Author Contributions
Conceptualization, D.L., P.F., R.G., Ö.P., N.P., Z.G., T.B., Z.V.V., P.F., and M.G.; methodology, D.L., A.G., K.Z., A.J., R.G, Ö.P., L.T., R.S., P.F., and M.G.; formal analysis, D.L., A.G., D.P., and J.W.; investigation D.L., A.G., K.Z., J.W., N.P., T.B., Z.G., Z.V.V., M.R., A.S, D.T., A.J., R.G, Ö.P., L.T., and M.G.; resources, D.L., Z.G., Z.V.V., D.P., P.F., R.S., and M.G.; data curation, D.L. and D.P.; writing—original draft preparation, D.L., J.W., and M.G; writing—review and editing, all authors; visualization, D.L., J.W., D.P., A.J., and M.G.; supervision, P.F. and M.G.; project administration, P.F. and M.G.; funding acquisition, P.F. and M.G.
Funding
This work was funded by bilateral funding of the Hungarian (OTKA) and Austrian Science Funds (FWF), grant numbers FWF I 1277, OTKA ANN107803, OTKA K 105555/KPI01277FW; COST Action EU-CARDIOPROTECTION, grant number CA16225; the National Research, Development and Innovation Office of Hungary, grant numbers NVKP_16-1-2016-0017; OTKA KH 125570; OTKA 115378; and the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of the Therapeutic Development thematic programme of the Semmelweis University. R.S. received grants from the German Research Foundation, SFB/CRC 1213/B05.
Figure 1.
Study design for the porcine closed-chest reperfused model of myocardial infarction and ELISA results. Pigs underwent 90-min occlusion of the mid-left anterior descending coronary artery (LAD), followed by reperfusion. Postconditioning stimuli were induced at the onset of the reperfusion phase by six 30 s cycles of ischaemia/reperfusion. (A) Infarct severity was assessed by myoglobin plasma concentration and cardiac troponin I 3 serum concentrations. (B) Circulating cardioprotective markers in the Control (n = 4), MI-3h (n = 4), MI-3d (n = 4), IPostC-3h (n = 4), and IPostC-3d (n = 4) groups. (C) * p < 0.05; and ** p < 0.01 (one-way ANOVA/Tukey post-hoc).
Figure 1.
Study design for the porcine closed-chest reperfused model of myocardial infarction and ELISA results. Pigs underwent 90-min occlusion of the mid-left anterior descending coronary artery (LAD), followed by reperfusion. Postconditioning stimuli were induced at the onset of the reperfusion phase by six 30 s cycles of ischaemia/reperfusion. (A) Infarct severity was assessed by myoglobin plasma concentration and cardiac troponin I 3 serum concentrations. (B) Circulating cardioprotective markers in the Control (n = 4), MI-3h (n = 4), MI-3d (n = 4), IPostC-3h (n = 4), and IPostC-3d (n = 4) groups. (C) * p < 0.05; and ** p < 0.01 (one-way ANOVA/Tukey post-hoc).
Figure 2.
Functional clustering of genes. High-throughput screening of significantly regulated genes enriched in cardiac muscle (A), endothelial cells (B), and fibroblasts (C).
Figure 2.
Functional clustering of genes. High-throughput screening of significantly regulated genes enriched in cardiac muscle (A), endothelial cells (B), and fibroblasts (C).
Figure 3.
Heat maps of selected differentially expressed genes (DEGs) involved in cardioprotection, showing regional and time-dependent changes in expression changes. DEGs in the MI-3h (n = 3), MI-3d (n = 3), IPostC-3h (n = 3), and IPostC-3d (n = 3) groups are related to the control group (n = 3). Colors indicate the extent of log2 fold decrease (green) or increase (red) (p-value < 0.05, moderated t-statistics adjusted for multiple testing). Grey indicates non-significant regulation.
Figure 3.
Heat maps of selected differentially expressed genes (DEGs) involved in cardioprotection, showing regional and time-dependent changes in expression changes. DEGs in the MI-3h (n = 3), MI-3d (n = 3), IPostC-3h (n = 3), and IPostC-3d (n = 3) groups are related to the control group (n = 3). Colors indicate the extent of log2 fold decrease (green) or increase (red) (p-value < 0.05, moderated t-statistics adjusted for multiple testing). Grey indicates non-significant regulation.
Figure 4.
Heat maps of differentially expressed genes (DEGs) with opposite regulation in the myocardial infarction (MI) (A), and ischaemic postconditioning (IPostC) groups (B). DEGs in the MI-3h (n = 3), MI-3d (n = 3), IPostC-3h (n = 3), and IPostC-3d (n = 3) groups are related to the control group (n = 3). Colors indicate the extent of log2 fold decrease (green) or increase (red) (p-value < 0.05, moderated t-statistics adjusted for multiple testing). Grey indicates non-significant regulation.
Figure 4.
Heat maps of differentially expressed genes (DEGs) with opposite regulation in the myocardial infarction (MI) (A), and ischaemic postconditioning (IPostC) groups (B). DEGs in the MI-3h (n = 3), MI-3d (n = 3), IPostC-3h (n = 3), and IPostC-3d (n = 3) groups are related to the control group (n = 3). Colors indicate the extent of log2 fold decrease (green) or increase (red) (p-value < 0.05, moderated t-statistics adjusted for multiple testing). Grey indicates non-significant regulation.
Figure 5.
Simplified scheme for the focal adhesion pathway (A), and heat maps representing differentially expressed genes (DEGs) involved in the given pathway (B). DEGs in the MI-3h (n = 3), MI-3d (n = 3), IPostC-3h (n = 3), and IPostC-3d (n = 3) groups are related to the control group (n = 3). Colors indicate the extent of log2 fold decrease (green) or increase (red) (p-value < 0.05, moderated t-statistics adjusted for multiple testing). Grey indicates non-significant regulation.
Figure 5.
Simplified scheme for the focal adhesion pathway (A), and heat maps representing differentially expressed genes (DEGs) involved in the given pathway (B). DEGs in the MI-3h (n = 3), MI-3d (n = 3), IPostC-3h (n = 3), and IPostC-3d (n = 3) groups are related to the control group (n = 3). Colors indicate the extent of log2 fold decrease (green) or increase (red) (p-value < 0.05, moderated t-statistics adjusted for multiple testing). Grey indicates non-significant regulation.
Figure 6.
Networks of protein–protein interactions of deregulated transcripts with high enrichment scores in endothelial cells. DEGs in the infarcted zones at three days were clustered according to the string database of protein–protein interactions. Red nodes indicate higher, and green nodes lower expression in IPostC compared to controls. Groups with more than five members are annotated according to their main function.
Figure 6.
Networks of protein–protein interactions of deregulated transcripts with high enrichment scores in endothelial cells. DEGs in the infarcted zones at three days were clustered according to the string database of protein–protein interactions. Red nodes indicate higher, and green nodes lower expression in IPostC compared to controls. Groups with more than five members are annotated according to their main function.
Figure 7.
mRNA changes in gene transcripts involved in focal adhesion signaling measured by quantitative PCR. Expression of integrin subunit ß-1 (ITGB1) (A), integrin subunit ß-2 (ITGB2) (B), protein tyrosine kinase 2-ß (PTK2B) (C), SRC proto-oncogene (SRC) (D), V-Akt murine thymoma viral oncogene homolog 1 (AKT) (E), and vinculin (VCL) (F). * p < 0.05; between MI-3h (n = 4)/IPostC-3h (n = 4) and MI-3d (n = 4)/IPostC-3d (n = 4) in the infarcted and remote areas (one-way ANOVA/Tukey post-hoc).
Figure 7.
mRNA changes in gene transcripts involved in focal adhesion signaling measured by quantitative PCR. Expression of integrin subunit ß-1 (ITGB1) (A), integrin subunit ß-2 (ITGB2) (B), protein tyrosine kinase 2-ß (PTK2B) (C), SRC proto-oncogene (SRC) (D), V-Akt murine thymoma viral oncogene homolog 1 (AKT) (E), and vinculin (VCL) (F). * p < 0.05; between MI-3h (n = 4)/IPostC-3h (n = 4) and MI-3d (n = 4)/IPostC-3d (n = 4) in the infarcted and remote areas (one-way ANOVA/Tukey post-hoc).