 1 | Cell Cycle; Cellular Assembly and Organization; DNA Replication, Recombination, and Repair | 32 | 35 | AURKB,BUB1,BUB1B,CCDC102A,CDCA3,CDCA5,CDCA8,CENPH,CKAP2,DSN1,DUOX1,ESCO2,H2BC8,INCENP,KNL1,MRRF,NDC80, NUF2, ODF2L,POC1A, RUFY4, SERINC1, SGO1,SGO2,SKA1,SKA3, SPC24, SPC25, TBC1D2,TBX2,TGFA,TOM1L1,TTK ZWINT |
Network 2 | Cellular Assembly and Organization, Developmental Disorder, Skeletal and Muscular Disorders | 32 | 35 | ARHGAP11A,CAPZA1,CC2D1A,CELSR2,CTIF,H2BC5,HOOK1,HTR2A,IGSF3,IQCN,KIAA0232,KIAA1841,LOC728392,LRRC29,LRRC49,MCCC2,MMACHC,MYO19,MYO6,NAALAD2,NOVA1,NTRK3,PJA2,PURG,RAD18,SIPA1L3,SLBP,SPTBN1,SVIL,TBC1D19,TMOD1,TPM2,TPM3,ZDHHC1,ZNF501 |
Network 3 | Cardiovascular Disease, Congenital Heart Anomaly, Developmental Disorder | 32 | 35 | AGAP5,ATP1A1,ATR,AVPR2,BEX4,BHMT2,C12orf57,C16orf89,CITED2,DCUN1D1,EEF1A1,ELFN1,FBXO31,HSPA1L,HSPB2,IDH2,KLHL13,LGALS7/LGALS7B,MAOB,MARK2,MRPL12,MTHFS,NUAK2,NUDT1,PITX2,PKD1,PPM1K,PPP1CA,PPP1R12A,PPP1R12C,SLC45A1,TFAP2A,TMEM132C,TPT1,TUBG1 |
Network 4 | Connective Tissue Disorders, Developmental Disorder, Organismal Injury and Abnormalities | 32 | 35 | ACTL6A,ADRA1D,ARMCX5-GPRASP2/GPRASP2, C10orf25,CCT5,EFTUD2,EIF3E,H1-2, HSPH1, KIFC2,KLHL33,LRRC59,MCM2, MCM5, MNX1, NAALADL1, NCBP1, OPLAH, PGAM5, PRKDC, RECQL4, RIPK4, RPL3, RUVBL1,SDC2,SIRT7,SMC1A,SPACA9,TCAM1P,TCOF1,TMPO,WDR86, ZC3H6,ZC3H8,ZFP69B |
Network 5 | Cell Morphology, Connective Tissue Disorders, Hereditary Disorder | 30 | 34 | ANO2,CENPI,CENPK,CENPL,CENPM,CENPN,CENPO,CENPP,CENPQ,CENPU,CENPW,CLIC3,DCBLD1,ESR1,FGD5,MND1,Mta,ODF3B,PCDH12,PCDHB4,PCDHB6,PCDHGA11,PLXDC1,PSD4,RAI2,RERG,SEC22C,SSR4P1,TESMIN,TSPAN9,TTC9,TTLL11,UBL3,ZNF366,ZNF367 |
Network 6 | Embryonic Development, Nervous System Development and Function, Organ Development | 30 | 34 | ARHGAP31,C19orf33,C1QTNF9,C1QTNF9B,CHN2,CIP2A,CNPY4,COBLL1,COL6A2,COLGALT2,CWF19L2,CYSRT1,DSC2,FAM110D,FAM117A,GYG1,KERA,LUM,MFAP5,MICOS10-NBL1/NBL1,MTFR1L,OSCP1,P3H3,PITPNM1,PODN,Rac,ROBO4,RSRC1,SH3BP1,SLC12A8,SLIT2,SLIT3,TMC4,TMEM245,TRIM7 |
Network 7 | Cell-To-Cell Signaling and Interaction, Cellular Assembly and Organization, Cellular Development | 30 | 34 | C1orf116,C6orf132,CASKIN2,CDH1,DEF6,EPS8L1,ESRP1,ESRP2,FAM110C,FAM171A1,FAM171B,GLIPR2,HOXA11-AS,JCAD, JPT2,KDF1,LOXL3, MACC1, MARVELD2, MROH1,NAT2,NECTIN1, NECTIN4, PHACTR2,PLEKHO2,PROM2,PTBP3,RASA4,RBPMS2,SMOC2,TTC7A,ZEB,ZEB1,ZEB2,ZNF582 |
Network 8 | Cell Signaling, Infectious Diseases, Post-Translational Modification | 30 | 34 | ALDH1B1,ARHGEF16,ASB1,CASQ2,CCDC137,CDCA2,CDK2AP2,Ces,CKAP2L,ECT2,EPB41L4B,ESD,FOXQ1,HABP4,HIPK4,HOXC13,KIF22,LHFPL6,LLGL2,MASTL,MYO10,NKX2-8,NOP53,NUP155, NUP188,NUP205, NUP210, NUSAP1,PARD6B, PRKCI,PTGER2, R3HCC1,RASSF7,RCC1,SAMD1 |
Network 9 | Cellular Development, Cellular Growth and Proliferation, Embryonic Development | 30 | 34 | ADGRE5,ADGRG1,ATOH8,CNTF,CYS1,DENND2A,EID2B,EPO,FANCC,FZD4,FZD6,GATA2,GIPR,LMO2,MFSD13A,MFSD2B,N4BP2L1,NDN,NPY1R,NR4A3,PRL,Proinsulin,PTGFR,RUNX1,SLC24A3,SLC4A11,SLC9B2,SOBP,TACSTD2,TAL1,TFRC,TPSG1,TXNIP,VPS51,ZNF788P |
Network 10 | Developmental Disorder, Molecular Transport, Protein Trafficking | 30 | 34 | ASPA,ASTN1,CGAS,CSE1L,DENND5B,DNMT1,ESPL1,FGD3,Flotillin,FOXA1,GATA6,HAPLN2,HBP1,HDAC1,HTR2B,KPNA2,MACROH2A1,MCM3,PHF21B,PLEKHH1,POP1,PSMA6,RAN,SERPINB2,SLX1A/SLX1B,SORBS3,STXBP5L,TCF20,TCF7L2,TDRKH,TRAM1L1,USHBP1,VAMP5,VXN,ZNF25 |
Gene Symbol | Gene Nomenclature | Expression Level | Gene Function | Specificity According to Protein Atlas | Therapeutic Value and Utility | References |
---|---|---|---|---|---|---|
AURKB | Aurora Kinase B | Up | mitosis and cytokinesis | Lower cancer specificity | Prognostic and therapeutic target | [31] |
BCL2 | B-cell lymphoma 2 | Up | Apoptosis | Lower cancer specificity | Prognostic and therapeutic target; overexpression favorable prognostic | [36,37] |
CDC45 | Cell division cycle protein 45 | Up | Cell cycle | Lower cancer specificity | Prognostic | [38] |
CENPH | Centromere protein H | Up | centromere complex | Lower cancer specificity | - | [46] |
CKAP2 | Cytoskeleton-associated protein 2 | Up | Cell cycle and cell death | Lower cancer specificity | - | [47] |
DNA-PK | Protein kinase, DNA-activated, catalytic polypeptide | Up | DNA repair | Lower cancer specificity | Therapeutic target | [39,40] |
DUOX1 | Dual oxidase 1 | Up | ROS | Cancer enhancer (thyroid cancer) | Prognostic marker and therapeutic target; overexpression favorable prognostic; | [34] |
E2F1 | E2F Transcription Factor 1 | Up | Cell cycle regulation | Lower cancer specificity | Overexpression favorable prognostic; | [42,43] |
NOVA1 | Neuro-oncological ventral antigen 1 | Up | mRNA processing | Cancer-enriched (glioma) | - | [42] |
ORC1 | Origin Recognition Complex Subunit 1 | Up | Cell cycle | Lower cancer specificity | - | [48] |
PCNAR | Proliferating cell nuclear antigen | Up | Cell cycle | - | - | - |
SERINC1 | Serine incorporator 1 | Down | - | Lower cancer specificity | - | - |
SLBP | Stem-loop binding protein | Up | Cell cycle regulation | Lower cancer specificity | - | - |
SPTBN1 | Spectrin beta, non-erythrocytic 1 | Up | -- | Lower cancer specificity | - | - |
TOM1L1 | Target of myb1 like 1 membrane trafficking protein | Up | Lower cancer specificity | - | - | |
VEGFA | Vascular endothelial growth factor | Up | Angiogenesis | Lower cancer specificity | Prognostic marker; increased expression worse prognosis | [11,45,49] |
Demographics | CESC (n = 304) | |
---|---|---|
Age | Median, Range ♀ | 46, 20–88 |
HPV Status | Positive | 281 |
Negative | 22 | |
Indeterminate | 1 | |
Pathologic TNM | T1 | 140 |
T2 | 71 | |
T3 | 20 | |
T4 | 10 | |
Tis | 1 | |
Tx | 17 | |
T unknown | 45 | |
N0 | 133 | |
N1 | 60 | |
Nx | 66 | |
N unknown | 45 | |
M0 | 116 | |
M1 | 10 | |
Mx | 128 | |
M unknown | 50 | |
Clinical stage | I | 162 |
II | 69 | |
III | 45 | |
IV | 21 | |
Unknown | 7 | |
Birth control pill use | Current user | 15 |
Former user | 53 | |
Never used | 89 | |
NA | 147 | |
Histological type | Adenosquamous | 5 |
Cervical squamous cell carcinoma | 252 | |
Endocervical adenocarcinoma of the usual type | 6 | |
Endocervical type of adenocarcinoma | 21 | |
Endometroid adenocarcinoma of endocervix | 3 | |
Mucinous adenocarcinoma of endocervical type | 17 | |
Tobacco smoking history | Lifelong non-smoker | 144 |
Current smoker | 64 | |
Reformed smoker > 15 years | 9 | |
Reformed smoker ≤ 15 years | 40 | |
Reformed smoker duration unknown | 4 | |
NA | 43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudea-Simon, M.; Mihu, D.; Irimie, A.; Cojocneanu, R.; Korban, S.S.; Oprean, R.; Braicu, C.; Berindan-Neagoe, I. Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis. Int. J. Mol. Sci. 2020, 21, 7323. https://doi.org/10.3390/ijms21197323
Dudea-Simon M, Mihu D, Irimie A, Cojocneanu R, Korban SS, Oprean R, Braicu C, Berindan-Neagoe I. Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis. International Journal of Molecular Sciences. 2020; 21(19):7323. https://doi.org/10.3390/ijms21197323
Chicago/Turabian StyleDudea-Simon, Marina, Dan Mihu, Alexandru Irimie, Roxana Cojocneanu, Schuyler S. Korban, Radu Oprean, Cornelia Braicu, and Ioana Berindan-Neagoe. 2020. "Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis" International Journal of Molecular Sciences 21, no. 19: 7323. https://doi.org/10.3390/ijms21197323