Next Article in Journal
Activation of Sirtuin 3 and Maintenance of Mitochondrial Integrity by N-Acetylcysteine Protects Against Bisphenol A-Induced Kidney and Liver Toxicity in Rats
Next Article in Special Issue
Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis
Previous Article in Journal
Ciprofloxacin and Clinafloxacin Antibodies for an Immunoassay of Quinolones: Quantitative Structure–Activity Analysis of Cross-Reactivities
Previous Article in Special Issue
Oxyresveratrol Increases Energy Expenditure through Foxo3a-Mediated Ucp1 Induction in High-Fat-Diet-Induced Obese Mice
Article Menu
Issue 2 (January-2) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2019, 20(2), 264; https://doi.org/10.3390/ijms20020264

Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes

1
Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain
2
CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
3
Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
*
Author to whom correspondence should be addressed.
Received: 26 November 2018 / Revised: 2 January 2019 / Accepted: 9 January 2019 / Published: 11 January 2019
(This article belongs to the Special Issue Polyphenols: Nutrition, Physiology, Metabolism and Health Benefits)
  |  
PDF [1651 KB, uploaded 11 January 2019]
  |     |  

Abstract

Quercetin (Q) has rapid metabolism, which may make it worthwhile to focus on the potential activity of its metabolites. Our aim was to evaluate the triglyceride-lowering effects of Q metabolites in mature and pre-adipocytes, and to compare them to those induced by Q. 3T3-L1 mature and pre-adipocytes were treated with 0.1, 1 and 10 µM of Q, tamarixetin (TAM), isorhamnetin (ISO), quercetin-3-O-glucuronide (3G), quercetin-3-O-sulfate (3S), as well as with 3S and quercetin-4-O-sulfate (4S) mixture (3S+4S). Triglyceride (TG) content in both cell types, as well as free fatty acid (FFA) and glycerol in the incubation medium of mature adipocytes were measured spectrophotometrically. Gene expression was assessed by RT-PCR. In mature adipocytes, Q decreased TG at 1 and 10 µM, 3S metabolite at 1 and 10 µM, and 3S+4S mixture at 10 µM. 3S treatment modified the glucose uptake, and TG assembling, but not lipolysis or apoptosis. During differentiation, only 10 µM of ISO reduced TG content, as did Q at physiological doses. In conclusion, 3S metabolite but not ISO, 3G, 4S and TAM metabolites can contribute to the in vivo delipidating effect of Q. View Full-Text
Keywords: Quercetin; metabolites; adipocytes; triglycerides Quercetin; metabolites; adipocytes; triglycerides
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Eseberri, I.; Miranda, J.; Lasa, A.; Mosqueda-Solís, A.; González-Manzano, S.; Santos-Buelga, C.; Portillo, M.P. Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes. Int. J. Mol. Sci. 2019, 20, 264.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top