Next Article in Journal
Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites
Next Article in Special Issue
Bacteriophages vB_Sen-TO17 and vB_Sen-E22, Newly Isolated Viruses from Chicken Feces, Specific for Several Salmonella enterica Strains
Previous Article in Journal
Intra-Tumoral Angiogenesis Is Associated with Inflammation, Immune Reaction and Metastatic Recurrence in Breast Cancer
Previous Article in Special Issue
Characterization of the Bacteriophage vB_EfaS-271 Infecting Enterococcus faecalis
Article

Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine

Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
*
Author to whom correspondence should be addressed.
These authors contributed equally.
Int. J. Mol. Sci. 2020, 21(18), 6709; https://doi.org/10.3390/ijms21186709
Received: 12 August 2020 / Revised: 4 September 2020 / Accepted: 10 September 2020 / Published: 13 September 2020
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 2.0)
Bacteria of the genus Serratia inhabit a variety of ecological niches like water, soil, and the bodies of animals, and have a wide range of lifestyles. Currently, the complete genome sequences of 25 Serratia phages are available in the NCBI database. All of them were isolated from nutrient-rich environments like sewage, with the use of clinical Serratia strains as hosts. In this study, we identified a novel Serratia myovirus named vB_SspM_BZS1. Both the phage and its host Serratia sp. OS31 were isolated from the same oligotrophic environment, namely, an abandoned gold mine (Zloty Stok, Poland). The BZS1 phage was thoroughly characterized here in terms of its genomics, morphology, and infection kinetics. We also demonstrated that Serratia sp. OS31 was lysogenized by mitomycin-inducible siphovirus vB_SspS_OS31. Comparative analyses revealed that vB_SspM_BZS1 and vB_SspS_OS31 were remote from the known Serratia phages. Moreover, vB_SspM_BZS1 was only distantly related to other viruses. However, we discovered similar prophage sequences in genomes of various bacteria here. Additionally, a protein-based similarity network showed a high diversity of Serratia phages in general, as they were scattered across nineteen different clusters. In summary, this work broadened our knowledge on the diverse relationships of Serratia phages. View Full-Text
Keywords: bacteriophage; prophage; temperate virus; comparative genomics; Serratia; dam-like methyltransferase; non-specific DNA methyltransferase bacteriophage; prophage; temperate virus; comparative genomics; Serratia; dam-like methyltransferase; non-specific DNA methyltransferase
Show Figures

Figure 1

MDPI and ACS Style

Bujak, K.; Decewicz, P.; Kaminski, J.; Radlinska, M. Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine. Int. J. Mol. Sci. 2020, 21, 6709. https://doi.org/10.3390/ijms21186709

AMA Style

Bujak K, Decewicz P, Kaminski J, Radlinska M. Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine. International Journal of Molecular Sciences. 2020; 21(18):6709. https://doi.org/10.3390/ijms21186709

Chicago/Turabian Style

Bujak, Katarzyna, Przemyslaw Decewicz, Jerzy Kaminski, and Monika Radlinska. 2020. "Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine" International Journal of Molecular Sciences 21, no. 18: 6709. https://doi.org/10.3390/ijms21186709

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop