Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation
Abstract
:1. Introduction
2. Results
2.1. Substrate Surface Modifications in Aqueous Environment
2.2. Mesenchymal Cell Proliferation and Differentiation
2.3. In Situ Raman Analyses
3. Discussion
3.1. Off-Stoichiometric Reactions at the Cell–Substrate Interface
3.2. RNS Formation and the Cell-Friendly Kinetics of Silicon Nitride
3.3. ROS Formation and the Issue of Bone Resorption
3.4. Possible New Applications and the Future of Si3N4 Bioceramics
4. Materials and Methods
4.1. X-ray Photoelectron Spectroscopy
4.2. Cell Culture
4.3. Cell Proliferation and Metabolism
4.4. Bony Apatite Formation
4.5. IGF-1 Measurement
4.6. Gla/Glu Osteocalcin Measurement
4.7. ALP Stain Assay
4.8. Statistics
5. Conclusions
- (i)
- Si3N4 bioceramics presented osteoinductive properties by virtue of their peculiar surface chemistry, which evolved at the biomolecular interface with cell-friendly kinetics. The homolytic cleavage of Si-N bonds at the solid surface triggered a cascade of chemical reactions that could locally uplift pH and produce RNS (specifically NO) in low concentrations lying in the range of signaling used by cells in osteoblastogenesis crosstalk.
- (ii)
- Neither Ti6Al4V alloy nor Al2O3 bioceramic substrates could be recognized to trigger osteoinductivity with respect to mesenchymal KUSA-A1 progenitor cells. Unlike the RNS involved with the Si3N4 surface chemistry, the ionic elution of metal species and the ROS involved with the surface chemistry of these two latter biomaterials were similarly detrimental to cell proliferation, their differentiation, and osteogenesis. Although not cytotoxic according to standard definitions of cytotoxicity, both these widely used biomaterials induced an apoptotic tendency in mesenchymal progenitor cells.
- (iii)
- The present data partly answered a number of concerns raised by the statistics recently published by the National Consumer Affairs Center of Japan (and successively recognized by The Japanese Society of Oral Implantology) regarding malfunctioning of dental implants [94]. We believe that the origin of medium/long-term failures of dental implants is partly related to their adverse chemical interactions with the periprosthetic tissue in overlap with the severe environmental and mechanical stress conditions of the oral cavity.
- (iv)
- The friendly exogenous NO kinetics of Si3N4 bioceramics could be further exploited in counteracting bone resorption pathologies and in promoting bone repair.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Salinas, A.J.; Esbrit, P.; Vallet-Regi, M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013, 1, 40–51. [Google Scholar] [CrossRef]
- Piconi, C. Bioinert ceramics: State-of-the-art. Key Eng. Mater. 2017, 758, 3–13. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, Z.; Li, Y.; Zhang, X.; De Bruijn, J.D.; De Groot, K. Osteoinduction by calcium phosphate biomaterials. J. Mater. Sci. Mater. Med. 1998, 9, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Fellah, B.H.; Gauthier, O.; Weiss, P.; Chappard, D.; Layrolle, P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 2008, 29, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; de Bruijn, J.D.; Zhang, X.; van Blitterswijk, C.A.; de Groot, K. Osteoinduction by porous alumina ceramic. In Proceedings of the 16th European Conference on Biomaterials, London, UK, 9–12 September 2001; p. 209. [Google Scholar]
- Fujibayashi, S.; Neo, M.; Kim, H.M.; Kokubo, T.; Nakamura, T. Osteoinduction of porous bioactive titanium metal. Biomaterials 2004, 25, 443–450. [Google Scholar] [CrossRef]
- Takemoto, M.; Fujibayashi, S.; Matsushita, T.; Suzuki, J.; Kokubo, T.; Nakamura, T. Osteoinductive ability of porous titanium implants following three types of surface treatment. In Proceedings of the 51st Ann Meet Orthop Res Soc, Washington DC, USA, 20–23 February 2005. poster 0992. [Google Scholar]
- Webster, T.J.; Patel, A.A.; Rahaman, M.N.; Bal, B.S. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomater. 2012, 8, 4447–4454. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G. Silicon nitride: A bioceramic with a gift. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Guntur, A.R.; Long, F.; Rosen, C.J. Energy metabolism of the osteoblast: Implication for osteoporosis. Endocrine Rev. 2017, 38, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Nichols, F.C.; Neuman, W.F. Lactic acid production in mouse calvaria in vitro with and without parathyroid hormone simulation: Lack of acetazolamide effects. Bone 1987, 8, 105–109. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, W.; Lin, K.; Pan, H.; Darvell, B.W.; Peng, S.; Wen, C.; Deng, L.; Lu, W.W.; Chang, J. Interfacial pH: A critical factor for osteoporotic bone regeneration. Langmuir 2011, 27, 2701–2708. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xia, L.; Li, H.; Jiang, X.; Pan, H.; Xu, Y.; Lu, W.W.; Zhang, Z.; Chang, J. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 2013, 34, 10028–10042. [Google Scholar] [CrossRef] [PubMed]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1. Nat’l Std. Ref. Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg, MD, USA; 2012. Available online: https://srdata.nist.gov/xps/ (accessed on 21 August 2019).
- Healy, K.E.; Ducheyne, P. The mechanism of passive dissolution of titanium in a model physiological environment. J. Biomed. Mater. Res. 1992, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Healy, K.E.; Ducheyne, P. Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 1992, 13, 553–561. [Google Scholar] [CrossRef]
- Hierro-Oliva, M.; Gallardo-Moreno, A.M.; Gonzales-Martin, M.L. XPS analysis of Ti6Al4V oxidation under UHV conditions. Metall Mater. Trans. A 2014, 45A, 6285–6290. [Google Scholar] [CrossRef]
- Böhm, H.P. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc. 1971, 52, 264–275. [Google Scholar] [CrossRef]
- Carbonio, E.A.; Rocha, T.C.R.; Klyushin, A.Y.; Pis, I.; Magnano, E.; Nappini, S.; Piccinin, S.; Knop-Gericke, A.; Schlögl, R.; Jones, T.E. Are multiple oxygen species selective in ethylene epoxidation on silver? Chem. Sci. 2018, 9, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.B.; Lambert, R.M. Ethylene oxide isomerisation on single-crystal Ag(111) in atomically clean and Cs-moderated conditions. J. Catal. 1985, 93, 92–99. [Google Scholar] [CrossRef]
- Grant, R.B.; Lambert, R.M. Alkali metal promoters and catalysis: A single-crystal investigation of ethylene epoxidation on Cs-doped Ag(lll). Langmuir 1985, 1, 29–33. [Google Scholar] [CrossRef]
- Zambelli, T.; Barth, J.V.; Wintterlin, J. Thermal dissociation of chemisorbed oxygen molecules on Ag(110): An investigation by scanning tunneling microscopy. J. Phys. 2002, 14, 4241–4250. [Google Scholar] [CrossRef]
- Gaigeot, M.-P.; Sprik, M.; Sulpizi, M. Oxide/water Interfaces: How the surface chemistry modifies interfacial water properties. J. Phys. Condens. Matter. 2012, 24, 124106. [Google Scholar] [CrossRef] [PubMed]
- Notingher, I.; Bisson, I.; Polak, J.M.; Hench, L.L. In situ spectroscopic study of nucleic acids in differentiating embryonic stem cells. Vib. Spectrosc. 2004, 35, 199–203. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Madzharova, F.; Heiner, Z.; Guehlke, M.; Kneipp, J. Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine, and uracil. J. Phys. Chem. 2016, 120, 15415–15423. [Google Scholar] [CrossRef]
- Notingher, I.; Bisson, I.; Bishop, A.E.; Randle, W.L.; Polak, J.M.P.; Hench, L.L. In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro. Anal. Chem. 2004, 76, 3185–3193. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.P.; Marques, M.P.M.; Valero, R.; Tomkinson, J.; Batista De Carvalho, L.A.E. Guanine-A combined study using vibrational spectroscopy and theoretical methods. Spectrosc. Int. 2012, 27, 273–292. [Google Scholar] [CrossRef]
- Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 1529–1535. [Google Scholar] [CrossRef]
- Rimai, L.; Cole, T.; Parsons, J.L.; Hickmott, J.T.; Carew, E.B. Studies of Raman spectra of water solutions of adenosine tri-, di-, and monophosphate and some related compounds. Biophys. J. 1969, 9, 320–329. [Google Scholar] [CrossRef]
- Bhaumik, A.; Shearin, A.M.; Delong, R.; Wanekaya, A.; Ghosh, K. Probing the interaction at the nano-bio interface using Raman spectroscopy: ZnO particles and adenosine triphosphate biomolecules. J. Phys. Chem. C 2014, 118, 18631–18639. [Google Scholar] [CrossRef]
- Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 2004, 101, 4003–4008. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.; Li, W.; Santner-Nanan, B.; Lim, C.K.; Guillemin, G.J.; Ball, H.J.; Hunt, N.H.; Nanan, R.; Duque, G. The kynurenine pathway of tryptophan degradation is activated during osteoblastogenesis. Stem Cells 2015, 33, 111–121. [Google Scholar] [CrossRef] [PubMed]
- El Refaey, M.; McGee-Lawrence, M.E.; Fulzele, S.; Kennedy, E.J.; Bollag, W.B.; Elsalanty, M.; Zhong, Q.; Ding, K.-H.; Bendzunas, N.G.; Shi, X.-M.; et al. Kynurenine, a tryptophan metabolite that accumulates with age, induces bone loss. J. Bone Miner. Res. 2017, 32, 2182–2193. [Google Scholar] [CrossRef]
- Michalowska, M.; Znorko, B.; Kaminski, T.; Oksztulska-Kolanek, E.; Pawlak, D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J. Physiol. Pharmacol. 2015, 66, 779–791. [Google Scholar]
- Martin-Molina, A.; Rodrigues-Beas, C.; Farando, J. Effect of calcium and magnesium on phosphatidylserine membranes: Experiments and all-atomic simulations. Biophys. J. 2012, 102, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Brauchle, E.; Thude, S.; Bruker, S.Y.; Schenke-Layland, K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci. Rep. 2014, 4, 4698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notingher, I.; Green, C.; Dyer, C.; Perkins, E.; Hopkins, N.; Lindsay, C.; Hench, L.L. Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. J. R. Soc. Interface 2004, 1, 79–90. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signaling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Kajdas, C. General approach to mechanochemistry and its relation to tribochemistry. In Tribology in Engineering; Pihtili, H., Ed.; InTech: London, UK, 2013; pp. 209–240. [Google Scholar]
- Mezzasalma, S.; Baldovino, D. Characterization of silicon nitride surface in water and acid environment: A general approach to the colloidal suspensions. J. Colloid Interface Sci. 1996, 180, 413–420. [Google Scholar] [CrossRef]
- Sonnefeld, J. Determination of surface charge density parameters of silicon nitride. Colloids Surf. A 1996, 108, 27–31. [Google Scholar] [CrossRef]
- Pezzotti, G.; Marin, E.; Adachi, T.; Rondinella, A.; Boschetto, F.; Zhu, W.; Sugano, N.; Bock, R.M.; McEntire, B.; Bal, B.S. Bioactive silicon nitride: A new therapeutic material for osteoarthropathy. Sci. Rep. 2017, 7, 44848. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.Y.; Yung, Y.L. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu Rev. Earth Planet Sci. 2003, 31, 329–356. [Google Scholar] [CrossRef]
- Schneider, M.; Marison, I.W.; von Stockar, U. The importance of ammonia in mammalian cell culture. J. Biotechnol. 1996, 46, 161–185. [Google Scholar] [CrossRef]
- Pezzotti, G.; Bock, R.M.; McEntire, B.J.; Jones, E.; Boffelli, M.; Zhu, W.; Baggio, G.; Boschetto, F.; Puppulin, L.; Adachi, T.; et al. Silicon nitride bioceramics induce chemically driven lysis in Porphyromonas gingivalis. Langmuir 2016, 32, 3024–3035. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Bock, R.M.; McEntire, B.J.; Adachi, T.; Marin, E.; Boschetto, F.; Zhu, W.; Mazda, O.; Bal, S.B. In vitro antibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: I. In situ time-lapse Raman spectroscopy. Analyst 2018, 143, 3708–3721. [Google Scholar] [CrossRef] [PubMed]
- Jennison, T.; McNally, M.; Pandit, H. Review - prevention of infection in external fixation pin sites. Acta Mater. 2014, 10, 595–603. [Google Scholar]
- Dong, H.; Mukinay, T.; Li, M.; Hood, R.; Soo, S.L.; Cockshott, S.; Sammons, R.; Li, X. Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversion. J. Mater. Sci. 2017, 28, 5. [Google Scholar] [CrossRef]
- Page, K.; Wilson, M.; Parkin, I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital- acquired infections. J. Mater. Chem. 2009, 19, 3818–3831. [Google Scholar] [CrossRef]
- Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis; Bkc Inc. Pub. Co.: Tokyo, Japan, 2000. [Google Scholar]
- Mills, A.; Lee, S. A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. Chem. 2002, 152, 233–247. [Google Scholar] [CrossRef]
- Kiwi, J.; Rtimi, S.; Sanjines, R.; Pulgarin, C. TiO2 and TiO2-doped films able to kill bacteria by contact: New evidence for the dynamics of bacterial inactivation in the dark and under light irradiation. Int. J. Photoenergy 2014, 785037. [Google Scholar] [CrossRef]
- Zubkoy, T.; Stahl, D.; Thompson, T.L.; Panayotov, D.; Diwald, O.; Yates, J.T., Jr. Ultraviolet light-induced hydrophilicity effect on TiO2(110) (1x1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J. Phys. Chem. B 2005, 109, 15454–15462. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Kadam, S.; Shai, S.; Shahane, A.; Kaushik, K.S. Recent advances in non-conventional antimicrobial approaches for chronic wound biofilms: have we found the ‘chink in the armor’? Biomedicines 2019, 7, 35. [Google Scholar] [CrossRef]
- Shapovalov, V.; Truong, T.N. Ab Initio study of water adsorption on α- Al2O3 (0001) crystal surface. J. Phys. Chem. B 2000, 104, 9859–9863. [Google Scholar] [CrossRef]
- Fernández, E.M.; Eglitis, R.I.; Borstel, G.; Balbás, L.C. Ab initio calculations of H2O and O2 adsorption on Al2O3 substrates. Comput. Mater. Sci. 2007, 39, 587–592. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Chen, H.-T. Hydrogen generation by the reaction of H2O with Al2O3-based materials: A computational analysis. Phys. Chem. Chem. Phys. 2015, 17, 6834–6843. [Google Scholar] [CrossRef]
- Blumenthal, N.C.; Posner, A.S. In vitro model of aluminum-induced osteomalacia: Inhibition of hydroxyapatite formation and growth. Calcif. Tissue Int. 1984, 36, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.; Becaria, A.; Lahiri, D.K.; Sharman, K.; Bondy, S.C. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J. Neurosci. Res. 2004, 75, 565–572. [Google Scholar] [CrossRef]
- Chambers, J.W.; LoGrasso, P.V. Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J. Biol. Chem. 2011, 286, 16052–16062. [Google Scholar] [CrossRef]
- Tournier, C.; Hess, P.; Yang, D.D.; Xu, J.; Turner, T.K.; Nimnual, A.; Bar-Sagi, D.; Jones, S.N.; Flavell, R.A.; Davis, R.J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000, 288, 870–874. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Guan, Y.; Zhang, L.; Bai, C.; Li, Y. Aluminum induces osteoblast apoptosis through the oxidative stress-mediated JNK signaling pathway. Biol. Trace Elem. Res. 2012, 150, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Nitric oxide: Novel therapy for osteoporosis. Expert Opin. Pharmacother. 2018, 9, 3025–3044. [Google Scholar] [CrossRef] [PubMed]
- Feelisch, M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedeberg’s Arch. Pharmacol. 1998, 358, 113–122. [Google Scholar] [CrossRef]
- Felka, T.; Ulrich, C.; Rolauffs, B.; Mittag, F.; Kluba, T.; DeZwart, P.; Ochs, G.; Bonin, M.; Nieselt, K.; Hart, M.L.; et al. Nitric oxide activates signaling by c- Raf, MEK, p-JNK, p38 MAPK and p53 in human mesenchymal stromal cells and inhibits their osteogenic differentiation by blocking expression of Runx2. J. Stem Cell Res. Ther. 2014, 4, 195. [Google Scholar]
- Abnosi, M.H.; Pari, S. Exogenous nitric oxide induced early mineralization in rat bone marrow mesenchymal stem cells via activation of alkaline phosphatase. Iranian Biomed. J. 2019, 23, 142–152. [Google Scholar]
- Lockwood, A.; Patka, J.; Rabinovich, M.; Wyatt, K.; Abraham, P. Sodium nitroprusside-associated cyanide toxicity in adult patients-fact or fiction. J. Clin. Trials 2010, 2, 133–148. [Google Scholar]
- Huitema, L.F.; van Weeren, P.R.; Barneveld, A.; van de Lest, C.H.A.; Helms, J.B.; Vaandrager, A.B. Iron ions derived from the nitric oxide donor sodium nitroprusside inhibit mineralization. Eur. J. Pharmacol. 2006, 542, 48–53. [Google Scholar] [CrossRef]
- Rauhala, P.; Khaldi, A.; Mohanakumar, K.P.; Chiueh, C.C. Apparent role of hydroxyl radicals in oxidative brain injury induced by sodium nitroprusside. Free Radic. Biol. Med. 1998, 24, 1065–1073. [Google Scholar] [CrossRef]
- Guntur, A.R.; Le, P.T.; Farber, C.R.; Rosen, C.J. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 2014, 155, 1589–1595. [Google Scholar] [CrossRef]
- Golub, E.E.; Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 2007, 18, 444–448. [Google Scholar] [CrossRef]
- Henstock, J.R.; Canham, L.T.; Anderson, S.I. Silicon: The evolution of its use in biomaterials. Acta Biomater. 2015, 11, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Shie, M.-Y.; Ding, S.-J.; Chang, H.-C. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011, 7, 2604–2614. [Google Scholar] [CrossRef]
- Pezzotti, G.; Oba, N.; Zhu, W.; Marin, E.; Rondinella, A.; Boschetto, F.; McEntire, B.; Yamamoto, K.; Bal, B.S. Human osteoblasts grow transitional Si/N apatite in quickly osseointegrated Si3N4 cervical insert. Acta Biomat. 2017, 64, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Yao, Z.; Xing, L. Functions of NF-kB in bone. Ann N. Y. Acad. Sci. 2010, 1192, 367–375. [Google Scholar] [CrossRef]
- Veeriah, V.; Zanniti, A.; Paone, R.; Chatterjee, S.; Rucci, N.; Teti, A.; Capulli, M. Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechanoresponsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci. Rep. 2016, 6, 29889. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, I.; Jimi, E. Regulation of osteoclast differentiation and function by interleukin-1. Vitam. Horm. 2006, 74, 357–370. [Google Scholar]
- Shen, Y.; Liu, W.; Lin, K.; Wen, C.; Pan, H.; Wang, T.; Darvell, B.W.; Lu, W.W.; Huang, W. Bone regeneration: importance of local pH – strontium-doped borosilicate scaffold. J. Mater. Chem. 2012, 17, 8662–8670. [Google Scholar] [CrossRef]
- Bushinsky, D.A. Acid-base imbalance and the skeleton. Eur. J. Nutr. 2001, 40, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am. J. Physiol. 1996, 40, F216–F222. [Google Scholar] [CrossRef]
- Buclin, T.; Cosma, M.; Appenzeller, M.; Jacquet, A.F.; Decosterd, L.A.; Biollaz, J.; Burckhardt, P. Diet acids and alkalis influence calcium retention in bone. Osteoporosis Int. 2001, 12, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Arnett, T. Regulation of bone cell function by acid-base balance. Proc. Nutr. Soc. 2003, 62, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; McEntire, B.J.; Bock, R.; Boffelli, M.; Zhu, W.; Vitale, E.; Puppulin, L.; Adachi, T.; Yamamoto, T.; Kanamura, N.; et al. Silicon nitride: A synthetic mineral for vertebrate biology. Sci. Rep. 2016, 6, 31717. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Rao, S.; Ito, Y.; Tateishi, T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 1998, 19, 1197–1215. [Google Scholar] [CrossRef]
- Jorge, J.R.; Barão, V.A.; Delben, J.A.; Faverani, L.P.; Queiroz, T.P.; Assunção, W.G. Titanium in dentistry: Historical development, state of the art and future perspectives. J. Indian Prosthodont Soc. 2013, 13, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, A.L.; Vanâncio, E.C.; Canale Lde, C.; da Silva, O.L.; Huerta-Vilca, D.; Motheo Ade, J. Metallic Biomaterials TiN-coated: Corrosion analysis and biocompatibility. Artif. Organs 2003, 27, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Savadi, R.C.; Goyal, C. Study of biomechanics of porous coated root form implant using overdenture attachment: A 3D FEA. J. Indian Prosthodont. Soc. 2010, 10, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.J.; Puleo, D.A. Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. Biomaterials 1996, 17, 1949–1954. [Google Scholar] [CrossRef]
- Puleo, D.A.; Huh, W.W. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J. Appl. Biomater. 1995, 6, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.kokusen.go.jp/pdf/n-20190314_1.pdf (accessed on 4 May 2019).
- Schierano, G.; Mussano, F.; Faga, M.G.; Menicucci, G.; Manzella, C.; Sabione, C.; Genova, T.; von Degerfeld, M.M.; Peirone, B.; Cassenti, A.; et al. An alumina toughened zirconia composite for dental implant application: In vivo animal results. Biomed. Res. Int. 2015, 2015, 157360. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Sandri, M. New materials for dental implantology. Key Eng. Mater. 2017, 750, 189–194. [Google Scholar] [CrossRef]
- Kohal, R.-J.; Att, W.; Baechle, M.; Bitz, F. Ceramic abutments and ceramic oral implants. An update. Periodontology 2000 2008, 47, 224–243. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Miyatake, S.; Tokuriki, Y.; Handa, H. Alumina-ceramics (Bioceram) as the implant material in anterior cervical fusion. Nihon Geka Hokan 1981, 50, 352–357. [Google Scholar] [PubMed]
- Mostofi, K.; Moghaddam, B.G.; Peyravi, M.; Khouzani, R.K. Preliminary results of anterior cervical arthroplasty by porous alumina ceramic cage for cervical disc herniation surgery. J. Craniovertebral. Junction Spine 2018, 9, 223–226. [Google Scholar] [CrossRef] [PubMed]
- McEntire, B.J.; Enomoto, Y.; Zhu, W.; Boffelli, M.; Marin, E.; Pezzotti, G. Surface toughness of silicon nitride bioceramics: II, Comparison with commercial oxide materials. J. Mech. Behav. Biomed. Mater. 2016, 54, 346–359. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzotti, G.; Adachi, T.; Boschetto, F.; Zhu, W.; Zanocco, M.; Marin, E.; Bal, B.S.; McEntire, B.J. Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation. Int. J. Mol. Sci. 2019, 20, 4080. https://doi.org/10.3390/ijms20174080
Pezzotti G, Adachi T, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ. Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation. International Journal of Molecular Sciences. 2019; 20(17):4080. https://doi.org/10.3390/ijms20174080
Chicago/Turabian StylePezzotti, Giuseppe, Tetsuya Adachi, Francesco Boschetto, Wenliang Zhu, Matteo Zanocco, Elia Marin, B. Sonny Bal, and Bryan J. McEntire. 2019. "Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation" International Journal of Molecular Sciences 20, no. 17: 4080. https://doi.org/10.3390/ijms20174080
APA StylePezzotti, G., Adachi, T., Boschetto, F., Zhu, W., Zanocco, M., Marin, E., Bal, B. S., & McEntire, B. J. (2019). Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation. International Journal of Molecular Sciences, 20(17), 4080. https://doi.org/10.3390/ijms20174080