Next Article in Journal
Astaxanthin Ameliorates Ischemic-Hypoxic-Induced Neurotrophin Receptor p75 Upregulation in the Endothelial Cells of Neonatal Mouse Brains
Previous Article in Journal
A Regulatory Network for miR156-SPL Module in Arabidopsis thaliana
Open AccessArticle

Genome-Wide Identification and Expression Analysis of the Ascorbate Oxidase Gene Family in Gossypium hirsutum Reveals the Critical Role of GhAO1A in Delaying Dark-Induced Leaf Senescence

1
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
2
Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2019, 20(24), 6167; https://doi.org/10.3390/ijms20246167
Received: 10 November 2019 / Revised: 3 December 2019 / Accepted: 4 December 2019 / Published: 6 December 2019
(This article belongs to the Section Molecular Plant Sciences)
Ascorbate oxidase (AO) plays important roles in plant growth and development. Previously, we reported a cotton AO gene that acts as a positive factor in cell growth. Investigations on Gossypium hirsutum AO (GhAO) family genes and their multiple functions are limited. The present study identified eight GhAO family genes and performed bioinformatic analyses. Expression analyses of the tissue specificity and developmental feature of GhAOs displayed their diverse expression patterns. Interestingly, GhAO1A demonstrated the most rapid significant increase in expression after 1 h of light recovery from the dark. Additionally, the transgenic ao1-1/GhAO1A Arabidopsis lines overexpressing GhAO1A in the Arabidopsis ao1-1 late-flowering mutant displayed a recovery to the normal phenotype of wild-type plants. Moreover, compared to the ao1-1 mutant, the ao1-1/GhAO1A transgenic Arabidopsis presented delayed leaf senescence that was induced by the dark, indicating increased sensitivity to hydrogen peroxide (H2O2) under normal conditions that might be caused by a reduction in ascorbic acid (AsA) and ascorbic acid/dehydroascorbate (AsA/DHA) ratio. The results suggested that GhAOs are functionally diverse in plant development and play a critical role in light responsiveness. Our study serves as a foundation for understanding the AO gene family in cotton and elucidating the regulatory mechanism of GhAO1A in delaying dark-induced leaf senescence. View Full-Text
Keywords: Gossypium hirsutum; ascorbate oxidase; light responsiveness; leaf senescence; H2O2 Gossypium hirsutum; ascorbate oxidase; light responsiveness; leaf senescence; H2O2
Show Figures

Figure 1

MDPI and ACS Style

Pan, Z.; Chen, L.; Wang, F.; Song, W.; Cao, A.; Xie, S.; Chen, X.; Jin, X.; Li, H. Genome-Wide Identification and Expression Analysis of the Ascorbate Oxidase Gene Family in Gossypium hirsutum Reveals the Critical Role of GhAO1A in Delaying Dark-Induced Leaf Senescence. Int. J. Mol. Sci. 2019, 20, 6167.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop